Less-than-one-shot learning enables machine learning algorithms to classify N labels with less than N training examples.
This article is part of ourreviews of AI research papers, a series of posts that explore the latest findings in artificial intelligence.
If I told you to imagine something between a horse and a birdsay, a flying horsewould you need to see a concrete example? Such a creature does not exist, but nothing prevents us from using our imagination to create one: the Pegasus.
The human mind has all kinds of mechanisms to create new concepts by combining abstract and concrete knowledge it has of the real world. We can imagine existing things that we might have never seen (a horse with a long necka giraffe), as well as things that do not exist in real life (a winged serpent that breathes firea dragon). This cognitive flexibility allows us to learn new things with few and sometimes no new examples.
In contrast, machine learning and deep learning, the current leading fields of artificial intelligence, are known to require many examples to learn new tasks, even when they are related to things they already know.
Overcoming this challenge has led to a host of research work and innovation in machine learning. And although we are still far from creating artificial intelligence that can replicate the brains capacity for understanding, the progress in the field is remarkable.
For instance, transfer learning is a technique that enables developers to finetune an artificial neural network for a new task without the need for many training examples. Few-shot and one-shot learning enable a machine learning model trained on one task to perform a related task with a single or very few new examples. For instance, if you have an image classifier trained to detect volleyballs and soccer balls, you can use one-shot learning to add basketball to the list of classes it can detect.
A new technique dubbed less-than-one-shot learning (or LO-shot learning), recently developed by AI scientists at the University of Waterloo, takes one-shot learning to the next level. The idea behind LO-shot learning is that to train a machine learning model to detect M classes, you need less than one sample per class. The technique, introduced in a paper published in the arXiv preprocessor, is still in its early stages but shows promise and can be useful in various scenarios where there is not enough data or too many classes.
The LO-shot learning technique proposed by the researchers applies to the k-nearest neighbors machine learning algorithm. K-NN can be used for both classification (determining the category of an input) or regression (predicting the outcome of an input) tasks. But for the sake of this discussion, well still to classification.
As the name implies, k-NN classifies input data by comparing it to its k nearest neighbors (k is an adjustable parameter). Say you want to create a k-NN machine learning model that classifies hand-written digits. First you provide it with a set of labeled images of digits. Then, when you provide the model with a new, unlabeled image, it will determine its class by looking at its nearest neighbors.
For instance, if you set k to 5, the machine learning model will find the five most similar digit photos for each new input. If, say three of them belong to the class 7, it will classify the image as the digit seven.
k-NN is an instance-based machine learning algorithm. As you provide it with more labeled examples of each class, its accuracy improves but its performance degrades, because each new sample adds new comparisons operations.
In their LO-shot learning paper, the researchers showed that you can achieve accurate results with k-NN while providing fewer examples than there are classes. We propose less than one-shot learning (LO-shot learning), a setting where a model must learn N new classes given only M < N examples, less than one example per class, the AI researchers write. At first glance, this appears to be an impossible task, but we both theoretically and empirically demonstrate feasibility.
The classic k-NN algorithm provides hard labels, which means for every input, it provides exactly one class to which it belongs. Soft labels, on the other hand, provide the probability that an input belongs to each of the output classes (e.g., theres a 20% chance its a 2, 70% chance its a 5, and a 10% chance its a 3).
In their work, the AI researchers at the University of Waterloo explored whether they could use soft labels to generalize the capabilities of the k-NN algorithm. The proposition of LO-shot learning is that soft label prototypes should allow the machine learning model to classify N classes with less than N labeled instances.
The technique builds on previous work the researchers had done on soft labels and data distillation. Dataset distillation is a process for producing small synthetic datasets that train models to the same accuracy as training them on the full training set, Ilia Sucholutsky, co-author of the paper, told TechTalks. Before soft labels, dataset distillation was able to represent datasets like MNIST using as few as one example per class. I realized that adding soft labels meant I could actually represent MNIST using less than one example per class.
MNIST is a database of images of handwritten digits often used in training and testing machine learning models. Sucholutsky and his colleague Matthias Schonlau managed to achieve above-90 percent accuracy on MNIST with just five synthetic examples on the convolutional neural network LeNet.
That result really surprised me, and its what got me thinking more broadly about this LO-shot learning setting, Sucholutsky said.
Basically, LO-shot uses soft labels to create new classes by partitioning the space between existing classes.
In the example above, there are two instances to tune the machine learning model (shown with black dots). A classic k-NN algorithm would split the space between the two dots between the two classes. But the soft-label prototype k-NN (SLaPkNN) algorithm, as the OL-shot learning model is called, creates a new space between the two classes (the green area), which represents a new label (think horse with wings). Here we have achieved N classes with N-1 samples.
In the paper, the researchers show that LO-shot learning can be scaled up to detect 3N-2 classes using N labels and even beyond.
In their experiments, Sucholutsky and Schonlau found that with the right configurations for the soft labels, LO-shot machine learning can provide reliable results even when you have noisy data.
