For decades, artificial intelligence and machine learning have advanced at a rapid pace. Today, there are many ways artificial intelligence and machine learning are used behind the scenes to impact our everyday lives, such as social media, shopping recommendations, email spam detection, speech recognition, self-driving cars, UAVs, and so on.
The simulation of human intelligence is programmed to think like humans and mimic our actions to achieve a specific goal. In our own field, machine learning has also changed the ways to solve navigation problems and taken on a significant role in advancing PNT technologies in the future.
LI-TA HSU, HONG KONG POLYTECHNIC UNIVERSITY
Q: Can machine learning replace conventional GNSS positioning techniques?
Actually, it makes no sense to use ML when the exact physics/mathematical models of GNSS positioning are known, and when using machine learning (ML) techniques over any appreciable area to collect extensive data and train the network to estimate receiver locations would be an impractically large undertaking. We, human beings, designed the satellite navigation systems based on the laws of physics discovered. For example, we use Keplers laws to model the position of satellites in an orbit. We use the spread-spectrum technique to model the satellite signal allowing us to acquire very weak signals transmitted from the medium-Earth orbits. We understand the Doppler effect and design tracking loops to track the signal and decode the navigation message. We finally make use of trilateration to model the positioning and use the least square to estimate the location of the receiver. By the efforts of GNSS scientists and engineers for the past several decades, GNSS can now achieve centimeter-level positioning. The problem is; if everything is so perfect, why dont we have a perfect GNSS positioning?
The answer for me as an ML specialist is that the assumptions made are not always valid in all contexts and applications! In trilateration, we assume the satellite signal always transmitted in direct line-of-sight (LOS). However, different layers in the atmosphere can diffract the signal. Luckily, remote-sensing scientists studied the troposphere and ionosphere and came up with sophisticated models to mitigate the ranging error caused by transmission delay. But the multipath effects and non-line-of-sight (NLOS) receptions caused by buildings and obstacles on the ground are much harder to deal with due to their high nonlinearity and complexity.
Q: What are the challenges of GNSS and how can machine learning help with it?
GNSS performs very differently under different contexts. Context means what and where. For example, a pedestrian walks in an urban canyon or a pedestrian sits in a car that drives in a highway. The notorious multipath and NLOS play major roles to affect the performance GNSS receiver under different context. If we follow the same logic of the ionospheric research to deal with the multipath effect, we need to study 3D building models which is the main cause of the reflections. Extracting from our previous research, the right of Figure 1 is simulated based on the LOD1 building model and single-reflected ray-tracing algorithm. It reveals the positioning error caused by the multipath and NLOS is highly site-dependent. In other words, the nonlinearity and complexity of multipath and NLOS are very high.
Generally speaking, ML derives a model based on data. What exactly does ML do best?
Phenomena we simply do not know how to model by explicit laws of physics/math, for example, contexts and semantics.
Phenomena with high complexity, time variance and nonlinearity.
Looking at the challenges of GNSS multipath and the potential of ML, it becomes straightforward to apply artificial intelligence to mitigate multipath and NLOS. One mainstream idea is to use ML to train the models to classify LOS, multipath and NLOS measurements. This idea is illustrated in Figure 2. Three-steps, data labeling, classifier training, and classifier evaluation, are required. In fact, there are also challenges in each step.
Are we confident in our labeling?
In our work, we use 3D city models and ray-tracing simulation to label the measurements we received from the GNSS receiver. The label may not be 100% correct since the 3D models are not conclusive enough to represent the real world. Trees and dynamic objects (vehicles and pedestrians) are not included. In addition, the multiple reflected signals are very hard to trace and the 3D models could have errors.
What are the classes and features?
For the classes, popular selections are the presence (binary) of multipath or NLOS and their associated pseudorange errors. The features are selected based on the variables that are affected by multipath, including carrier-to-noise ratio, pseudorange residual, DOP, etc. If we can assess a step deeper into the correlator, the shape of correlators in code and carrier are also excellent features. Our study evaluates the comparison between the different levels (correlator, RINEX, and NMEA) of features for the GNSS classifier and reveals that the rawer the feature it is, the better classification accuracy can be obtained. Finally, the methods of exploratory data analysis, such as principle component analysis, can better select the features that are more representative to the class.
