Dedifferentiation and Stem Cell Transplant Effectiveness

Via EurekAlert!: "Research into differentiation has led to a variety of breakthroughs as stem cell researchers harvest cells from one part of the body and genetically adapt them to fulfill a specialized role. However, if the implanted cells are too much like the cells of the targeted area they may not have the plasticity to engraft and repair the injured tissue. ... Stem cell differentiation and transplantation has been shown to improve function in conditions including degenerative diseases and blood supply disorders. However, the survival rate of transplanted cells in patients limits their overall effectiveness, which is a barrier to clinical use. ... To overcome this issue [researchers] explored de-differentiation, a process that reverts specialized, differentiated cells back to a more primitive cell. The team focused their research on multipotent stem cells, (MSCs) which can be altered into a variety of cell types through differentiation. Bone marrow MSCs have the potential to differentiate into each of the three basic types of lineage cells which form bone (osteocytes), cartilage (chondrocytes) and fat tissue (adipocytes). The team first differentiated bone marrow MSCs towards a neuronal lineage, but then removed the differentiation conditions, allowing the cell to revert back to a form with more basic cellular characteristics. Following this process the team recorded increased cell survival rates following transplants. In an animal model de-differentiated cells were found to be more effective in improving cognitive functions and in aiding recovery from strokes, compared to un-manipulated stem cells both in living specimens and in laboratory experiments."

Link: http://www.eurekalert.org/pub_releases/2011-11/w-rsc110111.php

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

Related Posts

Comments are closed.