Worldwide efforts are ongoing to scale up from hundreds to millions of qubits. Common challenges include well-controlled qubit integration in large-size wafer facilities and the need for electronics to interface with the growing number of qubits.
Superconducting quantum circuits have emerged as arguably the most developed platform. The energy states of superconducting qubits are relatively easy to control, and researchers have been able to couple more than a hundred qubits together.
This enables an ever-higher level of entanglement one of the pillars of quantum computing. Also, superconducting qubits with long coherence times (up to several 100s) and sufficiently high gate fidelities two important benchmarks for quantum computation have been demonstrated in lab environments worldwide.
In 2022, imec researchers achieved a significant milestone towards realizing a 300mm CMOS process for fabricating high-quality superconducting qubits. Showing that high-performing qubit fabrication is compatible with industrial processes addresses the first fundamental barrier to upscaling, i.e., improved variability and yield. Among the remaining challenges is the need to develop scalable instrumentation to interfacewith the growing number of noise-sensitive superconducting qubits.
In the longer term, much is expected from Si-spin-based qubits. Si spin qubits are more challenging to control than superconducting qubits, but they are significantly smaller (nm size vs. mm size) giving an advantage for upscaling.
Also, the technology is highly compatible with CMOS manufacturing technologies, offering wafer-scale uniformity with advanced back-end-of-line interconnection of the Si quantum dot structures.
However, Si-based quantum dot structures fabricated with industrial manufacturing techniques typically exhibit a higher charge noise. Their small physical size also makes the qubit-to-qubit and qubit-to-classical control interconnection more challenging.
The much-needed increase in qubits requires versatile and scalable solutions to control them and read out meaningful results. In early quantum processors today, external electronics circuits are used with at least one control line per qubit running from the room-temperature stage to the lowest temperature stage of the dilution refrigerator that holds the qubits.
This base temperature is as low as ten milliKelvin (mK) for superconducting quantum computing systems. Such an approach can be used for up to a few thousand qubits but cannot be sustained for large-scale quantum computers that require dynamic circuit operations such as quantum error correction.
Not only do the control and readout lines contribute to a massive I/O bottleneck at the level of the dilution refrigerator, but each wire also brings in heat to the cryogenic system with no budget left to cool them.
An attractive solution is to use CMOS-based cryo-electronics that hold RF (de-) multiplexing elements operating at the base temperature of the dilution refrigerator. Such a solution alleviates the I/O bottleneck as the number of wires that go from room to mK temperatures can be significantly reduced.
For the readout, for example, the multiplexers would allow multiple signals from a group of quantum devices to be switched to a common output line at the dilution refrigerator base temperature before leaving the fridge.
This approach has already been demonstrated for Si spin qubit quantum systems. However, thus far, the cryogenics electronics have not been interfaced with superconducting qubits due to their significantly lower tolerance to high-frequency electromagnetic noise. Be it in the form of dissipated heat or electromagnetic radiation, noise can easily disrupt fragile quantum superpositions and lead to errors.
Thats why the power consumption of the multiplexing circuits should be very low, well below the cooling budget of the dilution refrigerator. In addition, the multiplexers must have good RF performance, in terms of, for example, wideband operation and nanosecond scale switching.
Imec has demonstrated an ultralow power cryo-CMOS multiplexer for the first time that can operate at a record low temperature of 10mK. Being sufficiently low in noise and power dissipation, the multiplexer was successfully interfaced with high-coherence superconducting qubits to perform qubit control with single qubit gate fidelities above 99.9%.
This number quantifies the difference in operation between an ideal gate and the corresponding physical gate in quantum hardware. It is above the threshold for starting experiments like quantum error correction a prerequisite for realizing practical quantum computers that can provide fault-tolerant results. The results have been published in Nature Electronics [1].
The multiplexer chip is custom designed at imec and fabricated in a commercial foundry using a 28nm bulk CMOS fabrication technology. Record-low static power consumption of 0.6W (at a bias voltage (Vdd) of 0.7V) was achieved by eliminating or modifying the most power-hungry parts of a conventional multiplexer circuit as much as possible.
The easiest way to run the multiplexer is in static operation mode, which is very useful for performing single qubit characterizations. However, operations involving more than one qubit such as quantum error correction or large-scale qubit control will require a different approach allowing concurrent control of multiple qubits within a pulse sequence.
Imec researchers developed an innovative solution involving time division multiplexing of the control signals. This could provide an interesting basis for building future large-scale quantum computing system architectures.
Preliminary experiments show that the multiplexer can perform nanosecond-scale fast dynamic switching operations and is hence capable of doing active time division multiplexing while signal crosstalk is sufficiently suppressed. Currently, the team is working towards implementing a two-qubit gate based on the concept of time division multiplexing.
