Common molecular defect offers treatment hope for group of rare disorders

PUBLIC RELEASE DATE:

1-Apr-2014

Contact: Sarah Avery sarah.avery@duke.edu 919-660-1306 Duke University Medical Center

DURHAM, N.C. Duke Medicine researchers studying tiny, antennae-like structures called cilia have found a potential way to ease some of the physical damage of numerous genetic disorders that result when these essential cellular components are defective.

Different genetic defects cause dysfunction of the cilia, which often act as sensory organs that receive signals from other cells. Individually, disorders involving cilia are rare, but collectively the more than 100 diseases in the category known as ciliopathies affect as many as one in 1,000 people. Ciliopathies are characterized by cognitive impairment, blindness, deafness, kidney and heart disease, infertility, obesity and diabetes.

Recent research has added key insights into the overall role and function of cilia in cells and what occurs when the organelle is defective.

"Cilia are required for regulation of a whole host of signaling pathways for cellular development," said Nicholas Katsanis, PhD, professor of cell biology and director of the Center for Human Disease Modeling at Duke. "They are not the only signaling regulators, but they are critical. It's been important for us to understand how they do this."

In the current study, published April 1, 2014, in the Journal of Clinical Investigation, Katsanis and colleagues describe a common mechanism that appears to account for how dysfunctional cilia cause so many different problems in cellular signaling pathways.

Using both cells and animal models, they focused on the ubiquitin-proteasome system, the cell's machinery tasked with regulating the cellular environment by breaking down proteins that are either damaged or in need of removal.

"Imagine regular housekeeping" Katsanis said. "Taking out waste is part and parcel to the process, but not if you end up throwing away your valuables."

Go here to see the original:

Common molecular defect offers treatment hope for group of rare disorders

Related Posts

Comments are closed.