Distributed constrained combinatorial optimization leveraging hypergraph neural networks – Nature.com

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 4760 (2023).

Article Google Scholar

Schuetz, M. J. A., Brubaker, J. K. & Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4, 367377 (2022).

Article Google Scholar

Cappart, Q. et al. Combinatorial optimization and reasoning with graph neural networks. J. Mach. Learn. Res. 24, 161 (2023).

MathSciNet Google Scholar

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G. & Dilkina, B. Learning to branch in mixed integer programming. In Proc. 30th AAAI Conference on Artificial Intelligence 724731 (AAAI, 2016).

Bai, Y. et al. Simgnn: a neural network approach to fast graph similarity computation. In Proc. 12th ACM International Conference on Web Search and Data Mining 384392 (ACM, 2019).

Gasse, M., Chtelat, D., Ferroni, N., Charlin, L. & Lodi, A. Exact combinatorial optimization with graph convolutional neural networks. In Proc. Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 1558015592 (NeurIPS, 2019).

Nair, V. et al. Solving mixed integer programs using neural networks. Preprint at https://arXiv.org/2012.13349 (2020).

Li, Z., Chen, Q. & Koltun, V. Combinatorial optimization with graph convolutional networks and guided tree search. In Proc. Advances in Neural Information Processing Systems 31 (eds Bengio, S. et al.) 537546 (NeurIPS, 2018).

Karalias, N. & Loukas, A. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. In Proc. Advances in Neural Information Processing Systems 33 (eds Larochelle, H. et al.) 66596672 (NeurIPS, 2020).

Toenshoff, J., Ritzert, M., Wolf, H. & Grohe, M. Graph neural networks for maximum constraint satisfaction. Front. Artif. Intell. 3, 580607 (2021).

Article Google Scholar

Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207212 (2021).

Article Google Scholar

Yolcu, E. & Pczos, B. Learning local search heuristics for boolean satisfiability. In Proc. Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 79928003 (NeurIPS, 2019).

Ma, Q., Ge, S., He, D., Thaker, D. & Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. Preprint at https://arXiv.org/1911.04936 (2019).

Kool, W., Van Hoof, H. & Welling, M. Attention, learn to solve routing problems! In International Conference on Learning Representations (ICLR, 2018).

Asghari, M., Fathollahi-Fard, A. M., Mirzapour Al-E-Hashem, S. M. J. & Dulebenets, M. A. Transformation and linearization techniques in optimization: a state-of-the-art survey. Mathematics 10, 283 (2022).

Article Google Scholar

Feng, S. et al. Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics 22, 121 (2021).

Article Google Scholar

Murgas, K. A., Saucan, E. & Sandhu, R. Hypergraph geometry reflects higher-order dynamics in protein interaction networks. Sci. Rep. 12, 20879 (2022).

Article Google Scholar

Zhu, J., Zhu, J., Ghosh, S., Wu, W. & Yuan, J. Social influence maximization in hypergraph in social networks. IEEE Trans. Netw. Sci. Eng. 6, 801811 (2018).

Article MathSciNet Google Scholar

Xia, L., Zheng, P., Huang, X. & Liu, C. A novel hypergraph convolution network-based approach for predicting the material removal rate in chemical mechanical planarization. J. Intell. Manuf. 33, 22952306 (2022).

Article Google Scholar

Wen, Y., Gao, Y., Liu, S., Cheng, Q. & Ji, R. Hyperspectral image classification with hypergraph modelling. In Proc. 4th International Conference on Internet Multimedia Computing and Service 3437 (ACM, 2012).

Feng, Y., You, H., Zhang, Z., Ji, R. & Gao, Y. Hypergraph neural networks. In Proc. 33rd AAAI Conference on Artificial Intelligence 35583565 (AAAI, 2019).

Angelini, M. C. & Ricci-Tersenghi, F. Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nature Mach. Intell. 5, 2931 (2023).

Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671680 (1983).

Article MathSciNet Google Scholar

Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arXiv.org/1412.6980 (2014).

Benlic, U. & Hao, J.-K. Breakout local search for the max-cutproblem. Eng. Appl. Artif. Intell. 26, 11621173 (2013).

Article Google Scholar

APS dataset on Physical Review Journals, published by the American Physical Society, https://journals.aps.org/datasets (n.d.)

Ye, Y. The gset dataset, https://web.stanford.edu/~yyye/yyye/Gset (Stanford, 2003).

Hu, W. et al. Open graph benchmark: datasets for machine learning on graphs. In Proc. Advances in Neural Information Processing Systems 33 (eds Larochelle, H. et al.) 2211822133 (2020).

Ndc-substances dataset. Cornell https://www.cs.cornell.edu/~arb/data/NDC-substances/ (2018).

Benson, A. R., Abebe, R., Schaub, M. T., Jadbabaie, A. & Kleinberg, J. Simplicial closure and higher-order link prediction. Proc. Natl Acad. Sci. USA 115, E11221E11230 (2018).

Hoos, H. H., & Sttzle, T. SATLIB: An online resource for research on SAT. Sat, 2000, 283292 (2000).

Heydaribeni, N., Zhan, X., Zhang, R., Eliassi-Rad, T. & Koushanfar, F. Source code for Distributed constrained combinatorial optimization leveraging hypergraph neural networks. Code Ocean https://doi.org/10.24433/CO.4804643.v1 (2024).

Read the original:

Distributed constrained combinatorial optimization leveraging hypergraph neural networks - Nature.com

Related Posts

Comments are closed.