The experiments described in this work have been set up to contribute to developing large-scale quantum computers by reducing wiring resources. But they also bring innovations to the field of metrology.
Throughout the experiments, the ultralow noise performance of the multiplexing circuit at mK temperature was characterized for the first time using imecs superconducting qubits. In other words, the superconducting qubit can be used as a highly sensitive noise sensor, able to measure the performance of electronics that operate at ultralow temperatures and noise regimes that have never been explored before.
Figure 1 Routing microwave signals using cryo-multiplexers. a, Standard RF signal routing for measuring superconducting qubits in a dilution refrigerator. b, Scheme for multiplexing the control and readout signals at the base-temperature stage of a superconducting quantum computer. The required RF signals can be generated from either room-temperature electronics outside the dilution refrigerator or cryo-electronics operating inside. c, Schematic representation of the cryo-CMOS multiplexer. d, Optical image of the PCB onto which the cryo-CMOS multiplexer is wire bonded. e, Optical micrograph of the cryo-CMOS multiplexer chip (as published in Nature Electronics).
Si spin qubits are defined by semiconductor quantum dot structures that trap a single spin of an electron or hole. For optimal spin qubit control, the qubit environment must display low charge noise, the gate electrodes must be well-defined with small spacings for electrical tunability, and the spin control structure must be optimized for fast driving with lower dephasing.
High-fidelity Si spin qubits have been repeatedly demonstrated in lab environments in the few-qubit regime. Techniques for processing the qubit nanostructures, such as metal lift-off, are carefully chosen to achieve low noise around the qubit environment.
But these well-controlled fabrication techniques have a serious downside: they challenge a further upscaling towards larger numbers of qubits, as they cannot offer the required large-scale uniformity the very reason these methods were abandoned decades ago in the semiconductor industry at large.
Industrial manufacturing techniques like subtractive etch and lithography-based patterning, on the other hand, can offer wafer-scale uniformity, paving the way to technology upscaling. But they have been observed to degrade the qubit environment easily.
Additionally, qubit devices, like the closely spaced gate electrode and the spin control structures, arent regular transistor structures either and therefore deviate from the typical transistor roadmaps, requiring (costly) new development.
To make the device optimization more complex, the qubit performance depends largely on all these structures and on comprehensive optimizations of the full gate stack, metal electrode design, and spin control modules that are necessary for qubit performance.
Nevertheless, the overall device structure should still be compatible with the fabrication methods used for advanced, scaled transistors in commercial foundries to ensure a fair chance at upscaling.
At imec, researchers are tackling this conundrum through careful optimization and engineering of the fab qubit in a modular approach: different qubit elements are separately addressed and optimized as part of a state-of-the-art 300mm integration flow, ensuring forward compatibility with scaling requirements while satisfying the need for dedicated, non-standard device optimization as required by the challenging quantum environment.
Preliminary results on optimised structures look promising, highlighting 300mm fab integration as a compelling material platform for enabling high-quality Si-based spin qubits and upscaling studies.
The developments take advantage of the unrivalled uniformity offered by CMOS manufacturing techniques.
Figure 2 Si spin qubits manufactured with state-of-the-art 300mm integration flows.
See the original post here:
Imec reports on quantum computing progress - Electronics Weekly
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Time Crystals Could be the Key to the First Quantum Computer - TrendinTech [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- quantum computing - WIRED UK [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Chinese scientists build world's first quantum computing machine - India Today [Last Updated On: May 3rd, 2017] [Originally Added On: May 3rd, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: June 6th, 2017] [Originally Added On: June 6th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: June 7th, 2017] [Originally Added On: June 7th, 2017]
- FinDEVr London: Preparing for the Dark Side of Quantum Computing - GlobeNewswire (press release) [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Purdue, Microsoft to Collaborate on Quantum Computer - Photonics.com [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 9th, 2017] [Originally Added On: June 9th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- HYPRES Expands Efforts in Quantum Computing with Launch of European Subsidiary SeeQC - Business Wire (press release) [Last Updated On: June 12th, 2017] [Originally Added On: June 12th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Accenture, Biogen, 1QBit Launch Quantum Computing App to ... - HIT Consultant [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- The US and China "Quantum Computing Arms Race" Will Change Long-Held Dynamics in Commerce, Intelligence ... - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- A Hybrid of Quantum Computing and Machine Learning Is Spawning New Ventures - IEEE Spectrum [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Accenture, 1QBit partner for drug discovery through quantum ... - ZDNet [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum computing, the machines of tomorrow | The Japan Times - The Japan Times [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Its time to decide how quantum computing will help your ... [Last Updated On: June 18th, 2017] [Originally Added On: June 18th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Dow and 1QBit Announce Collaboration Agreement on Quantum Computing - Business Wire (press release) [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Imperfect crystals may be perfect storage method for quantum computing - Digital Trends [Last Updated On: June 21st, 2017] [Originally Added On: June 21st, 2017]
