Efficient Transdifferentiation of Skin Cells to Nerve Cells

Transdifferentiation is showing up more often of late - the ability to switch somatic cells directly between types without having to go through an intermediate stage of reprogramming into stem cells. It should in theory make obtaining specific cells for research and therapy a cheaper and more reliable process in the future: "it has become possible to directly convert cells of the body into one another - without the time-consuming detour via a pluripotent intermediate stage. However, this method has so far been rather inefficient. [Scientists] have now developed the method to the point that it can be used for biomedical applications. ... [Researchers] are interested in the biomedical utilization of artificially produced human nerve cells for disease research, cell replacement, and the development of active substances. ... By blocking the so-called SMAD signaling pathway and inhibiting glycogen synthase kinase 3 beta (GSK3ß), they increased the transformational efficiency [of skin cells to neurons] by several times - and were thus able to even simplify the means of extraction. Using only two instead of previously three transcription factors and three active substances, [the] researchers were able to convert a majority [of] skin cells into neurons. In the end, their cell cultures contained up to more than 80% human neurons. ... We were able to demonstrate how the genes typical for skin fibroblast were gradually down-regulated and nerve-cell-specific genes were activated during the cell transformation. In addition, the nerve cells thus obtained were functionally active, which also makes them interesting as a source for cell replacement."

Link: http://www.sciencedaily.com/releases/2012/04/120411084044.htm

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

Related Posts

Comments are closed.