New look at archaic DNA rewrites human evolution story – Phys.Org

August 7, 2017 These population trees with embedded gene trees show how mutations can generate nucleotide site patterns. The four branch tips of each gene tree represent genetic samples from four populations: modern Africans, modern Eurasians, Neanderthals, and Denisovans. In the left tree, the mutation (shown in blue) is shared by the Eurasian, Neanderthal and Denisovan genomes. In the right tree, the mutation (shown in red) is shared by the Eurasian and Neanderthal genomes. Credit: Alan Rogers, University of Utah

Hundreds of thousands of years ago, the ancestors of modern humans diverged from an archaic lineage that gave rise to Neanderthals and Denisovans. Yet the evolutionary relationships between these groups remain unclear.

A University of Utah-led team developed a new method for analyzing DNA sequence data to reconstruct the early history of the archaic human populations. They revealed an evolutionary story that contradicts conventional wisdom about modern humans, Neanderthals and Denisovans.

The study found that the Neanderthal-Denisovan lineage nearly went extinct after separating from modern humans. Just 300 generations later, Neanderthals and Denisovans diverged from each other around 744,000 years ago. Then, the global Neanderthal population grew to tens of thousands of individuals living in fragmented, isolated populations scattered across Eurasia.

"This hypothesis is against conventional wisdom, but it makes more sense than the conventional wisdom." said Alan Rogers, professor in the Department of Anthropology and lead author of the study that will publish online on August 7, 2017 in the Proceedings of the National Academy of Sciences.

A different evolutionary story

With only limited samples of fossil fragments, anthropologists assemble the history of human evolution using genetics and statistics.

Previous estimates of the Neanderthal population size are very smallaround 1,000 individuals. However, a 2015 study showed that these estimates underrepresent the number of individuals if the Neanderthal population was subdivided into isolated, regional groups. The Utah team suggests that this explains the discrepancy between previous estimates and their own much larger estimate of Neanderthal population size.

"Looking at the data that shows how related everything was, the model was not predicting the gene patterns that we were seeing," said Ryan Bohlender, post-doctoral fellow at the M. D. Anderson Cancer Center at the University of Texas, and co-author of the study. "We needed a different model and, therefore, a different evolutionary story."

The team developed an improved statistical method, called legofit, that accounts for multiple populations in the gene pool. They estimated the percentage of Neanderthal genes flowing into modern Eurasian populations, the date at which archaic populations diverged from each other, and their population sizes.

A family history in DNA

The human genome has about 3.5 billion nucleotide sites. Over time, genes at certain sites can mutate. If a parent passes down that mutation to their kids, who pass it to their kids, and so on, that mutation acts as a family seal stamped onto the DNA.

Scientists use these mutations to piece together evolutionary history hundreds of thousands of years in the past. By searching for shared gene mutations along the nucleotide sites of various human populations, scientists can estimate when groups diverged, and the sizes of populations contributing to the gene pool.

"You're trying to find a fingerprint of these ancient humans in other populations. It's a small percentage of the genome, but it's there," said Rogers.

They compared the genomes of four human populations: Modern Eurasians, modern Africans, Neanderthals and Denisovans. The modern samples came from Phase I of the 1000-Genomes project and the archaic samples came from the Max Planck Institute for Evolutionary Anthropology. The Utah team analyzed a few million nucleotide sites that shared a gene mutation in two or three human groups, and established 10 distinct nucleotide site patterns.

Against conventional wisdom

The new method confirmed previous estimates that modern Eurasians share about 2 percent of Neanderthal DNA. However, other findings questioned established theories.

Their analysis revealed that 20 percent of nucleotide sites exhibited a mutation only shared by Neanderthals and Denisovans, a genetic timestamp marking the time before the archaic groups diverged. The team calculated that Neanderthals and Denisovans separated about 744,000 years ago, much earlier than any other estimation of the split.

"If Neanderthals and Denisovans had separated later, then there ought to be more sites at which the mutation is present in the two archaic samples, but is absent from modern samples," said Rogers.

The analysis also questioned whether the Neanderthal population had only 1,000 individuals. There is some evidence for this; Neanderthal DNA contains mutations that usually occur in small populations with little genetic diversity.

However, Neanderthal remains found in various locations are genetically different from each other. This supports the study's finding that regional Neanderthals were likely small bands of individuals, which explains the harmful mutations, while the global population was quite large.

"The idea is that there are these small, geographically isolated populations, like islands, that sometimes interact, but it's a pain to move from island to island. So, they tend to stay with their own populations," said Bohlender.

Their analysis revealed that the Neanderthals grew to tens of thousands of individuals living in fragmented, isolated populations.

"There's a rich Neanderthal fossil record. There are lots of Neanderthal sites," said Rogers. "It's hard to imagine that there would be so many of them if there were only 1,000 individuals in the whole world."

Rogers is excited to apply the new method in other contexts.

"To some degree, this is a proof of concept that the method can work. That's exciting," said Rogers. "We have remarkable ability to estimate things with high precision, much farther back in the past than anyone has realized."

Explore further: DNA of early Neanderthal gives timeline for new modern human-related dispersal from Africa

More information: Alan R. Rogers el al., "Early history of Neanderthals and Denisovans," PNAS (2017). http://www.pnas.org/cgi/doi/10.1073/pnas.1706426114

Ancient mitochondrial DNA from the femur of an archaic European hominin is helping to resolve the complicated relationship between modern humans and Neanderthals. The genetic data recovered by the research team, led by scientists ...

Relationships between the ancestors of modern humans and other archaic populations such as Neanderthals and Denisovans were likely more complex than previously thought, involving interbreeding within and outside Africa, according ...

The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome. A new study by geneticists at the University of California, Davis, ...

Using several different methods of DNA analysis, an international research team has found what they consider to be strong evidence of an interbreeding event between Neanderthals and modern humans that occurred tens of thousands ...

Most non-Africans possess at least a little bit Neanderthal DNA. But a new map of archaic ancestrypublished March 28 in Current Biologysuggests that many bloodlines around the world, particularly of South Asian descent, ...

The last Neanderthal died 40,000 years ago, but much of their genome lives on, in bits and pieces, through modern humans. The impact of Neanderthals' genetic contribution has been uncertain: Do these snippets affect our genome's ...

Hundreds of thousands of years ago, the ancestors of modern humans diverged from an archaic lineage that gave rise to Neanderthals and Denisovans. Yet the evolutionary relationships between these groups remain unclear.

A team of Japanese scientists has developed a way to make and sell a type of ice cream that does not melt, capitalizing on a discovery made accidentally by a chef. Most ice cream starts melting just moments after it is scooped ...

A unusual social study has revealed that atheists are more easily suspected of vile deeds than Christians, Muslims, Hindus or Buddhistsstrikingly, even by fellow atheists, researchers said Monday.

Japan's attack on Pearl Harbor in 1941 drew the United States into World War II and spawned a massive wave of shock and fear across the country. It also prompted the U.S. government to round up and send more than 100,000 ...

A study of more than 2,500 people provides new evidence about the effects of luminance on the quality and consistency of our financial decision-making.

Having lost their heads, been pulled from their plinths, smashed and even buried, things are at last looking up for some of the unluckiest statues in Christendom.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the original post:

New look at archaic DNA rewrites human evolution story - Phys.Org

Related Posts

Comments are closed.