Machine learning-based technique for gain and resonance … – Nature.com

Thatere, A., Khade, S., Lande, V.S. & Chinchole, A. A T-shaped rectangular microstrip slot antenna for mid-band and 5G applications. JREAS6, 144146, https://doi.org/10.46565/jreas.2021.v06i03.007 (2021).

Moniruzzaman, M. et al. Gap coupled symmetric split ring resonator based near zero index ENG metamaterial for gain improvement of monopole antenna. Sci. Rep. 12, 7406. https://doi.org/10.1038/s41598-022-11029-7 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Al-Bawri, S. S., Islam, M. T., Islam, M. S., Singh, M. J. & Alsaif, H. Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 12, 14311. https://doi.org/10.1038/s41598-022-18329-y (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Shabbir, T. et al. 16-Port non-planar MIMO antenna system with Near-Zero-Index (NZI) metamaterial decoupling structure for 5G applications. IEEE Access 8, 157946157958. https://doi.org/10.1109/ACCESS.2020.3020282 (2020).

Article Google Scholar

Jilani, M. A.K. etal. Design of 2 1 patch array antenna for 5G communications systems using mm-wave frequency band. In 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 08570862, https://doi.org/10.1109/CCWC54503.2022.9720836 (IEEE, Las Vegas, NV, USA, 2022).

Padmanathan, S. et al. Compact multiband reconfigurable MIMO antenna for sub- 6GHz 5G mobile terminal. IEEE Access 10, 6024160252. https://doi.org/10.1109/ACCESS.2022.3180048 (2022).

Article Google Scholar

Azim, R. etal. Low profile multi-slotted patch antenna for lower 5G application. In 2020 IEEE Region 10 Symposium (TENSYMP), 366369, https://doi.org/10.1109/TENSYMP50017.2020.9230892 (IEEE, Dhaka, Bangladesh, 2020).

Sun, J.-N., Li, J.-L. & Xia, L. A dual-polarized magneto-electric dipole antenna for application to N77/N78 band. IEEE Access 7, 161708161715. https://doi.org/10.1109/ACCESS.2019.2951414 (2019).

Article Google Scholar

Mathew, P. K. A three element Yagi Uda antenna for RFID systems. Director 50, 2 (2014).

Google Scholar

Agrawal, S. R., Lele, K. A. & Deshmukh, A. A. Review on printed log periodic and Yagi MSA. IJCA 126, 3844. https://doi.org/10.5120/ijca2015906177 (2015).

Article Google Scholar

Mushiake, Y. A report on Japanese development of antennas: From the YagiUda antenna to self-complementary antennas. IEEE Antennas Propag. Mag. 46, 4760. https://doi.org/10.1109/MAP.2004.1373999 (2004).

Article ADS Google Scholar

Kazema, T. & Michael, K. Gain improvement of the YagiUda antenna using genetic algorithm for application in DVB-T2 television signal reception in Tanzania. J. Interdiscip. Sci. (2017).

Dalvadi, P. & Patel, D. A. A comprehensive review of different feeding techniques for quasi Yagi antenna. IJETER 9, 221226, https://doi.org/10.30534/ijeter/2021/12932021 (2021)

Yurt, R., Torpi, H., Mahouti, P., Kizilay, A. & Koziel, S. Buried object characterization using ground penetrating radar assisted by data-driven surrogate-models. IEEE Access11, https://doi.org/10.1109/ACCESS.2023.3243132 (2023).

Bai, Y., Gardner, P., He, Y. & Sun, H. A surrogate modeling approach for frequency reconfigurable antennas. IEEE Trans. Antennas Propag.https://doi.org/10.1109/TAP.2023.3248446 (2023).

Article Google Scholar

Koziel, S. & Pietrenko-Dabrowska, A. Expedited variable-resolution surrogate modeling of miniaturized microwave passives in confined domains. IEEE Transactions on Microwave Theory and Techniques70, https://doi.org/10.1109/TMTT.2022.3191327 (2022).

