Fraud mitigation is one of the most sought-after artificial intelligence (AI) services because it can provide an immediate return on investment. Already, many companies are experiencing lucrative profits thanks to AI and machine learning (ML) systems that detect and prevent fraud in real-time.
According to a new report, Highmark Inc.s Financial Investigations and Provider Review (FIPR) department generated $260 million in savings that would have otherwise been lost to fraud, waste, and abuse in 2019. In the last five years, the company saved $850 million.
We know the overwhelming majority of providers do the right thing. But we also know year after year millions of health care dollars are lost to fraud, waste and abuse, said Melissa Anderson, executive vice president and chief audit and compliance officer, Highmark Health. By using technology and working with other Blue Plans and law enforcement, we have continually evolved our processes and are proud to be among the best nationally.
FIPR detects fraud across its clients services with the help of an internal team made up of investigators, accountants, and programmers, as well as seasoned professionals with an eye for unusual activity such as registered nurses and former law enforcement agents. Human audits performed to detect unusual claims and assess the appropriateness of provider payments are used as training data for AI systems, which can adapt and react more rapidly to suspicious changing consumer behavior.
As fraudulent actors have become increasingly aggressive and cunning with their tactics, organizations are looking to AI to mitigate rising threats.
We know it is much easier to stop these bad actors before the money goes out the door then pay and have to chase them, said Kurt Spear, vice president of financial investigations at Highmark Inc.
Elsewhere, Teradata, an AI firm specialized in selling fraud detection solutions to banks, claims in a case study that it helped Danske Bank reduce its false positives by 60% and increased real fraud detection by 50%.
Other service operators are looking to AI fraud detection with a keen eye, especially in the health care sector. A recent survey performed by Optum found that 43% of health industry leaders said they strongly agree that AI will become an integral part of detecting telehealth fraud, waste, or abuse in reimbursement.
In fact, AI spending is growing tremendously with total operating spending set to reach $15 billion by 2024, the most sought-after solutions being network optimization and fraud mitigation. According to theAssociation of Certified Fraud Examiners (ACFE)inauguralAnti-Fraud Technology Benchmarking Report,the amount organizations are expected to spend on AI and machine learning to reduce online fraud is expected to triple by 2021.
Mitigating fraud in healthcare would be a boon for an industry that is plagued with many structural inefficiencies.
The United States spends about $3.5 trillion on healthcare-related services every year. This staggering sum corresponds to about 18% of the countrys GDP and is more than twice the average among developed countries. However, despite this tremendous spending, healthcare service quality is lacking. According to a now-famous 2017 study, the U.S. has fewer hospital beds and doctors per capita than any other developed country.
A 2019 study found that the countrys healthcare system is incredibly inefficient, burning through roughly 25% of all its finances which basically go to waste thats $760 billion annually in the best case scenario and up to $935 billion annually.
Most money is being wasted due to unnecessary administrative complexity, including billing and coding waste this alone is responsible for $265.6 billion annually. Drug pricing is another major source of waste, account for around $240 billion. Finally, over-treatment and failure of care delivery incurred another $300 billion in wasted costs.
And even these astronomical costs may be underestimated. According to management firm Numerof and Associates, the 25% waste estimate might be conservative. Instead, the firm believes that as much as 40% of the countrys healthcare spending is wasted, mostly due to administrative complexity. The firm adds that fraud and abuse account for roughly 8% of waste in healthcare.
Most cases of fraud in the healthcare sector are committed by organized crime groups and a fraction of some healthcare providers that are dishonest.
According to the National Healthcare Anti-Fraud Association, the most common types of healthcare frauds in the United States are:
Traditionally, the most prevalent method for fraud management has been human-generated rule sets. To this day, this is the most common practice but thanks to a quantum leap in computing and Big Data, AI-based solutions based on machine learning algorithms are becoming increasingly appealing and most importantly practical.
But what is machine learning anyway? Machine learning refers to algorithms that are designed learn like humans do and continuously tweak this learning process over time without human supervision. The algorithms output accuracy can be improved continuously by feeding them data and information in the form of observations and real-world interactions.
In other words, machine learning is the science of getting computers to act without being explicitly programmed.