- Dow Chemical, 1QBit Ink Quantum Computing Development Deal - Zacks.com [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- Google on track for quantum computer breakthrough by end of 2017 - New Scientist [Last Updated On: June 22nd, 2017] [Originally Added On: June 22nd, 2017]
- USC to lead project to build super-speedy quantum computers - USC News [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM ... - WIRED [Last Updated On: June 24th, 2017] [Originally Added On: June 24th, 2017]
- The weird science of quantum computing, communications and encryption - C4ISR & Networks [Last Updated On: June 27th, 2017] [Originally Added On: June 27th, 2017]
- Multi-coloured photons in 100 dimensions may make quantum ... - Cosmos [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Global Quantum Computing Market Growth at a CAGR of 35.12 ... - PR Newswire (press release) [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- New method could enable more stable and scalable quantum ... - Phys.Org [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum computers are about to get real | Science News - Science News Magazine [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Quantum Computing - Scientific American [Last Updated On: June 30th, 2017] [Originally Added On: June 30th, 2017]
- Australia's ambitious plan to win the quantum race - ZDNet [Last Updated On: July 3rd, 2017] [Originally Added On: July 3rd, 2017]
- How quantum mechanics can change computing - The Conversation - The Conversation US [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW joins with government and business to keep quantum computing technology in Australia - The Australian Financial Review [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- UNSW launches Australia's first hardware quantum computing company with investments from federal and NSW ... - OpenGov Asia [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Finns chill out quantum computers with qubit refrigerator to cut out errors - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Hype and cash are muddying public understanding of quantum ... - The Conversation AU [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- Silicon Quantum Computing launched to commercialise UNSW ... - ZDNet [Last Updated On: August 24th, 2017] [Originally Added On: August 24th, 2017]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 30th, 2018] [Originally Added On: January 30th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy | WIRED [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computing in the NISQ era and beyond [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 6th, 2018] [Originally Added On: February 6th, 2018]
- Quantum computers - WIRED UK [Last Updated On: February 19th, 2018] [Originally Added On: February 19th, 2018]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: February 21st, 2018] [Originally Added On: February 21st, 2018]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 25th, 2018] [Originally Added On: March 25th, 2018]
- Quantum Computing Explained - WIRED UK [Last Updated On: April 15th, 2018] [Originally Added On: April 15th, 2018]
- Quantum computing: A simple introduction - Explain that Stuff [Last Updated On: June 2nd, 2018] [Originally Added On: June 2nd, 2018]
- What are quantum computers and how do they work? WIRED ... [Last Updated On: June 22nd, 2018] [Originally Added On: June 22nd, 2018]
- How Quantum Computers Work [Last Updated On: July 22nd, 2018] [Originally Added On: July 22nd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- The 3 Types of Quantum Computers and Their Applications [Last Updated On: November 24th, 2018] [Originally Added On: November 24th, 2018]
- Quantum Computing - VLAB [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Quantum Computing | Centre for Quantum Computation and ... [Last Updated On: January 27th, 2019] [Originally Added On: January 27th, 2019]
- Microsofts quantum computing network takes a giant leap ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- IBM hits quantum computing milestone, may see 'Quantum ... [Last Updated On: March 7th, 2019] [Originally Added On: March 7th, 2019]
- Quantum technology - Wikipedia [Last Updated On: March 13th, 2019] [Originally Added On: March 13th, 2019]
- Quantum Computing | D-Wave Systems [Last Updated On: April 18th, 2019] [Originally Added On: April 18th, 2019]
- Microsoft will open-source parts of Q#, the programming ... [Last Updated On: May 7th, 2019] [Originally Added On: May 7th, 2019]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: May 8th, 2019] [Originally Added On: May 8th, 2019]
- The five pillars of Edge Computing -- and what is Edge computing anyway? - Information Age [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Moore's Law Is Dying. This Brain-Inspired Analogue Chip Is a Glimpse of What's Next - Singularity Hub [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Experts Gather at Fermilab for International Workshop on Cryogenic Electronics for Quantum Systems - Quantaneo, the Quantum Computing Source [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Princeton announces initiative to propel innovations in quantum science and technology - Princeton University [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Detecting Environmental 'Noise' That Can Damage The Quantum State of Qubits - In Compliance [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Quantum Computing beginning talks with clients on its quantum asset allocation application - Proactive Investors USA & Canada [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is quantum computing? The next era of computational evolution, explained - Digital Trends [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- IT sees the Emergence of Quantum Computing as a Looming Threat to Keeping Valuable Information Confidential - Quantaneo, the Quantum Computing Source [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]
- More wrong answers get quantum computers to find the right one - Futurity: Research News [Last Updated On: October 23rd, 2019] [Originally Added On: October 23rd, 2019]