Yu, Y. etal. State-of-the-art: Ai-assisted surrogate modeling and optimization for microwave filters. IEEE Transactions on Microwave Theory and Techniques70, https://doi.org/10.1109/TMTT.2022.3208898 (2022).

Kouhalvandi, L. & Matekovits, L. Surrogate modeling for designing and optimizing mimo antennas.https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886514 (2022).

Article Google Scholar

Khan, M.M., Hossain, S., Mozumdar, P., Akter, S. & Ashique, R.H. A review on machine learning and deep learning for various antenna design applications. Heliyon8, https://doi.org/10.1016/j.heliyon.2022.e09317 (2022).

Abdelhamid, A.A. & Alotaibi, S.R. Robust prediction of the bandwidth of metamaterial antenna using deep learning. Computers, Materials and Continua, https://doi.org/10.32604/cmc.2022.025739 (2022).

El-Kenawy, E. S.M. etal. Optimized ensemble algorithm for predicting metamaterial antenna parameters. Computt. Mater. Continua., https://doi.org/10.32604/cmc.2022.023884 (2022).

Ranjan, P., Maurya, A., Gupta, H., Yadav, S. & Sharma, A. Ultra-wideband cpw fed band-notched monopole antenna optimization using machine learning. Progr. Electromagn. Res., https://doi.org/10.2528/PIERM21122802 (2022).

Olcan, D., Ninkovic, D., Stankovic, Z., Doncov, N. & Kolundzija, B. Training of deep neural networks with up to 10 million antennas. In 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 6566, https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9886271 (IEEE, Denver, CO, USA, 2022).

Hong, T., Liu, C. & Kadoch, M. Machine learning based antenna design for physical layer security in ambient backscatter communications. Wirel. Commun. Mob. Comput. 110, 2019. https://doi.org/10.1155/2019/4870656 (2019).

Article Google Scholar

Barbano, N. Log periodic Yagi-Uda array. IEEE Trans. Antennas Propagat. 14, 235238. https://doi.org/10.1109/TAP.1966.1138641 (1966).

Article ADS Google Scholar

Sharma, G., Sharma, A.N., Duvey, A. & Singhal, P.K. Yagi-Uda antenna for L-band frequency range. IJET1, 315, https://doi.org/10.14419/ijet.v1i4.234 (2012).

Jehangir, S. S. & Sharawi, M. S. A single layer semi-ring slot Yagi-like MIMO antenna system with high front-to-back ratio. IEEE Trans. Antennas Propagat. 65, 937942. https://doi.org/10.1109/TAP.2016.2633938 (2017).

Article ADS Google Scholar

Soheilifar, M.R. Compact Yagi-Uda slot antenna with metamaterial element for wide bandwidth wireless application. Int. J. RF Microw. Comput. Aided Eng. 31, https://doi.org/10.1002/mmce.22380 (2021).

Althuwayb, A. A. MTM- and SIW-inspired bowtie antenna loaded with AMC for 5G mm-wave applications. Int. J. Antennas Propagat., https://doi.org/10.1155/2021/6658819 (2021).

Article Google Scholar

Desai, A., Upadhyaya, T., Patel, J., Patel, R. & Palandoken, M. Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications. Microw. Opt. Technol. Lett. 62, 20902103. https://doi.org/10.1002/mop.32287 (2020).

Article Google Scholar

Chen, Z., Zeng, M., Andrenko, A. S., Xu, Y. & Tan, H. A dual-band high-gain quasi-Yagi antenna with split-ring resonators for radio frequency energy harvesting. Microw. Opt. Technol. Lett. 61, 21742181. https://doi.org/10.1002/mop.31872 (2019).

Article Google Scholar

Mahmud, M.Z. etal. A dielectric resonator based line stripe miniaturized ultra-wideband antenna for fifth-generation applications. Int. J. Commun. Syst.34, https://doi.org/10.1002/dac.4740 (2021).

Chen, H. N., Song, J.-M. & Park, J.-D. A compact circularly polarized MIMO dielectric resonator antenna over electromagnetic band-gap surface for 5G applications. IEEE Access 7, 140889140898. https://doi.org/10.1109/ACCESS.2019.2943880 (2019).

