Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.
Genes are the common factor of the qualities of most human-inherited traits. Study of human genetics can answer questions about human nature, can help understand diseases and the development of effective disease treatment, and help us to understand the genetics of human life. This article describes only basic features of human genetics; for the genetics of disorders please see: medical genetics.
Inheritance of traits for humans are based upon Gregor Mendel's model of inheritance. Mendel deduced that inheritance depends upon discrete units of inheritance, called factors or genes.[1]
Autosomal traits are associated with a single gene on an autosome (non-sex chromosome)they are called "dominant" because a single copyinherited from either parentis enough to cause this trait to appear. This often means that one of the parents must also have the same trait, unless it has arisen due to an unlikely new mutation. Examples of autosomal dominant traits and disorders are Huntington's disease and achondroplasia.
Autosomal recessive traits is one pattern of inheritance for a trait, disease, or disorder to be passed on through families. For a recessive trait or disease to be displayed two copies of the trait or disorder needs to be presented. The trait or gene will be located on a non-sex chromosome. Because it takes two copies of a trait to display a trait, many people can unknowingly be carriers of a disease. From an evolutionary perspective, a recessive disease or trait can remain hidden for several generations before displaying the phenotype. Examples of autosomal recessive disorders are albinism, cystic fibrosis.
X-linked genes are found on the sex X chromosome. X-linked genes just like autosomal genes have both dominant and recessive types. Recessive X-linked disorders are rarely seen in females and usually only affect males. This is because males inherit their X chromosome and all X-linked genes will be inherited from the maternal side. Fathers only pass on their Y chromosome to their sons, so no X-linked traits will be inherited from father to son. Men cannot be carriers for recessive X linked traits, as they only have one X chromosome, so any X linked trait inherited from the mother will show up.
Females express X-linked disorders when they are homozygous for the disorder and become carriers when they are heterozygous. X-linked dominant inheritance will show the same phenotype as a heterozygote and homozygote. Just like X-linked inheritance, there will be a lack of male-to-male inheritance, which makes it distinguishable from autosomal traits. One example of an X-linked trait is CoffinLowry syndrome, which is caused by a mutation in ribosomal protein gene. This mutation results in skeletal, craniofacial abnormalities, mental retardation, and short stature.
X chromosomes in females undergo a process known as X inactivation. X inactivation is when one of the two X chromosomes in females is almost completely inactivated. It is important that this process occurs otherwise a woman would produce twice the amount of normal X chromosome proteins. The mechanism for X inactivation will occur during the embryonic stage. For people with disorders like trisomy X, where the genotype has three X chromosomes, X-inactivation will inactivate all X chromosomes until there is only one X chromosome active. Males with Klinefelter syndrome, who have an extra X chromosome, will also undergo X inactivation to have only one completely active X chromosome.
Y-linked inheritance occurs when a gene, trait, or disorder is transferred through the Y chromosome. Since Y chromosomes can only be found in males, Y linked traits are only passed on from father to son. The testis determining factor, which is located on the Y chromosome, determines the maleness of individuals. Besides the maleness inherited in the Y-chromosome there are no other found Y-linked characteristics.
A pedigree is a diagram showing the ancestral relationships and transmission of genetic traits over several generations in a family. Square symbols are almost always used to represent males, whilst circles are used for females. Pedigrees are used to help detect many different genetic diseases. A pedigree can also be used to help determine the chances for a parent to produce an offspring with a specific trait.
Four different traits can be identified by pedigree chart analysis: autosomal dominant, autosomal recessive, x-linked, or y-linked. Partial penetrance can be shown and calculated from pedigrees. Penetrance is the percentage expressed frequency with which individuals of a given genotype manifest at least some degree of a specific mutant phenotype associated with a trait.
Inbreeding, or mating between closely related organisms, can clearly be seen on pedigree charts. Pedigree charts of royal families often have a high degree of inbreeding, because it was customary and preferable for royalty to marry another member of royalty. Genetic counselors commonly use pedigrees to help couples determine if the parents will be able to produce healthy children.