Are we confident that the data we used to train the classifier are representative enough for the general application cases?
Overfitting of the data is always being a challenge for ML. Multipath and NLOS effects are very difficult in different cities. For example, the architectures in Europe and Asia are very different, producing different multipath effects. Classifiers trained using the data in Hong Kong do not necessarily perform well in London. The categorization of cities or urban areas in terms of their effects on GNSS multipath and NLOS is still an open question.
Q: What are the challenges of integrated navigation systems and how can machine learning can help with them?
Seamless positioning has always been the ultimate goal. However, each sensor has a different performance in different areas. Table 1 gives a rough picture. Inertial sensors seem to perform stably in most areas. But the MEMS-INS suffers from drift and is highly affected by the random noise caused by the temperature variations. Naturally, integrated navigation is a solution. The sensor integration, in fact, shall be regarded in both long-term and short-term.
Long-term Sensor SelectionIn the long term, available sensors for positioning are generally more than enough. The determination of the best subsets of sensors to integrate is the question to ask. Consider an example of seamless positioning for a city dweller travelling from home to the office:
Walking on a street to the subway station (GNSS+IMU)
Walking in a subway station (Wi-Fi/BLE+IMU)
Traveling on a subway (IMU)
Walking in an urban area to the office (VPS+ GNSS+ Wi-Fi/BLE+IMU)
This example clearly shows that seamless positioning should integrate different sensors. The selection of the sensors can be done heuristically or by maximizing the observability of sensors. If the sensors are selected heuristically, we must have the ability to know what context the system is operating under. This is one of the best angles for ML to cut in. In fact, the classification of the scenarios or contexts is exactly what ML does best. A recently published journal paper demonstrates how to detect different contexts using smartphone sensors for context-adaptive navigation (Gao and Groves 2020). Sensors in smartphones are used in the models trained by supervised ML to determine not only the environment but also the behavior (such as transportation modes, including static, pedestrian walk, and sitting on a car or a subway, etc.).
According to their result, the state-of-the-art detection algorithm can achieve over 95% for pedestrians under indoor, intermediate, and outdoor scenarios. This finding encourages the use of ML to intelligently select the right navigation systems for an integrated navigation system under different areas. The same methodology can be easily extended to vehicular applications with a proper modification in the selections of features, classes, and machine learning algorithms.
Short-term Sensor Weighting
Technically speaking, an optimal integrated solution can be obtained if the uncertainty of the sensor can be optimally described. Presumably, the sensors uncertainty remains unchanged under a certain environment. As a result, most of the sensors uncertainty is carefully calibrated before its use in integration systems.
However, the problem is that the environment could change rapidly within a short period of time. For example, a car drives in an urban area with several viaducts or a car drives in an open sky with a canopy of foliage. These scenarios affect the performance of GNSS greatly, however, the affecting periods were too short to exclude the GNSS from the subset of sensors used. The best solution against these unexpected and transient effects are de-weighting the affected sensors in the system.
Due to the complexity of these effects, adaptive tuning of the uncertainty based on ML is getting popular. Our team demonstrated this potential by an experiment of a loosely coupled GNSS/INS integration. This experiment took place in an urban canyon with commercial GNSS and MEMS INS. Different ML algorithms are used to classify the GNSS positioning errors into four classes: healthy, slightly shifted, inaccurate, and dangerous. These are represented as 1 to 4 in the bottom of Figure 4. The top and bottom of the figure show the error of the commercial GNSS solution and the predicted classes by different ML. It clearly shows that ML can do a very good job predicting the class of the GNSS solution, enabling the integrated to allocate proper weighting to GNSS. Table 2 shows the improvement made by the ML-aided integration system.
This is just an example to preliminarily show the potential of ML in estimating/predicting sensors uncertainty. The methodology can also be applied to different sensor integration such as Wi-Fi/BLE/IMU integration. The challenge of the trained classifier may be too specific for a certain area due to the over-fitting of the data. This remains an open research question in the field.