Article Google Scholar

Haque, M.A., Zakariya, M.A., Singh, N. S.S., Rahman, M.A. & Paul, L.C. Parametric study of a dual-band quasi-yagi antenna for lte application. Bull. EEI12, 15131522, https://doi.org/10.11591/eei.v12i3.4639 (2023).

Ramos, A., Varum, T. & Matos, J. Compact multilayer Yagi-Uda based antenna for IoT/5G sensors. Sensors 18, 2914. https://doi.org/10.3390/s18092914 (2018).

Article ADS PubMed PubMed Central Google Scholar

Al-Bawri, S. S. et al. Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-Fed antenna for wireless applications. Sensors 20, 457. https://doi.org/10.3390/s20020457 (2020).

Article ADS PubMed PubMed Central Google Scholar

Haque, M. A. et al. A plowing t-shaped patch antenna for wifi and c band applications.https://doi.org/10.1109/ACMI53878.2021.9528266 (2021).

Oluwole, A.S. & Srivastava, V.M. Designing of Smart Antenna for improved directivity and gain at terahertz frequency range. In 2016 Progress in Electromagnetic Research Symposium (PIERS), 473473, https://doi.org/10.1109/PIERS.2016.7734369 (IEEE, Shanghai, China, 2016).

Haque, M. A. et al. Analysis of slotted e-shaped microstrip patch antenna for ku band applications.https://doi.org/10.1109/MICC53484.2021.9642100 (2021).

Pozar, D.M. Microwave Engineering (Wiley, 2011).

Hannan, S., Islam, M. T., Faruque, M. R. I., Chowdhury, M. E. H. & Musharavati, F. Angle-insensitive co-polarized metamaterial absorber based on equivalent circuit analysis for dual band WiFi applications. Sci. Rep. 11, 13791. https://doi.org/10.1038/s41598-021-93322-5 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Hossain, A., Islam, M. T., Misran, N., Islam, M. S. & Samsuzzaman, M. A mutual coupled spider net-shaped triple split ring resonator based epsilon-negative metamaterials with high effective medium ratio for quad-band microwave applications. Results Phys. 22, 103902. https://doi.org/10.1016/j.rinp.2021.103902 (2021).

Article Google Scholar

Ranjan, P., Gupta, H., Yadav, S. & Sharma, A. Machine learning assisted optimization and its application to hybrid dielectric resonator antenna design. Facta universitatis - series: Electron. Energeti 36, 3142. https://doi.org/10.2298/FUEE2301031R (2023).

Article Google Scholar

Pan, X. etal. Deep learning for drug repurposing: Methods, databases, and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science12, https://doi.org/10.1002/wcms.1597 (2022).

Talpur, M. A.H., Khahro, S.H., Ali, T.H., Waseem, H.B. & Napiah, M. Computing travel impendences using trip generation regression model: a phenomenon of travel decision-making process of rural households. Environment, Development and Sustainabilityhttps://doi.org/10.1007/s10668-022-02288-5 (2022).

Nguyen, Q.H. etal. Influence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical Problems in Engineering2021, https://doi.org/10.1155/2021/4832864 (2021).

Choudhury, S., Thatoi, D. N., Hota, J. & Rao, M. D. Predicting crack through a well generalized and optimal tree-based regressor. IJSI 11, 783807. https://doi.org/10.1108/IJSI-09-2019-0086 (2019).

Article Google Scholar

Laud, P. W. & Ibrahim, J. G. Predictive Model Selection. J. Roy. Stat. Soc.: Ser. B (Methodol.) 57, 247262. https://doi.org/10.1111/j.2517-6161.1995.tb02028.x (1995).

Article MathSciNet MATH Google Scholar

Singh, B., Sihag, P. & Singh, K. Modelling of impact of water quality on infiltration rate of soil by random forest regression. Modeling Earth Systems and Environment3, https://doi.org/10.1007/s40808-017-0347-3 (2017).

