Photo by Joseph Chan on Unsplash
Author : Aosong Feng, Leandros Tassiulas
Abstract : Traffic flow forecasting on graphs has real-world applications in many fields, such as transportation system and computer networks. Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns. Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately and fail to model the direct spatial-temporal correlations. Inspired by the recent success of transformers in the graph domain, in this paper, we propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions. To reduce the time complexity, we set the attention receptive field to the spatially neighboring nodes, and we also introduce an adaptive graph to capture the hidden spatial-temporal dependencies. Based on these attention mechanisms, we propose a novel Adaptive Graph Spatial-Temporal Transformer Network (ASTTN), which stacks multiple spatial-temporal attention layers to apply self-attention on the input graph, followed by linear layers for predictions. Experimental results on public traffic network datasets, METR-LA PEMS-BAY, PeMSD4, and PeMSD7, demonstrate the superior performance of our model.
2.A Correlation Information-based Spatiotemporal Network for Traffic Flow Forecasting (arXiv)
Author : Weiguo Zhu, Yongqi Sun, Xintong Yi, Yan Wang
Abstract : The technology of traffic flow forecasting plays an important role in intelligent transportation systems. Based on graph neural networks and attention mechanisms, most previous works utilize the transformer architecture to discover spatiotemporal dependencies and dynamic relationships. However, they have not considered correlation information among spatiotemporal sequences thoroughly. In this paper, based on the maximal information coefficient, we present two elaborate spatiotemporal representations, spatial correlation information (SCorr) and temporal correlation information (TCorr). Using SCorr, we propose a correlation information-based spatiotemporal network (CorrSTN) that includes a dynamic graph neural network component for integrating correlation information into spatial structure effectively and a multi-head attention component for modeling dynamic temporal dependencies accurately. Utilizing TCorr, we explore the correlation pattern among different periodic data to identify the most relevant data, and then design an efficient data selection scheme to further enhance model performance. The experimental results on the highway traffic flow (PEMS07 and PEMS08) and metro crowd flow (HZME inflow and outflow) datasets demonstrate that CorrSTN outperforms the state-of-the-art methods in terms of predictive performance. In particular, on the HZME (outflow) dataset, our model makes significant improvements compared with the ASTGNN model by 12.7%, 14.4% and 27.4% in the metrics of MAE, RMSE and MAPE, respectively
Continue reading here:
Applications of Traffic Flow Forecasting part3 | by Monodeep ... - Medium
- A New Attack Impacts ChatGPTand No One Knows How to Stop It - WIRED [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Four Ways to Build AI Tools Without Knowing How to Code - Lifehacker [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- 5G Advanced and Wireless AI Set To Transform Cellular Networks ... - Counterpoint Research [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- ChatGPT & Advanced Prompt Engineering: Driving the AI Evolution - Unite.AI [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Hawai'i Education Association awards scholarships to three Big ... - Big Island Now [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- On the evaluation of the carbon dioxide solubility in polymers using ... - Nature.com [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Ghost particles paint a new picture of the Milky Way - Science News Explores [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- International Conference on Machine Learning Draws Machine ... - Fagen wasanni [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Living a Varied Life Boosts Brain Connectivity in Mice - ScienceAlert [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- AI helps scientists to eavesdrop on endangered pink dolphins - Nature.com [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Reinforcement learning allows underwater robots to locate and track ... - Science Daily [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Artificial Intelligence Accuracy and Bias Can be Improved through ... - Fagen wasanni [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Neural Network Software Market 2023 Growth Factors and Industry ... - University City Review [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Scientific discovery in the age of artificial intelligence - Nature.com [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- What is AI Pruning? Definition from Techopedia.com - Techopedia [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]
- Application of artificial neural network and dynamic adsorption ... - Nature.com [Last Updated On: August 2nd, 2023] [Originally Added On: August 2nd, 2023]