Q: Machine Learning or Deep Learning for Navigation Systems?
Based on research in object recognition in computer science, deep learning (DL) is the currently the mainstream method because it generally outperforms ML when two conditions are fulfilled, data and computation. The trained model of DL is completely data-driven, while ML trains models to fit assumed (known) mathematical models. A rule of thumb to select ML or DL is the availability of the data in hand. If extensive and conclusive data are available, DL achieves excellent performance due to its superiority in data fitting. In the other words, DL can automatically discover features that affect the classes. However, a model trained by ML is much more comprehensible compared to that trained by DL. The DL model becomes like a black box. In addition, the nodes and layers of convolution in DL are used to extract features. The selection of the number of layers and the number of nodes is still very hard to determine, so that in trial-and-error approaches are widely adopted. These are the major challenges in DL.
If a DL-trained neutral network can be perfectly designed for the integrated navigation system, then it should consider both long-term and short-term challenges. Figure 5 shows this idea. Several hidden layers will be designed to predict the environments (or contexts) and the others are to predict the sensor uncertainty. The idea is straightforward, whereas the challenges remain:
Are we confident that the data we used to train the classifier are representative enough for the general applications cases?
What are the classes?
What are the features?
How many layers and the number of nodes should be used?
Q: How does machine learning affect the field of navigation?
ML will accelerate the development of seamless positioning. With the presence of ML in the navigation field, a perfect INS is no longer the only solution. These AI technologies facilitate the selection of the appropriate sensors or raw measurements (with appropriate trust) against complex navigation challenges. The transient selection of the sensors (well-known as plug-and-play) will affect the integration algorithm. Integration R&D engineers in navigation have been working on the Kalman filter and its variants. However, the flexibility of the Kalman filter makes it hard to accommodate the plug-and-play of sensors. The graph optimization that is widely used in the robotics field could be a very strong candidate to integrate sensors for navigation purposes.
Other than GNSS and the integrated navigation system mentioned above, the recently developed visual positioning system (VPS) by Google could replace the visual corner point detection by the semantic information that detected by ML. Looking at how we navigated before GNSS, we compare visual landmarks with our memory (database) to infer where we are and where we are heading. ML can segment and classify images taken by a camera into different classes, including building, foliage, road, curb, etc., and compare the distribution of the semantic information with that in the database in the cloud server. If they match, the associated position and orientation tag in the database can be regarded as the user location.
AI technologies are coming. They will influence navigation research and development. In my opinion, the best we can do is to mobilize AI to tackle the challenges to which we currently lack solutions. It is highly probable that technology advances and learning focus will depend greatly on MLs development and achievement in the field of navigation.
References
(1) Groves PD, Challenges of Integrated Navigation, ION GNSS+ 2018, Miami, Florida, pp. 3237-3264.
(2) Gao H, Groves PD. (2020) Improving environment detection by behavior association for context-adaptive navigation. NAVIGATION, 67:4360. https://doi.org/10.1002/navi.349
(3) Sun R., Hsu L.T., Xue D., Zhang G., Washington Y.O., (2019) GPS Signal Reception Classification Using Adaptive Neuro-Fuzzy Inference System, Journal of Navigation, 72(3): 685-701.
(4) Hsu L.T. GNSS Multipath Detection Using a Machine Learning Approach, IEEE ITSC 2017, Yokohama, Japan.
(5) Yozevitch R., and Moshe BB. (2015) A robust shadow matching algorithm for GNSS positioning. NAVIGATION, 62.2: 95-109.
(6) Chen P.Y., Chen H., Tsai M.H., Kuo H.K., Tsai Y.M., Chiou T.Y., Jau P.H. Performance of Machine Learning Models in Determining the GNSS Position Usage for a Loosely Coupled GNSS/IMU System, ION GNSS+ 2020, virtually, September 21-25, 2020.
(7) Suzuki T., Nakano, Y., Amano, Y. NLOS Multipath Detection by Using Machine Learning in Urban Environments, ION GNSS+ 2017, Portland, Oregon, pp. 3958-3967.