Rathore, S.S. & Kumar, S. A decision tree regression based approach for the number of software faults prediction. ACM SIGSOFT Software Engineering Notes41, https://doi.org/10.1145/2853073.2853083 (2016).

Madhuri, C. H., Anuradha, G. & Pujitha, M. V. House price prediction using regression techniques: A comparative study.https://doi.org/10.1109/ICSSS.2019.8882834 (2019).

Article Google Scholar

Pasha, G. R., Akbar, M. & Shah, A. Application of ridge regression to multicollinear data. J. res. Sci 15, 97106 (2004).

Google Scholar

Osman, A. I.A., Ahmed, A.N., Chow, M.F., Huang, Y.F. & El-Shafie, A. Extreme gradient boosting (xgboost) model to predict the groundwater levels in selangor malaysia. Ain Shams Engineering Journal12, https://doi.org/10.1016/j.asej.2020.11.011 (2021).

Raftery, A.E., Madigan, D. & Hoeting, J.A. Bayesian model averaging for linear regression models. Journal of the American Statistical Association92, https://doi.org/10.1080/01621459.1997.10473615 (1997).

Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 116. https://doi.org/10.1016/j.jmp.2018.03.001 (2018).

Article MathSciNet MATH Google Scholar

Yurt, R. et al. Buried object characterization by data-driven surrogates and regression-enabled hyperbolic signature extraction. Sci. Rep. 13, 5717. https://doi.org/10.1038/s41598-023-32925-6 (2023).

Article ADS CAS PubMed PubMed Central Google Scholar

Doreswamy, KS, H., Km, Y. & Gad, I. Forecasting Air Pollution Particulate Matter (PM2.5) Using Machine Learning Regression Models. Procedia Computer Science171, 20572066, https://doi.org/10.1016/j.procs.2020.04.221 (2020).

Shetty, S.A., Padmashree, T., Sagar, B.M. & Cauvery, N.K. Performance Analysis on Machine Learning Algorithms with Deep Learning Model for Crop Yield Prediction. In JeenaJacob, I., KolandapalayamShanmugam, S., Piramuthu, S. & Falkowski-Gilski, P. (eds.) Data Intelligence and Cognitive Informatics, 739750, https://doi.org/10.1007/978-981-15-8530-2_58 (Springer Singapore, Singapore, 2021). Series Title: Algorithms for Intelligent Systems.

Kumar, R., Kumar, P. & Kumar, Y. Time series data prediction using IoT and machine learning technique. Procedia Comput. Sci. 167, 373381. https://doi.org/10.1016/j.procs.2020.03.240 (2020).

Article Google Scholar

Istaiteh, O., Owais, T., Al-Madi, N. & Abu-Soud, S. Machine learning approaches for COVID-19 forecasting. In 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), 5057, https://doi.org/10.1109/IDSTA50958.2020.9264101 (IEEE, Valencia, Spain, 2020).

Barua, L., Sharif, M. & Akter, T. Analyzing cervical cancer by using an ensemble learning approach based on meta classifier. IJCA 182, 2933. https://doi.org/10.5120/ijca2019918619 (2019).

Article Google Scholar

de Myttenaere, A., Golden, B., Le Grand, B. & Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 192, 3848. https://doi.org/10.1016/j.neucom.2015.12.114 (2016).

Article Google Scholar

Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307309. https://doi.org/10.1080/00031305.2018.1549100 (2019).

Article MathSciNet MATH Google Scholar

Weiming, J.M. Mastering Python for Finance (Packt Publishing Ltd, 2015).

Singh, O. et al. Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms. Sadhana Acad. Proc. Eng. Sci.https://doi.org/10.1007/s12046-022-01989-x (2022).

Article Google Scholar

Haque, M. A. et al. Dual band antenna design and prediction of resonance frequency using machine learning approaches. Appl. Sci. 12, 10505. https://doi.org/10.3390/app122010505 (2022).

Article CAS Google Scholar

See original here:

Machine learning-based technique for gain and resonance ... - Nature.com

Related Posts

Comments are closed.