There are all sorts of various machine learning algorithms, depending on the requirements of each situation and industry. Hundreds of new machine learning algorithms are published on a daily basis. Theyre typically grouped by:
In a healthcare fraud analytics context, machine learning eliminates the use of preprogrammed rule sets even those of phenomenal complexity.
Machine learning enables companies to efficiently determine what transactions or set of behaviors are most likely to be fraudulent, while reducing false positives.
In an industry where there can be billions of different transactions on a daily basis, AI-based analytics can be an amazing fit thanks to their ability to automatically discover patterns across large volumes of data.
The process itself can be complex since the algorithms have to interpret patterns in the data and apply data science in real-time in order to distinguish between normal behavior and abnormal behavior.
This can be a problem since an improper understanding of how AI works and fraud-specific data science techniques can lead you to develop algorithms that essentially learn to do the wrong things. Just like people can learn bad habits, so too can a poorly designed machine learning model.
In order for online fraud detection based on AI technology to succeed, these platforms need to check three very important boxes.
First, supervised machine learning algorithms have to be trained and fine-tuned based on decades worth of transaction data to keep false positives to a minimum and improve reaction time. This is harder said than done because the data needs to be structured and properly labeled depending on the size of the project, this could take staff even years to solve.
Secondly, unsupervised machine learning needs to keep up with increasingly sophisticated forms of online fraud. After all, AI is used by both auditors and fraudsters. And, finally, for AI fraud detection platforms to scale, they require a large-scale, universal data network of activity (i.e. transactions, filed documents, etc) to scale the ML algorithms and improve the accuracy of fraud detection scores.
According to a new market research report released earlier this year, the healthcare fraud analytics market is projected to reach $4.6 billion by 2025 from $1.2 billion in 2020.
This growth is attributed to more numerous and complex fraudulent activity in the healthcare sector.
In order to tackle rising healthcare fraud, companies offer various analytics solutions that flag fraudulent activity some are rule-based models, but AI-based technologies are expected to form the backbone of all types of analytics used in the future. These include descriptive, predictive, and prescriptive analytics.
Some of the most important companies operating today in the healthcare fraud analytics market include IBM Corporation (US), Optum (US), SAS Institute (US), Change Healthcare (US), EXL Service Holdings (US), Cotiviti (US), Wipro Limited (Wipro) (India), Conduent (US), HCL (India), Canadian Global Information Technology Group (Canada), DXC Technology Company (US), Northrop Grumman Corporation (US), LexisNexis Group (US), and Pondera Solutions (US).
That being said, there is a wide range of options in place today to prevent fraud. However, the evolving landscape of e-commerce and hacking pose new challenges all the time. To keep up, these challenges require innovation that can respond and react rapidly to fraud. The common denominator, from payment fraud to abuse, seems to be machine learning, which can easily scale to meet the demands of big data with far more flexibility than traditional methods.
Original post:
Artificial intelligence for fraud detection is bound to save billions - ZME Science
- Are We Overly Infatuated With Deep Learning? - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Can machine learning take over the role of investors? - TechHQ [Last Updated On: August 18th, 2024] [Originally Added On: December 28th, 2019]
- Pear Therapeutics Expands Pipeline with Machine Learning, Digital Therapeutic and Digital Biomarker Technologies - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Limits of machine learning - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Tiny Machine Learning On The Attiny85 - Hackaday [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- How Will Your Hotel Property Use Machine Learning in 2020 and Beyond? | - Hotel Technology News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Technology Trends to Keep an Eye on in 2020 - Built In Chicago [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- AI and machine learning trends to look toward in 2020 - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The 4 Hottest Trends in Data Science for 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Going Beyond Machine Learning To Machine Reasoning - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: January 11th, 2020]
- Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Being human in the age of Artificial Intelligence - Deccan Herald [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Raleys Drive To Be Different Gets an Assist From Machine Learning - Winsight Grocery Business [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Break into the field of AI and Machine Learning with the help of this training - Boing Boing [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- BlackBerry combines AI and machine learning to create connected fleet security solution - Fleet Owner [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- What is the role of machine learning in industry? - Engineer Live [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Christiana Care offers tips to 'personalize the black box' of machine learning - Healthcare IT News [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Essential AI & Machine Learning Certification Training Bundle Is Available For A Limited Time 93% Discount Offer Avail Now - Wccftech [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- 2020: The year of seeing clearly on AI and machine learning - ZDNet [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- How machine learning and automation can modernize the network edge - SiliconANGLE [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Don't want a robot stealing your job? Take a course on AI and machine learning. - Mashable [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Optimising Utilisation Forecasting with AI and Machine Learning - Gigabit Magazine - Technology News, Magazine and Website [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning: Higher Performance Analytics for Lower ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Definition [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning Market Size Worth $96.7 Billion by 2025 ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Difference between AI, Machine Learning and Deep Learning [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Machine Learning in Human Resources Applications and ... [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Pricing - Machine Learning | Microsoft Azure [Last Updated On: August 18th, 2024] [Originally Added On: January 19th, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Machine learning - Wikipedia [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: August 18th, 2024] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: August 18th, 2024] [Originally Added On: January 23rd, 2020]
- Machine learning and eco-consciousness key business trends in 2020 - Finfeed [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: August 18th, 2024] [Originally Added On: January 24th, 2020]
- Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Expert: Don't overlook security in rush to adopt AI - The Winchester Star [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- Federated machine learning is coming - here's the questions we should be asking - Diginomica [Last Updated On: August 18th, 2024] [Originally Added On: January 25th, 2020]
- I Know Some Algorithms Are Biased--because I Created One - Scientific American [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Want To Be AI-First? You Need To Be Data-First. - Forbes [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Technologies of the future, but where are AI and ML headed to? - YourStory [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- In Coronavirus Response, AI is Becoming a Useful Tool in a Global Outbreak - Machine Learning Times - machine learning & data science news - The... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- This tech firm used AI & machine learning to predict Coronavirus outbreak; warned people about danger zones - Economic Times [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- 3 books to get started on data science and machine learning - TechTalks [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- JP Morgan expands dive into machine learning with new London research centre - The TRADE News [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Euro machine learning startup plans NYC rental platform, the punch list goes digital & other proptech news - The Real Deal [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- The ML Times Is Growing A Letter from the New Editor in Chief - Machine Learning Times - machine learning & data science news - The Predictive... [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Top Machine Learning Services in the Cloud - Datamation [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Combating the coronavirus with Twitter, data mining, and machine learning - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 1st, 2020]
- Itiviti Partners With AI Innovator Imandra to Integrate Machine Learning Into Client Onboarding and Testing Tools - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- Iguazio Deployed by Payoneer to Prevent Fraud with Real-time Machine Learning - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How Machine Learning Is Changing The Future Of Fiber Optics - DesignNews [Last Updated On: August 18th, 2024] [Originally Added On: February 2nd, 2020]
- How to handle the unexpected in conversational AI - ITProPortal [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- SwRI, SMU fund SPARKS program to explore collaborative research and apply machine learning to industry problems - TechStartups.com [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Reinforcement Learning (RL) Market Report & Framework, 2020: An Introduction to the Technology - Yahoo Finance [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- ValleyML Is Launching a Series of 3 Unique AI Expo Events Focused on Hardware, Enterprise and Robotics in Silicon Valley - AiThority [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- REPLY: European Central Bank Explores the Possibilities of Machine Learning With a Coding Marathon Organised by Reply - Business Wire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- VUniverse Named One of Five Finalists for SXSW Innovation Awards: AI & Machine Learning Category - PRNewswire [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- AI, machine learning, robots, and marketing tech coming to a store near you - TechRepublic [Last Updated On: August 18th, 2024] [Originally Added On: February 5th, 2020]
- Putting the Humanity Back Into Technology: 10 Skills to Future Proof Your Career - HR Technologist [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Twitter says AI tweet recommendations helped it add millions of users - The Verge [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Artnome Wants to Predict the Price of a Masterpiece. The Problem? There's Only One. - Built In [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Machine Learning Patentability in 2019: 5 Cases Analyzed and Lessons Learned Part 1 - Lexology [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- The 17 Best AI and Machine Learning TED Talks for Practitioners - Solutions Review [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]
- Overview of causal inference in machine learning - Ericsson [Last Updated On: August 18th, 2024] [Originally Added On: February 6th, 2020]