Inducing Dedifferentiation for Heart Regeneration

As knowledge of cellular programming and signaling systems increases, the future of cell therapies will most likely move away from transplants and towards controlling existing populations of cells in the body: "In order to regenerate damaged heart muscle as caused by a heart attack [simpler] vertebrates like the salamander adopt a strategy whereby surviving healthy heart muscle cells regress into an embryonic state. This process, which is known as dedifferentiation, produces cells which contain a series of stem cell markers and re-attain their cell division activity. Thus, new cells are produced which convert, in turn, into heart muscle cells. The cardiac function is then restored through the remodelling of the muscle tissue. An optimised repair mechanism of this kind does not exist in humans. Although heart stem cells were discovered some time ago, exactly how and to what extent they play a role in cardiac repair is a matter of dispute. It has only been known for a few years that processes comparable to those found in the salamander even exist in mammals. ... [Researchers have] now discovered the molecule responsible for controlling this dedifferentiation of heart muscle cells in mammals. The scientists initially noticed the high concentration of oncostatin M in tissue samples from the hearts of patients suffering from myocardial infarction. It was already known that this protein is responsible for the dedifferentiation of different cell types, among other things. ... Using a mouse infarct model, the [researchers] succeeded in demonstrating that oncostatin M actually does stimulate the repair of damaged heart muscle tissue as presumed. One of the two test groups had been modified genetically in advance to ensure that the oncostatin M could not have any effect in these animals. ... The difference between the two groups was astonishing. Whereas in the group in which oncostatin M could take effect almost all animals were still alive after four weeks, 40 percent of the genetically modified mice had died from the effects of the infarction."

Link: http://www.sciencedaily.com/releases/2011/11/111111095220.htm

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

Related Posts

Comments are closed.