Parkinson’s disease stopped in animal model: Molecular ‘tweezers’ break up toxic aggregations of proteins

ScienceDaily (Mar. 2, 2012) Millions of people suffer from Parkinson’s disease, a disorder of the nervous system that affects movement and worsens over time. As the world’s population ages, it’s estimated that the number of people with the disease will rise sharply. Yet despite several effective therapies that treat Parkinson’s symptoms, nothing slows its progression.

While it’s not known what exactly causes the disease, evidence points to one particular culprit: a protein called -synuclein. The protein, which has been found to be common to all patients with Parkinson’s, is thought to be a pathway to the disease when it binds together in “clumps,” or aggregates, and becomes toxic, killing the brain’s neurons.

Now, scientists at UCLA have found a way to prevent these clumps from forming, prevent their toxicity and even break up existing aggregates.

UCLA professor of neurology Jeff Bronstein and UCLA associate professor of neurology Gal Bitan, along with their colleagues, report the development of a novel compound known as a “molecular tweezer,” which in a living animal model blocked -synuclein aggregates from forming, stopped the aggregates’ toxicity and, further, reversed aggregates in the brain that had already formed. And the tweezers accomplished this without interfering with normal brain function.

The research appears in the current online edition of the journal Neurotherapeutics.

There are currently more than 30 diseases with no cure that are caused by protein aggregation and the resulting toxicity to the brain or other organs, including Parkinson’s, Alzheimer’s and Type 2 diabetes. It is therefore critical, Bronstein said, to find a way to stop this aggregation process. Over the last two decades, researchers and pharmaceutical companies have attempted to develop drugs that would prevent abnormal protein aggregation, but so far, they have had little or no success.

While these aggregates are a natural target for a drug, finding a therapy that targets only the aggregates is a complicated process, Bronstein said. In Parkinson’s, for example, the protein implicated in the disorder, -synuclein, is naturally ubiquitous throughout the brain.

“Its normal function is not well understood, but it may play a role in aiding communication between neurons,” Bronstein said. “The trick, then, is to prevent the -synuclein protein aggregates and their toxicity without destroying -synuclein’s normal function, along with, of course, other healthy areas of the brain.

Molecular tweezer

Bronstein collaborated with Bitan, who had been working with a particular molecular tweezer he had developed called CLR01. Molecular tweezers are complex molecular compounds that are capable of binding to other proteins. Shaped like the letter “C,” these compounds wrap around chains of lysine, a basic amino acid that is a constituent of most proteins.

Read more:
Parkinson's disease stopped in animal model: Molecular 'tweezers' break up toxic aggregations of proteins

Source:
http://www.longevitymedicine.tv/feed/

Related Posts

Comments are closed.