I think LO-shot learning can be made to work from other sources of information as wellsimilar to how many zero-shot learning methods dobut soft labels are the most straightforward approach, Sucholutsky said, adding that there are already several methods that can find the right soft labels for LO-shot machine learning.
While the paper displays the power of LO-shot learning with the k-NN classifier, Sucholutsky says the technique applies to other machine learning algorithms as well. The analysis in the paper focuses specifically on k-NN just because its easier to analyze, but it should work for any classification model that can make use of soft labels, Sucholutsky said. The researchers will soon release a more comprehensive paper that shows the application of LO-shot learning to deep learning models.
For instance-based algorithms like k-NN, the efficiency improvement of LO-shot learning is quite large, especially for datasets with a large number of classes, Susholutsky said. More broadly, LO-shot learning is useful in any kind of setting where a classification algorithm is applied to a dataset with a large number of classes, especially if there are few, or no, examples available for some classes. Basically, most settings where zero-shot learning or few-shot learning are useful, LO-shot learning can also be useful.
For instance, a computer vision system that must identify thousands of objects from images and video frames can benefit from this machine learning technique, especially if there are no examples available for some of the objects. Another application would be to tasks that naturally have soft-label information, like natural language processing systems that perform sentiment analysis (e.g., a sentence can be both sad and angry simultaneously).
In their paper, the researchers describe less than one-shot learning as a viable new direction in machine learning research.
We believe that creating a soft-label prototype generation algorithm that specifically optimizes prototypes for LO-shot learning is an important next step in exploring this area, they write.
Soft labels have been explored in several settings before. Whats new here is the extreme setting in which we explore them, Susholutsky said.I think it just wasnt a directly obvious idea that there is another regime hiding between one-shot and zero-shot learning.
See original here:
Machine learning with less than one example - TechTalks
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Limits of machine learning - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Technology Trends to Keep an Eye on in 2020 - Built In Chicago [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The 4 Hottest Trends in Data Science for 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Going Beyond Machine Learning To Machine Reasoning - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Being human in the age of Artificial Intelligence - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Raleys Drive To Be Different Gets an Assist From Machine Learning - Winsight Grocery Business [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Break into the field of AI and Machine Learning with the help of this training - Boing Boing [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- BlackBerry combines AI and machine learning to create connected fleet security solution - Fleet Owner [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- What is the role of machine learning in industry? - Engineer Live [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Christiana Care offers tips to 'personalize the black box' of machine learning - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Essential AI & Machine Learning Certification Training Bundle Is Available For A Limited Time 93% Discount Offer Avail Now - Wccftech [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- 2020: The year of seeing clearly on AI and machine learning - ZDNet [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- How machine learning and automation can modernize the network edge - SiliconANGLE [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Don't want a robot stealing your job? Take a course on AI and machine learning. - Mashable [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Optimising Utilisation Forecasting with AI and Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning: Higher Performance Analytics for Lower ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Definition [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Market Size Worth $96.7 Billion by 2025 ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Difference between AI, Machine Learning and Deep Learning [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning in Human Resources Applications and ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Pricing - Machine Learning | Microsoft Azure [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Machine learning - Wikipedia [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: August 18th, 2024] [Originally Added On: January 23rd, 2020]
- Machine learning and eco-consciousness key business trends in 2020 - Finfeed [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Expert: Don't overlook security in rush to adopt AI - The Winchester Star [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- I Know Some Algorithms Are Biased--because I Created One - Scientific American [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Want To Be AI-First? You Need To Be Data-First. - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Technologies of the future, but where are AI and ML headed to? - YourStory [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- 3 books to get started on data science and machine learning - TechTalks [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- JP Morgan expands dive into machine learning with new London research centre - The TRADE News [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- The ML Times Is Growing A Letter from the New Editor in Chief - Machine Learning Times - machine learning & data science news - The Predictive... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Itiviti Partners With AI Innovator Imandra to Integrate Machine Learning Into Client Onboarding and Testing Tools - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How Machine Learning Is Changing The Future Of Fiber Optics - DesignNews [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How to handle the unexpected in conversational AI - ITProPortal [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- SwRI, SMU fund SPARKS program to explore collaborative research and apply machine learning to industry problems - TechStartups.com [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- ValleyML Is Launching a Series of 3 Unique AI Expo Events Focused on Hardware, Enterprise and Robotics in Silicon Valley - AiThority [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- VUniverse Named One of Five Finalists for SXSW Innovation Awards: AI & Machine Learning Category - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- AI, machine learning, robots, and marketing tech coming to a store near you - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Putting the Humanity Back Into Technology: 10 Skills to Future Proof Your Career - HR Technologist [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Twitter says AI tweet recommendations helped it add millions of users - The Verge [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Machine Learning Patentability in 2019: 5 Cases Analyzed and Lessons Learned Part 1 - Lexology [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Overview of causal inference in machine learning - Ericsson [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]