(8) Xu B., Jia Q., Luo Y., Hsu L.T. (2019) Intelligent GPS L1 LOS/Multipath/NLOS Classifiers Based on Correlator-, RINEX-and NMEA-Level Measurements, Remote Sensing 11(16):1851.
(9) Chiu H.P., Zhou X., Carlone L., Dellaert F., Samarasekera S., and Kumar R., Constrained Optimal Selection for Multi-Sensor Robot Navigation Using Plug-and-Play Factor Graphs, IEEE ICRA 2014, Hong Kong, China.
(10) Zhang G., Hsu L.T. (2018) Intelligent GNSS/INS Integrated Navigation System for a Commercial UAV Flight Control System, Aerospace Science and Technology, 80:368-380.
(11) Kumar R., Samarasekera S., Chiu H.P., Trinh N., Dellaert F., Williams S., Kaess M., Leonard J., Plug-and-Play Navigation Algorithms Using Factor Graphs, Joint Navigation Conference (JNC), 2012.
Read more here:
What are the roles of artificial intelligence and machine learning in GNSS positioning? - Inside GNSS
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Limits of machine learning - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Technology Trends to Keep an Eye on in 2020 - Built In Chicago [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The 4 Hottest Trends in Data Science for 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Going Beyond Machine Learning To Machine Reasoning - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Being human in the age of Artificial Intelligence - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Raleys Drive To Be Different Gets an Assist From Machine Learning - Winsight Grocery Business [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Break into the field of AI and Machine Learning with the help of this training - Boing Boing [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- BlackBerry combines AI and machine learning to create connected fleet security solution - Fleet Owner [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- What is the role of machine learning in industry? - Engineer Live [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Christiana Care offers tips to 'personalize the black box' of machine learning - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Essential AI & Machine Learning Certification Training Bundle Is Available For A Limited Time 93% Discount Offer Avail Now - Wccftech [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- 2020: The year of seeing clearly on AI and machine learning - ZDNet [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- How machine learning and automation can modernize the network edge - SiliconANGLE [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Don't want a robot stealing your job? Take a course on AI and machine learning. - Mashable [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Optimising Utilisation Forecasting with AI and Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning: Higher Performance Analytics for Lower ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Definition [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Market Size Worth $96.7 Billion by 2025 ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Difference between AI, Machine Learning and Deep Learning [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning in Human Resources Applications and ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Pricing - Machine Learning | Microsoft Azure [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Machine learning - Wikipedia [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: August 18th, 2024] [Originally Added On: January 23rd, 2020]
- Machine learning and eco-consciousness key business trends in 2020 - Finfeed [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Expert: Don't overlook security in rush to adopt AI - The Winchester Star [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- I Know Some Algorithms Are Biased--because I Created One - Scientific American [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Want To Be AI-First? You Need To Be Data-First. - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Technologies of the future, but where are AI and ML headed to? - YourStory [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- 3 books to get started on data science and machine learning - TechTalks [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- JP Morgan expands dive into machine learning with new London research centre - The TRADE News [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- The ML Times Is Growing A Letter from the New Editor in Chief - Machine Learning Times - machine learning & data science news - The Predictive... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Itiviti Partners With AI Innovator Imandra to Integrate Machine Learning Into Client Onboarding and Testing Tools - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How Machine Learning Is Changing The Future Of Fiber Optics - DesignNews [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How to handle the unexpected in conversational AI - ITProPortal [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- SwRI, SMU fund SPARKS program to explore collaborative research and apply machine learning to industry problems - TechStartups.com [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- ValleyML Is Launching a Series of 3 Unique AI Expo Events Focused on Hardware, Enterprise and Robotics in Silicon Valley - AiThority [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- VUniverse Named One of Five Finalists for SXSW Innovation Awards: AI & Machine Learning Category - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- AI, machine learning, robots, and marketing tech coming to a store near you - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Putting the Humanity Back Into Technology: 10 Skills to Future Proof Your Career - HR Technologist [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Twitter says AI tweet recommendations helped it add millions of users - The Verge [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Machine Learning Patentability in 2019: 5 Cases Analyzed and Lessons Learned Part 1 - Lexology [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Overview of causal inference in machine learning - Ericsson [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]