A karyotype is a very useful tool in cytogenetics. A karyotype is picture of all the chromosomes in the metaphase stage arranged according to length and centromere position. A karyotype can also be useful in clinical genetics, due to its ability to diagnose genetic disorders. On a normal karyotype, aneuploidy can be detected by clearly being able to observe any missing or extra chromosomes.[1]
Giemsa banding, g-banding, of the karyotype can be used to detect deletions, insertions, duplications, inversions, and translocations. G-banding will stain the chromosomes with light and dark bands unique to each chromosome. A FISH, fluorescent in situ hybridization, can be used to observe deletions, insertions, and translocations. FISH uses fluorescent probes to bind to specific sequences of the chromosomes that will cause the chromosomes to fluoresce a unique color.[1]
Genomics is the field of genetics concerned with structural and functional studies of the genome.[1] A genome is all the DNA contained within an organism or a cell including nuclear and mitochondrial DNA. The human genome is the total collection of genes in a human being contained in the human chromosome, composed of over three billion nucleotides.[2] In April 2003, the Human Genome Project was able to sequence all the DNA in the human genome, and to discover that the human genome was composed of around 20,000 protein coding genes.
Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics is the application of genetics to medical care. It overlaps human genetics, for example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counseling of individuals with genetic disorders would be considered part of medical genetics.
Population genetics is the branch of evolutionary biology responsible for investigating processes that cause changes in allele and genotype frequencies in populations based upon Mendelian inheritance.[3] Four different forces can influence the frequencies: natural selection, mutation, gene flow (migration), and genetic drift. A population can be defined as a group of interbreeding individuals and their offspring. For human genetics the populations will consist only of the human species. The HardyWeinberg principle is a widely used principle to determine allelic and genotype frequencies.
In addition to nuclear DNA, humans (like almost all eukaryotes) have mitochondrial DNA. Mitochondria, the "power houses" of a cell, have their own DNA. Mitochondria are inherited from one's mother, and their DNA is frequently used to trace maternal lines of descent (see mitochondrial Eve). Mitochondrial DNA is only 16kb in length and encodes for 62 genes.
The XY sex-determination system is the sex-determination system found in humans, most other mammals, some insects (Drosophila), and some plants (Ginkgo). In this system, the sex of an individual is determined by a pair of sex chromosomes (gonosomes). Females have two of the same kind of sex chromosome (XX), and are called the homogametic sex. Males have two distinct sex chromosomes (XY), and are called the heterogametic sex.
Sex linkage is the phenotypic expression of an allele related to the chromosomal sex of the individual. This mode of inheritance is in contrast to the inheritance of traits on autosomal chromosomes, where both sexes have the same probability of inheritance. Since humans have many more genes on the X than the Y, there are many more X-linked traits than Y-linked traits.However, females carry two or more copies of the X chromosome, resulting in a potentially toxic dose of X-linked genes.[4]
To correct this imbalance, mammalian females have evolved a unique mechanism of dosage compensation. In particular, by way of the process called X-chromosome inactivation (XCI), female mammals transcriptionally silence one of their two Xs in a complex and highly coordinated manner.[4]
GeneticChromosomal
[35]
Read more from the original source:
- June 11th At Westport, CT: Federal Red Flags, HIPAA Security Rules and Fraud Prevention [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Do not learn Dvorak! [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- You Can’t Solve Problems By Making It Illegal To Have The Problem [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- A Force Fix for Healthcare [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Yahble, HIT, Bubblecon, BIZDEV!, Solid State [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- 15 things that suck about the Palm Pre [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- What an Indie Genomics Lab Looks Like [Last Updated On: November 7th, 2009] [Originally Added On: November 7th, 2009]
