Immunoregulatory nanomedicine for respiratory infections – Nature.com

Dowell, S. F. & Ho, M. S. Seasonality of infectious diseases and severe acute respiratory syndromewhat we dont know can hurt us. Lancet Infect. Dis. 4, 704708 (2004).

Article Google Scholar

Bygbjerg, I. C. Double burden of noncommunicable and infectious diseases in developing countries. Science 337, 14991501 (2012).

Article Google Scholar

Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193205 (2022).

Article Google Scholar

Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533534 (2020).

Article Google Scholar

Mosier, D. A. Bacterial pneumonia. Vet. Clin. North. Am. Food Anim. Pract. 13, 483493 (1997).

Article Google Scholar

Bradley, B. T. & Bryan, A. Emerging respiratory infections: the infectious disease pathology of SARS, MERS, pandemic influenza, and Legionella. Semin. Diagn. Pathol. 36, 152159 (2019).

Article Google Scholar

Shao, X. et al. An innate immune system cell is a major determinant of species-related susceptibility differences to fungal pneumonia. J. Immunol. 175, 32443251 (2005).

Article Google Scholar

Zhou, P. & Shi, Z.-L. SARS-CoV-2 spillover events. Science 371, 120122 (2021).

Article Google Scholar

Abraham, E. et al. Consensus conference definitions for sepsis, septic shock, acute lung injury, and acute respiratory distress syndrome: time for a reevaluation. Crit. Care Med. 28, 232235 (2000).

Article Google Scholar

DiSilvio, B. et al. Complications and outcomes of acute respiratory distress syndrome. Crit. Care Med. 42, 349361 (2019).

Google Scholar

Li, K. et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J. Infect. Dis. 213, 712722 (2016).

Article Google Scholar

Singh, A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 16, 1624 (2021).

Article Google Scholar

Saunders, K. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594, 553559 (2021).

Article Google Scholar

Su, Z. et al. Bioresponsive nano-antibacterials for H2S-sensitized hyperthermia and immunomodulation against refractory implant-related infections. Sci. Adv. 8, eabn1701 (2022).

Article Google Scholar

Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug. Discov. 20, 817838 (2021).

Article Google Scholar

Wareing, M. D. & Tannock, G. A. Live attenuated vaccines against influenza; an historical review. Vaccine 19, 33203330 (2001).

Article Google Scholar

Skountzou, I. et al. Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine 28, 41034112 (2010).

Article Google Scholar

Ellebedy, A. H. et al. Contemporary seasonal influenza A (H1N1) virus infection primes for a more robust response to split inactivated pandemic influenza A (H1N1) virus vaccination in ferrets. Clin. Vaccine Immunol. 17, 19982006 (2010).

Article Google Scholar

Ninomiya, A. Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice. Vaccine 20, 31233129 (2002).

Article Google Scholar

Roy, S. et al. Viral vector and route of administration determine the ILC and DC profiles responsible for downstream vaccine-specific immune outcomes. Vaccine 37, 12661276 (2019).

Article Google Scholar

Mielcarek, N., Alonso, S. & Locht, C. Nasal vaccination using live bacterial vectors. Adv. Drug. Deliv. Rev. 51, 5569 (2001).

Article Google Scholar

Wu, Y. et al. A recombinant spike protein subunit vaccine confers protective immunity against SARS-CoV-2 infection and transmission in hamsters. Sci. Transl. Med. 13, eabg1143 (2021).

Article Google Scholar

Smith, T. R. F. et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11, 2601 (2020).

Article Google Scholar

Narasimhan, M. et al. Serological response in lung transplant recipients after two doses of SARS-CoV-2 mRNA vaccines. Vaccines 9, 708 (2021).

Article Google Scholar

Berkhout, B., Verhoef, K., van Wamel, J. L. B. & Back, N. K. T. Genetic instability of live, attenuated human immunodeficiency virus type 1 vaccine strains. J. Virol. 73, 11381145 (1999).

Article Google Scholar

Cevik, M. COVID-19 vaccines: keeping pace with SARS-CoV-2 variants. Cell 184, 50775081 (2021).

Article Google Scholar

KhalajHedayati, A., Chua, C. L. L., Smooker, P. & Lee, K. W. Nanoparticles in influenza subunit vaccine development: immunogenicity enhancement. Influenza Other Resp. Vir. 14, 92101 (2020).

