Retinoic acid metabolizing enzyme CYP26A1 is implicated in rat embryo implantation

BACKGROUND

The retinoic acid metabolizing enzyme Cyp26a1 plays a pivotal role in vertebrate embryo development. Cyp26a1 was characterized previously as a differentially expressed gene in peri-implantation rat uteri via suppressive subtracted hybridization analysis. However, the role of Cyp26a1 in rat embryo implantation remained elusive.

METHODS

The expression of Cyp26a1 in the uteri of early pregnancy, pseudopregnancy and artificial decidualization was detected by northern blotting, real time-PCR, in situ hybridization, western blotting and immunofluorescent staining. The effect of Cyp26a1 on apoptosis of endometrial stromal cells (ESCs) isolated from rat uteri was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Hoechst staining. Apoptosis-related proteins in ESCs were detected by western blotting.

RESULTS

Cyp26a1 showed distinctive expression patterns in embryos and uteri during the peri-implantation period, with a remarkable increase (P < 0.01 versus Days 4–5) in mRNA and protein in the implantation phase (Days 5.5–6.5 of pregnancy). CYP26A1 was specifically localized in glandular epithelium, luminal epithelium and decidua basalis. The level of CYP26A1 protein was significantly increased in uteri of artificial decidualization (P < 0.01 versus control). Forced Cyp26a1 overexpression significantly reduced the sensitivity of ESCs to etoposide-induced apoptosis, with reductions in p53 (P < 0.01) and Fas (P < 0.05) proteins versus control, while in contrast, FasL (P < 0.01) and proliferating cell nuclear antigen (P < 0.05) proteins increased.

CONCLUSIONS

Cyp26a1 is spatiotemporally expressed in the uterus during embryo implantation and decidualization. Overexpression of Cyp26a1 attenuates the process of uterine stromal cell apoptosis, probably via down-regulating the expression of p53 and FasL.

Related Posts

Comments are closed.