- Practice Fusion: Class D Felony? [Last Updated On: February 26th, 2010] [Originally Added On: February 26th, 2010]
- Practice Fusion Responds [Last Updated On: March 7th, 2010] [Originally Added On: March 7th, 2010]
- Practice Fusion: Do the math: $44,000 is a LIE [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- How Much Until Doctors Approve of 23andMe? [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- Biochemicals as Media, Not Methods [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- More Practice Fusion Reality Distortion [Last Updated On: March 10th, 2010] [Originally Added On: March 10th, 2010]
- Same Test Results: 23andMe is Myriad is BRCA is Medicine [Last Updated On: March 12th, 2010] [Originally Added On: March 12th, 2010]
- BRCA is 23andMe is Myriad is Medicine [Last Updated On: March 13th, 2010] [Originally Added On: March 13th, 2010]
- Getting Serious About Genomics as Common Medical Practice [Last Updated On: March 15th, 2010] [Originally Added On: March 15th, 2010]
- The New John Mackey of Genetics: Linda Avey? [Last Updated On: March 15th, 2010] [Originally Added On: March 15th, 2010]
- Keep the Medical, Well, Medical [Last Updated On: March 16th, 2010] [Originally Added On: March 16th, 2010]
- If 23andMe shuts down, it won’t be for some mundane reason like the bills weren’t paid [Last Updated On: March 16th, 2010] [Originally Added On: March 16th, 2010]
- If I Run A Medical Practice, How Do I Use A 23andMe? [Last Updated On: March 17th, 2010] [Originally Added On: March 17th, 2010]
- 23andMe Contract in Bad Faith [Last Updated On: March 19th, 2010] [Originally Added On: March 19th, 2010]
- Doctors CANNOT Use 23andMe Due To 23andMe’s Bad Faith Contract [Last Updated On: March 20th, 2010] [Originally Added On: March 20th, 2010]
- Pathway Compared to 23andMe and Navigenics [Last Updated On: March 22nd, 2010] [Originally Added On: March 22nd, 2010]
- There’s a Word for “Views Differ” When One View Is The State [Last Updated On: March 24th, 2010] [Originally Added On: March 24th, 2010]
- Association for Molecular Pathology, et al. v. USPTO, et al. – Opinion [Last Updated On: March 29th, 2010] [Originally Added On: March 29th, 2010]
- Birth of a Super Villain [Last Updated On: April 3rd, 2010] [Originally Added On: April 3rd, 2010]
- “Medical Products” like 23andMe must not become the new “Financial Products” [Last Updated On: April 4th, 2010] [Originally Added On: April 4th, 2010]
- How I Would Apply Genomic Technology In Clinical Use Today [Last Updated On: April 5th, 2010] [Originally Added On: April 5th, 2010]
- Gmail Enterprise: World’s Best EMR [Last Updated On: April 6th, 2010] [Originally Added On: April 6th, 2010]
- Brief Primer on Health Law Compliance [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Spoiler: You ARE the “Valids” [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Rachel Lehmann-Haupt Line by Line Take Down [Last Updated On: April 9th, 2010] [Originally Added On: April 9th, 2010]
- Is Medicare Bankrupt? What the Hell Is Going On? [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- The Big Shuffle: Medicare Cuts Rates by 21.3% (but not “technically”) [Last Updated On: April 17th, 2010] [Originally Added On: April 17th, 2010]
- “Tech Hiring Binge” == “Fear for Your Job, Nerds” [Last Updated On: April 18th, 2010] [Originally Added On: April 18th, 2010]
- How Bad is Bad? $.20 on the Private Medical Insurance Dollar [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- Update: How Bad is Bad? It Used to Be $.45 on the Medical Insurance Dollar [Last Updated On: April 20th, 2010] [Originally Added On: April 20th, 2010]
- World’s Best “EMR” for $1000: Google Spreadsheets + iPad [Last Updated On: April 21st, 2010] [Originally Added On: April 21st, 2010]
- Don’t Insult Me with your “AOL Keyword” Strategy, Google Health [Last Updated On: April 21st, 2010] [Originally Added On: April 21st, 2010]
- How to Play LAWGAMES [Last Updated On: April 23rd, 2010] [Originally Added On: April 23rd, 2010]
- Top 4 Predatory Schemes Encroaching on American Medicine: Part 1 [Last Updated On: April 25th, 2010] [Originally Added On: April 25th, 2010]
- What’s the Big Deal About iPads? [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Got Google Android for Google I/O [Last Updated On: April 27th, 2010] [Originally Added On: April 27th, 2010]