Article Google Scholar

Kim, C. G., Kye, Y.-C. & Yun, C.-H. The role of nanovaccine in cross-presentation of antigen-presenting cells for the activation of CD8+ T cell responses. Pharmaceutics 11, 612 (2019).

Article Google Scholar

Silva, A. L., Soema, P. C., Sltter, B., Ossendorp, F. & Jiskoot, W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum. Vaccines Immunother. 12, 10561069 (2016).

Article Google Scholar

Huang, J. et al. Nasal nanovaccines for SARS-CoV-2 to address COVID-19. Vaccines 10, 405 (2022).

Article Google Scholar

Hussain, A. et al. mRNA vaccines for COVID-19 and diverse diseases. J. Control. Rel. 345, 314333 (2022).

Article Google Scholar

Meng, Q. et al. Capturing cytokines with advanced materials: a potential strategy to tackle COVID19 cytokine storm. Adv. Mater. 33, 2100012 (2021).

Article Google Scholar

Hotchkiss, R. S., Coopersmith, C. M., McDunn, J. E. & Ferguson, T. A. The sepsis seesaw: tilting toward immunosuppression. Nat. Med. 15, 496497 (2009).

Article Google Scholar

van de Veerdonk, F. L. et al. A guide to immunotherapy for COVID-19. Nat. Med. 28, 3950 (2022).

Article Google Scholar

Wykes, M. N. & Lewin, S. R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 18, 91104 (2018).

Article Google Scholar

Florindo, H. F. et al. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 15, 630645 (2020).

Article Google Scholar

Jiang, S., Zhang, X., Yang, Y., Hotez, P. J. & Du, L. Neutralizing antibodies for the treatment of COVID-19. Nat. Biomed. Eng. 4, 11341139 (2020).

Article Google Scholar

Nasiruddin, M., Neyaz, Md. K. & Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat. 2017, 112 (2017).

Google Scholar

Abani, O. et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397, 16371645 (2021).

Article Google Scholar

The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N. Engl. J. Med. 384, 14911502 (2021).

Article Google Scholar

Kozlov, M. Omicron overpowers key COVID antibody treatments in early tests. Nature https://doi.org/10.1038/d41586-021-03829-0 (2021).

Roback, J. D. & Guarner, J. Convalescent plasma to treat COVID-19: possibilities and challenges. JAMA 323, 15611562 (2020).

Article Google Scholar

Nguyen, P. T. N., Nho Van Le, Nguyen Dinh, H. M., Nguyen, B. Q. P. & Nguyen, T. V. A. Lung penetration and pneumococcal target binding of antibiotics in lower respiratory tract infection. Curr. Med. Res. Opin. 38, 20852095 (2022).

Article Google Scholar

Qiao, Q. et al. Nanomedicine for acute respiratory distress syndrome: the latest application, targeting strategy, and rational design. Acta Pharm. Sin. B 11, 30603091 (2021).

Article Google Scholar

Duan, Y., Wang, S., Zhang, Q., Gao, W. & Zhang, L. Nanoparticle approaches against SARS-CoV-2 infection. Curr. Opin. Solid. State Mater. Sci. 25, 100964 (2021).

Article Google Scholar

Doroudian, M., MacLoughlin, R., Poynton, F., Prina-Mello, A. & Donnelly, S. C. Nanotechnology based therapeutics for lung disease. Thorax 74, 965976 (2019).

Article Google Scholar

Yang, H. et al. Amino acid-dependent attenuation of Toll-like receptor signalling by peptide-gold nanoparticle hybrids. ACS Nano 9, 67746784 (2015).

Article Google Scholar

Gao, Y., Dai, W., Ouyang, Z., Shen, M. & Shi, X. Dendrimer-mediated intracellular delivery of fibronectin guides macrophage polarization to alleviate acute lung injury. Biomacromolecules 24, 886895 (2023).

Article Google Scholar

Liu, F.-C. et al. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: the effect of nanovesicular surface charge. J. Nanobiotechnol. 16, 35 (2018).

Article Google Scholar

Kou, M. et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 13, 580 (2022).

Article Google Scholar

Liu, W. et al. Recent advances of cell membrane-coated nanomaterials for biomedical applications. Adv. Funct. Mater. 30, 2003559 (2020).

Read more:
Immunoregulatory nanomedicine for respiratory infections - Nature.com

Related Posts

Comments are closed.