Under the Hood of ‘The Cloud’

When we designed the CloudLayer Computing platform, our goal was to create an offering where customers would be able to customize and build cloud computing instances that specifically meet their needs: If you go to our site, you’re even presented with an opportunity to “Build Your Own Cloud.” The idea was to let users choose where they wanted their instance to reside as well as their own perfect mix of processor power, RAM and storage. Today, we’re taking the BYOC mantra one step farther by unveiling the local disk storage option for CloudLayer computing instances!

Local Disk

For those of you familiar with the CloudLayer platform, you might already understand the value of a local disk storage option, but for the uninitiated, this news presents a perfect opportunity to talk about the dynamics of the cloud and how we approach the cloud around here.

As the resident “tech guy” in my social circle, I often find myself helping friends and family understand everything from why their printer isn’t working to what value they can get from the latest and greatest buzzed-about technology. As you’d probably guess, the majority of the questions I’ve been getting recently revolve around ‘the cloud’ (thanks especially to huge marketing campaigns out of Redmond and Cupertino). That abstract term effectively conveys the intentional sentiment that users shouldn’t have to worry about the mechanics of how the cloud works … just that it works. The problem is that as the world of technology has pursued that sentiment, the generalization of the cloud has abstracted it to the point where this is how large companies are depicting the cloud:

Cloud

As it turns out, that image doesn’t exactly illicit the, “Aha! Now I get it!” epiphany of users actually understanding how clouds (in the technology sense) work. See how I pluralized “clouds” in that last sentence? ‘The Cloud’ at SoftLayer isn’t the same as ‘The Cloud’ in Redmond or ‘The Cloud’ in Cupertino. They may all be similar in the sense that each cloud technology incorporates hardware abstraction, on-demand scalability and utility billing, but they’re not created in the same way.

If only there were a cloud-specific Declaration of Independence …

We hold these truths to be self-evident, that all clouds are not equal, that they are endowed by their creators with certain distinct characteristics, that among these are storage, processing power and the ability to serve content. That to secure these characteristics, information should be given to users, expressed clearly to meet the the cloud’s users;

The Ability to Serve Content
Let’s unpack that Jeffersonian statement a little by looking at the distinct characteristics of every cloud, starting with the third (“the ability to serve content”) and working backwards. Every cloud lives on hardware. The extent to which a given cloud relies on that hardware can vary, but at the end of the day, you &nash; as a user – are not simply connecting to water droplets in the ether. I’ll use SoftLayer’s CloudLayer platform as a specific example of that a cloud actually looks like: We have racks of uniform servers – designated as part of our cloud infrastructure – installed in rows in our data centers. All of those servers are networked together, and we worked with our friends at Citrix to use the XenServer platform to tie all of those servers together and virtualize the resources (or more simply: to make each piece of hardware accessible independently of the rest of the physical server it might be built into). With that infrastructure as a foundation, ordering a cloud server on the CloudLayer platform simply involves reserving a small piece of that cloud where you can install your own operating system and manage it like an independent server or instance to serve your content.

Processing Power
Understanding the hardware architecture upon which a cloud is built, the second distinct characteristic of every cloud (“processing power”) is fairly logical: The more powerful the hardware used for a given cloud, the better processing performance you’ll get in an instance using a piece of that hardware.

You can argue about what software uses the least resources in the process of virtualizing, but apples-to-apples, processing power is going to be determined by the power of the underlying hardware. Some providers try to obfuscate the types of servers/processors available to their cloud users (sometimes because they are using legacy hardware that they wouldn’t be able to sell/rent otherwise), but because we know how important consistent power is to users, we guarantee that CloudLayer instances are based on 2.0GHz (or faster) processors.

Storage
We walked backward through the distinct characteristics included in my cloud-specific Declaration of Independence because of today’s CloudLayer Computing storage announcement, but before I get into the details of that new option, let’s talk about storage in general.

If the primary goal of a cloud platform is to give users the ability to scale instantly from 1 CPU of power to 16 CPUs of power, the underlying architecture has to be as flexible as possible. Let’s say your cloud computing instance resides on a server with only 10 CPUs available, so when you upgrade to a 16-CPU instance, your instance will be moved to a server with enough available resources to meet your need. To make that kind of quick change possible, most cloud platforms are connected to a SAN (storage area network) or other storage device via a back-end network to the cloud servers. The biggest pro of having this setup is that upgrading and downgrading CPU and RAM for a given cloud instance is relatively easy, but it introduces a challenge: The data lives on another device that is connected via switches and cables and is being used by other customers as well. Because your data has to be moved to your server to be processed when you call it, it’s a little slower than if a hard disk was sitting in the same server as the instance’s processor and RAM. For that reason, many users don’t feel comfortable moving to the cloud.

In response to the call for better-performing storage, there has been a push toward incorporating local disk storage for cloud computing instances. Because local disk storage is physically available to the CPU and RAM, the transfer of data is almost immediate and I/O (input/output) rates are generally much higher. The obvious benefit of this setup is that the storage will perform much better for I/O-intensive applications, while the tradeoff is that the setup loses the inherent redundancy of having the data replicated across multiple drives in a SAN (which, is almost like its own cloud … but I won’t confuse you with that right now).

The CloudLayer Computing platform has always been built to take advantage of the immediate scalability enabled by storing files in a network storage device. We heard from users who want to use the cloud for other applications that they wanted us to incorporate another option, so today we’re happy to announce the availability of local disk storage for CloudLayer Computing! We’re looking forward to seeing how our customers are going to incorporate cloud computing instances with local disk storage into their existing environments with dedicated servers and cloud computing instances using SAN storage.

If you have questions about whether the SAN or local disk storage option would fit your application best, click the Live Chat icon on SoftLayer.com and consult with one of our sales reps about the benefits and trade-offs of each.

We want you to know exactly what you’re getting from SoftLayer, so we try to be as transparent as we can when rolling out new products. If you have any questions about CloudLayer or any of our other offerings, please let us know!

-@nday91

Related Posts

Comments are closed.