Over the past decade, healthcare has been aggressively organizing to use data for better medical care. Healthcare professionals today are routinely using electronic health records (EHRs) to improve their ability to diagnose medical conditions, at the same time reducing and even preventing medical errors for better patient outcomes.
Medical tablets and touchscreen PCs provide the portals into that data. Medical equipment manufacturers collaborate with both hardware and software providers to bring their solutions to the healthcare market, positively impacting patients and providers alike.
In the past, doctors recorded patient information with a pen and clipboard and stored patient files in office filing cabinets. In the mid-2000s, HIPPA and other healthcare regulators made it a requirement to keep electronic medical records (EMRs), also called electronic health records (EHRs). The final deadline for healthcare organizations to switch from paper records to electronic records was in 2014.
For a few years, clinicians continued gathering patient data on paper, and inputting that data into a computer. The transfer of data was sometimes sloppy and inaccurate, and it was a time-consuming process. But then healthcare systems began placing computers at the point of care, to skip the pen and clipboard all together. Now, according to a national survey of doctors cited on the HealthIT.gov website:
Mobile computers and computers installed at the point of care are enabling medical professionals to acquire a wealth of data on their patients and improve their care. The benefits of EHRs can include the ability to manipulate data that can detect problems with the patients health and in the hospital or clinics operational system.
Medical computers are designed to stand up to harsh, medical-grade cleaners.
Medical touchscreen PCs allow providers to deliver continuity of care, manage risk and prevent liability, but not just any computing device can enter a healthcare environment. Computers used in hospitals and other medical facilities must meet patient needs, safety requirements and the strict demands of the field.
While the requirements can vary drastically depending on the application, there are several standard features for use in a healthcare setting.
Provide the basics. The medical-grade touchscreen PC must have basic functionality: processing speed, storage, inputs and outputs, and the ability to securely connect to a wireless or wired network to allow various medical providersbut not unauthorized users to access patient records.
Reliability. Healthcare never stops, so in hospitals, medical-grade touchscreen PCs must be able to run 24/7/365 and therefore have the same ruggedness as those units used in the rough world of manufacturing. Reliability is crucial in a demanding healthcare setting, which, of course, is one place where reliability can mean life or death.
Compliance. Does the computer support HIPPA-compliant EHR practices, and is it compatible with the manufacturers current operating system and software? There are a lot of compliance measures for medical devices to ensure they are secure and reliable.
Most electronic devices used in medical facilities must carry certifications regarding electrical charge and flow from the device. Some of the common certifications are CE, FCC class A or B, UL60601-1, EN60601-1 and IEC60601-1. 60601-1 certification is the core certification pertaining to the placement of computers near patients or sensitive equipment.
Medical computers also need to have sterile and easy-to-clean bezels. Though computers may seem clean, bacteria, undetectable to the human eye, can easily build up. Standard PCs are not sterile enough for a hospital or other healthcare environment. Medical computers are designed with minimal cracks and crevices to deny hiding places for bacteria to grow. Flush-front designs also make it easy to wipe down the computer between patient visits or surgeries.
Medical computers are built with special antibacterial plastic, or they can have antibacterial coatings that impede the growth of bacteria and germs. The plastic housing is also designed to stand up to harsh, medical-grade cleaners that can degrade and damage the bezel of non-medical-grade computers.
OEM projects have special requirements not typically seen in standard medical computer deployments.
Fanless cooling. Fans can build up dust and debris, leading to early computer failure. They are also a common point of failure on mobile computers that are bumped or moved around often. Fanless cooling systems dont push around dust or germs and they allow the computer to run silently.
Fully sealed enclosures. These are easy to clean with sanitizer and dont allow moisture to invade the inside of the PC.
Antimicrobial touchscreen and enclosure. Antimicrobial plastic or coating prevents the spread of Methicillin-resistant Staphylococcus aureus (MRSA) and other infections by 95%.
Carefully selected I/Os. Standard computers are not designed with medical applications in mind. They can lack important I/Os (inputs and outputs) that are used to connect the computer with common medical devices and peripherals, and they may include irrelevant I/Os that usually go unused in healthcare.
Long life. To meet the demands of medical settings, touchscreens should have a useful life of 100 million touches, and both the internal and external components of the computer need to last (usually a minimum of five years). Installing new computer hardware in a healthcare facility or hospital is a costly undertaking that can take months or even years. So, it is all the important that the computers are built to last.
Mounting design. Units with standard VESA mounts allow easy and reliable attachment to your equipment or system. Some OEM medical machines require a panel-mount or open-frame computer. Medical tablet PCs typically come with a docking station for drop-and-go charging, and sometimes require a customized mounting solution for OEM devices.
Surge protection. Computers that are directly connected to a patient must have surge protection, lest they interfere with the patient or other medical equipment. The best way to protect the patient is to outfit the input/output ports with 4kV isolation, which is accounted for under the IEC60601-1 4th Edition Certification.