- Google Enterprise meets HIPAA and HITECH Compliant Laws [Last Updated On: April 29th, 2010] [Originally Added On: April 29th, 2010]
- Pixels of Accuracy CHALENGE: Diagnostic Medical Imaging [Last Updated On: April 29th, 2010] [Originally Added On: April 29th, 2010]
- 23andMe Launder AlioGenetics Doesn’t Even Bother to Remove 23andMe Logo [Last Updated On: April 30th, 2010] [Originally Added On: April 30th, 2010]
- Anthem of CT Denies $600 Until “Subscriber Responds to our Coordination of Benefits Questionnaire” [Last Updated On: May 1st, 2010] [Originally Added On: May 1st, 2010]
- Apple And Google Team Up To Launch Revolutionary Mobile Health System [Last Updated On: May 1st, 2010] [Originally Added On: May 1st, 2010]
- Funny Pictures from This Year Building the Medical Practice [Last Updated On: May 6th, 2010] [Originally Added On: May 6th, 2010]
- Remote Medical Video Monitoring on iPad and iPhone [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Google Calendar Overhead Waiting Room Display [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Various Whiteboards on Solid State Medical Operations [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- The Raw Facts about Counsyl [Last Updated On: May 7th, 2010] [Originally Added On: May 7th, 2010]
- Brawndo: Still Mutilating Thirst, Still Not Yet Sold at the Stop-n-Shop Pharmacy [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- Video: Google Enterprise to Outsource Medical Administration [Last Updated On: May 9th, 2010] [Originally Added On: May 9th, 2010]
- Gattaca: “The Matrix” of Genomics [Last Updated On: May 11th, 2010] [Originally Added On: May 11th, 2010]
- 23andMe Now Diagnoses Fatal Tay-Sachs Disease [Last Updated On: May 12th, 2010] [Originally Added On: May 12th, 2010]
- Why Was Pathway Targeted for FDA Enforcement and Not 23andMe? [Last Updated On: May 15th, 2010] [Originally Added On: May 15th, 2010]
- John Dolan on Aging and the Horrifying Conclusion of GWAS [Last Updated On: May 16th, 2010] [Originally Added On: May 16th, 2010]
- Sam R. Riley Wants To Tell You About Practice Fusion [Last Updated On: May 17th, 2010] [Originally Added On: May 17th, 2010]
- Response to “Genomic Medicine: Lost” [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- Death And Taxes: CMS to IRS [Last Updated On: May 19th, 2010] [Originally Added On: May 19th, 2010]
- Please Stop Antagonizing the AMA [Last Updated On: May 26th, 2010] [Originally Added On: May 26th, 2010]
- Dan Vorhaus, Attorney At Law, Legally Advises Medical Doctors Can Use 23andMe To Provide Medical Advice [Last Updated On: May 28th, 2010] [Originally Added On: May 28th, 2010]
- Singularity Summit 2010 in San Francisco to Explore Intelligence Augmentation [Last Updated On: June 7th, 2010] [Originally Added On: June 7th, 2010]
- OpenPCR: DNA amplification for anyone [Last Updated On: June 10th, 2010] [Originally Added On: June 10th, 2010]
- FDA sends letters to 5 genetic testing companies [Last Updated On: June 11th, 2010] [Originally Added On: June 11th, 2010]
- Amazon And The NIH Team Up To Put Human Genome In The Cloud [Last Updated On: March 31st, 2012] [Originally Added On: March 31st, 2012]
- ReproSource Comments on New Study Linking Infertility to Genetics [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- Genetics 101 Part 1: What are genes? - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Red Ice Radio - David Icke - Hour 1 - The Manipulation of Humanity - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Genetics Part 5: Human Genetic Disorders - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- C2CAM - The Nephilim, Genetic Manipulation [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Human Nature talk with Robert Sapolsky, Gabor Mate, James Gilligan, Richard Wilkinson - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Human Genetic Diseases - Video [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Alien Scientist on Genetics, Implants [Last Updated On: April 30th, 2012] [Originally Added On: April 30th, 2012]
- Research and Markets: Genetics, 6th Edition International Student Version Continues To Educate Today's Students for ... [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Myriad Genetics to Present at the Bank of America Merrill Lynch 2012 Health Care Conference [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- Genetics may explain some people's dislike of meat [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]
- 'Blond Genes' May Vary Around the World [Last Updated On: May 4th, 2012] [Originally Added On: May 4th, 2012]