Security. It is vital that hospitals protect patient records to satisfy multiple government standards. To ensure a fully secure computing environment, computers used in healthcare should come equipped with a Trusted Platform Module (TPM). The TPM serves as a hardware authentication tool to be used in conjunction with software-based security solutions. TPM is widely considered to be the safest form of computer security and is trusted to keep patient records private.
Though medicine has been using PC touchscreens for the past 30 years, you can imagine how far weve come, particularly recently. Wireless technology has benefited both computer carts and stationary equipment using touchscreens, particularly with facilities using booster devices and mesh systems.
With the advent of hot-swappable batteries, clinicians now have the option of unplugging the AIO computer from a power source and moving to the next room without restriction. Battery-powered computers now come in 21.5 in. and 23.8 in. and can run up to eight hours without needing to be plugged into power.
As for operating systems, Android isnt just for smartphones. Thanks to the flexibility offered by this operating system, computers will function successfully with a variety of systems used in a healthcare facility. Plus, Android gives equipment designers a high level of flexibility when it comes to device functionality.
Android provides the flexibility that healthcare, which is always evolving, needs. The operating system makes medical-grade computers even more appealing to developers, who can easily customize applications to accommodate unique I/O devices and create GUIs to manage any medical need.
Android medical-grade computers do not require additional storage capacity and memory requirements that are necessary for Window-based computers. The significant cost savings associated with these differences are driving medical applications towards Android-based computing.
Size is also making a difference. Manufacturers are providing smaller, slimmer, lighter-weight computers that are better able to move around a facility, as cart-mounted computers on wheels (COWs). Mobile computing devices continue to get smaller, too. Medical tablets are easy to carry around and handheld devices can fit into the pocket of a white coat.
As components are shrinking, this compactness (combined with durability) enables these units to go wherever clinicians go. When mounted, these computers take up less room on COWs or in equipment, yet the screens are very readable and available in large-enough sizes for DICOM imaging and medical chart or image reading.
Computers installed at the point of care enable medical professionals to collect a wealth of data.
Original equipment manufacturer (OEM) projects have special requirements that arent typically seen in standard medical computer deployments. This process is best explained with an example.
In 2017, a medical OEM was searching for a computer with 60601-1 certification, a PCIe slot for a graphics card and an anti-bacterial enclosure. The computer would be used with the OEMs autonomous tissue removal robot that treats lower urinary tract symptoms due to BPH (enlarged prostate). They tested a 21.5-in., medically certified, all-in-one touchscreen computer from Teguar.
After the OEM approved the medical computer in terms of hardware performance, the researchers used the device in clinical trials outside the United States. After a couple of years of successful trials abroad, which included a 181-patient, double-blind, randomized clinical trial, the technology for the treatment of prostate disease gained approval by the FDA for access to the U.S. market.
Throughout the whole process, in this case several years, the OEM and the computer manufacturer must communicate clearly and timely, as to not delay any aspect of the project. Over that time, a consumer-grade computer model will undergo several upgrades, or even be discontinued for a newer model. Medical devices are certified to their exact specs, so the computer cannot simply be switched out for the newer model. This is where a long life cycle is essential. The CPU used in this computer was on Intels embedded roadmap, ensuring that it will be available from Intel for more than 10 years.
Today, the manufacturer has deployed about 150 of its autonomous tissue removal robots. They are creating a better healthcare experience for patients by reducing the invasiveness of the surgery and minimizing the commonly experienced complications in current methods for the removal of prostatic tissue. Over the next few years, the device manufacturer expects the device to gain traction in terms of deployment and market use.
This collaboration has been successful because the computer used in this project provided a forward-looking solution. The computer met the project needs at the time and in the future, in terms of spec requirements, but also would meet the stringent FDA requirements.
Jacob Valdez is a sales manager at Teguar Computers, a Charlotte, N.C. provider of industrial and medical PCs.
View original post here:
Medical Computers Impact the Standard of Care - Machine Design
- Is there an alternative to radiation [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Taiwan exploring how nanotech affects health [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- A new way of treating cancer on the way? [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Lasers can destroy cancer cells [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Fluorescent molecules can be biomarkers [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Quick blood tests by using a nanodevice [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Where will medicine be 20 years from now [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- History of nanotechnology [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nanotech and Cancer [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- Nanotechnology in medicine [Last Updated On: November 8th, 2009] [Originally Added On: November 8th, 2009]
- How does cancer start [Last Updated On: January 25th, 2010] [Originally Added On: January 25th, 2010]
- Lung cancer symptoms [Last Updated On: January 26th, 2010] [Originally Added On: January 26th, 2010]
- Signs of breast cancer [Last Updated On: January 27th, 2010] [Originally Added On: January 27th, 2010]
- Famous people with cancer [Last Updated On: January 29th, 2010] [Originally Added On: January 29th, 2010]
- Metastatic renal cancer [Last Updated On: January 30th, 2010] [Originally Added On: January 30th, 2010]
- What causes skin cancer [Last Updated On: January 31st, 2010] [Originally Added On: January 31st, 2010]
- How many people die from cancer each year [Last Updated On: February 1st, 2010] [Originally Added On: February 1st, 2010]
- How much money is spent on cancer research [Last Updated On: February 2nd, 2010] [Originally Added On: February 2nd, 2010]
- Colon cancer warning signs [Last Updated On: February 4th, 2010] [Originally Added On: February 4th, 2010]
- Prostate cancer symptoms [Last Updated On: February 4th, 2010] [Originally Added On: February 4th, 2010]
- Carla wants to know [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- I believe in Renewable Energy, and here's why [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- I believe in Renewable Energy, and here's why [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Nanotechnology : Ms S. Naidoo - Nano Drug Delivery.wmv [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- NanoMedicine Cancer Drug Delivery - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- ELSI of Regenerative Nanomedicine, Part 5 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- DtaS - Nanomedicine - Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- 2006 Winter, Nanomedicine A New Frontier for Physics - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Brian Plouffe on Nanomedicine IGERT @ Northeastern - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- Nanomedicine in Europe: present and for the future - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 1st, 2011]
- The Ethics of Nanomedicine, nanomedicine ethics , ethics in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2011]
- Question to Alain Herrera about nanomedicine future - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2011]
- Nanomedicine MSc - A Student Perspective - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 8th, 2011]
- Nanomedicine | Insights [Last Updated On: August 17th, 2024] [Originally Added On: November 9th, 2011]
- ELSI in Regenerative Nanomedicine, Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 16th, 2011]
- IdeasLab: Breakthroughs in Nanomedicine - Sonia Trigueros - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 27th, 2011]
- Nanomedicine Panel BioEurope 2011 - manufacturing in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 29th, 2011]
- Nanomedicine Panel BioEurope 2011 - choice to work in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 1st, 2012]
- Nanomedicine Panel BioEurope 2011 - importance of safety in nanomedicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 6th, 2012]
- Nanomedicine Panel BioEurope 2011 - communicate with regulatory agencies - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 6th, 2012]
- Bertrand Loubaton - Contribution of Nanomedicine to the global societal challenges - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine Panel BioEurope 2011 - Introduction by Laurent Levy - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine Panel BioEurope 2011 - clinical development - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Nanomedicine - YouTube.flv - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 19th, 2012]
- Warren Chan - Nanomedicine (part 1) - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 20th, 2012]
- Nanomedicine Panel BioEurope 2011 - expiration of patents - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 2nd, 2012]
- Nano tech is subject of pub talk [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- President Obama Speaking about Nanotechnology [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- OU nanoparticle research may fight cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NanoYou - an introduction to Nanoscience narrated by Stephen Fry - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NanoMEDICINE and human upper limit - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- NANOMOL Technology Platform - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- Podcast : Nano Sized Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]
- Medical Nanotechnology - James Stranger - Current Student Experience - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 12th, 2012]
- Local biotech company hopes save lives by focusing on microscopic cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 13th, 2012]
- Tai chi helps ease symptoms of Parkinson's disease, study says [Last Updated On: August 17th, 2024] [Originally Added On: February 13th, 2012]
- Research and Markets: Handbook of Multiphase Polymer Systems, 2 Volume Set Is Ideal for Researchers in both Industry ... [Last Updated On: August 17th, 2024] [Originally Added On: February 15th, 2012]
- TES the largest network of teachers in the world [Last Updated On: August 17th, 2024] [Originally Added On: February 15th, 2012]
- Study implants chip that oozes out a daily dose of medicine as doctor orders by remote control [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Implantable microchip delivers medicine to women with osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-controlled chip implant delivers bone drug [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-controlled chip implant delivers meds [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Remote-control chip implant delivers drug [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2012]
- Nano-technology uses virus' coats to fool cancer cells [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Implanted Chip Delivers Drugs Without a Thought [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Critical Pharmaceuticals And The University Of Nottingham To Develop Nano-Enabled Nasal Spray For Osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 17th, 2012]
- Nano-enabled nasal spray for osteoporosis [Last Updated On: August 17th, 2024] [Originally Added On: February 18th, 2012]
- One Way Trip to the Moon - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 21st, 2012]
- Remote-control chip delivers drug [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Nanomedicine - Part 2 - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Nanomedicine - Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2012]
- Cost effective and toxix medicine for cancer [Last Updated On: August 17th, 2024] [Originally Added On: February 24th, 2012]
- Nanomedicine Release of neurological drugs - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 24th, 2012]
- 28101 video abstract - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 25th, 2012]
- Allocation for science promotion negligible, says CCMB Director [Last Updated On: August 17th, 2024] [Originally Added On: February 28th, 2012]
- Nano-rockets carrying medicine through body closer to reality [Last Updated On: August 17th, 2024] [Originally Added On: February 29th, 2012]
- Motion in Acid - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 29th, 2012]
- Study: Old flu drug speeds brain injury recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]
- Flu drug speeds up brain recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]
- Hometownstations.com-WLIO- Lima, OH News Weather SportsStudy: Old flu drug speeds brain injury recovery [Last Updated On: August 17th, 2024] [Originally Added On: March 1st, 2012]