The Harvard Wyss Institute’s response to COVID-19: beating back the coronavirus – P&T Community

BOSTON, March 25, 2020 /PRNewswire/ -- The burgeoning coronavirus (COVID-19) global pandemic has already killed thousands of people worldwide and is threatening the lives of many more. In an effort to limit the virus from spreading, Harvard University was among the first organizations to promote social distancing by requiring all but the most essential personnel to work remotely. However, labs that perform vital COVID-19-related research are permitted to continue their potentially life-saving work and many of these activities are currently ongoing at the Wyss Institute for Biologically Inspired Engineering.

Essentially all medical treatment centers impacted by SARS-CoV2 (CoV2), the SARS-family virus that causes COVID-19, are overstrained or unable to confront the virus, starting from their ability to diagnose the virus' presence in the human body, treat all infected individuals, or prevent its spread among those that have not been infected yet. Therefore, finding better solutions to diagnose, treat, and prevent the disease, is key to combating this menace and bringing this pandemic under control. Equally concerning, there are worldwide shortages on the front lines in hospitals in our region and around the world, including rapidly depleting supplies of personal protective equipment, such as N95 face masks, and nasopharyngeal swabs needed for COVID-19 diagnostic testing. Solving these challenges requires rapid responses and creative solutions.

"With our highly multi-disciplinary and translation-focused organization, we [the Wyss Institute] were able to quickly pivot, and refocus our unique engineering capabilities on much needed diagnostic, therapeutic, and vaccine solutions, and we hope to be part of the solution for many of the innumerable problems the present pandemic poses," said Wyss Institute Founding Director Donald Ingber,M.D., Ph.D., who also is theJudah Folkman Professor of Vascular Biologyat Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). "We strive to make a major contribution to bringing this crisis under control, and are confident that what we accomplish under duress now will help prevent future epidemics."

Meeting challenges on the front lines of patient care

Many of the Institute's hospital partner institutions and government agencies have reached out to Institute leadership to assist in this rapidly escalating battle against COVID-19. Ingber's team is working closely with collaborators at Beth Israel Deaconess Medical Center(BIDMC), other Harvard-affiliated hospitals, and generous corporate partners to develop potential solutions to the increasing shortage of nasopharyngeal swabs and N95 face masks. Senior Staff Engineers Richard Novak, Ph.D., and Adama Sesay, Ph.D., and Senior Research Scientist Pawan Jolly, Ph.D., are working diligently with our clinical partners to help devise a solution as quickly as possible.

Diagnosing COVID-19 more quickly, easily, and broadly

With COVID-19 rapidly spreading around the planet, the efficient detection of the CoV2 virus is pivotal to isolate infected individuals as early as possible, support them in whatever way possible, and thus prevent the further uncontrolled spread of the disease. Currently, the most-performed tests are detecting snippets of the virus' genetic material, its RNA, by amplifying them with a technique known as "polymerase chain reaction" (PCR) from nasopharyngeal swabs taken from individuals' noses and throats.

The tests, however, have severe limitations that stand in the way of effectively deciding whether people in the wider communities are infected or not. Although PCR-based tests can detect the virus's RNA early on in the disease, test kits are only available for a fraction of people that need to be tested, and they require trained health care workers, specialized laboratory equipment, and significant time to be performed. In addition, health care workers that are carrying out testing are especially prone to being infected by CoV2. To shorten patient-specific and community-wide response times, Wyss Institute researchers are taking different parallel approaches:

Advancing antiviral therapeutics on the fast track

To date there is no antiviral drug that has been proven to reduce the intensity and duration of the infection in more seriously affected patients, or protect vulnerable patients from CoV2 infection. Doctors can merely provide supportive care to their COVID-19 patients by making sure they receive enough oxygen, managing their fever, and generally supporting their immune systems to buy them time to fight the infection themselves. Research groups in academia and industry working at breakneck pace by now have compiled a list of candidate therapeutics and vaccines to could offer some help. However, given the high failure rates of candidate drugs in clinical trials, more efforts are needed to develop effective medicines for a world population that likely will vary with regards to their susceptibility and access to new therapeutic technologies.

The ongoing COVID-19 pandemic requires rapid action, and the fastest way to combat this challenge is by repurposing existing drugs that are already FDA approved for other medical applications as COVID-19 therapeutics. While clinicians around the world are attempting to do this, the approaches have been haphazard, and there is a great need to attack this problem in a systematic way.

In search of ultimate protection a vaccine

With no vaccine currently available, but several vaccine candidates being explored around the world, Wyss Institute researchers led by Wyss Core Faculty member David Mooney,Ph.D., are developing a material that could make vaccinations more effective. Previously, Mooney's team has developed implantable and injectable cancer vaccinesthat can induce the immune system to attack and destroy cancer cells.

Understanding how COVID-19 develops and how to control it

COVID-19 does not strike equally strong in every individual that it infects. Independent of age, some are prone to become seriously ill, while others show an astonishing level of resilience against the disease. Figuring out the biological basis for these differences could lead to new protective strategies.

On the national level, Walt is a member of a COVID-19 discussion started at the National Academies' newly formed "Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats." The committee is strongly focusing now on the present coronavirus pandemic to find ways to help the federal government consolidate and streamline efforts across the nation but will also work long-term to develop strategies and make recommendations for future health threats.

At the international level, the Wyss Institute functions as a Center of Excellence of the Global Virus Network(GVN), with Ingber as leader and the other Wyss Faculty as key participating members. The GVN is designed to integrate surveillance and response efforts for biothreats, epidemics, and pandemics by integrating efforts of top virus research institutions from around the world.Ingber is also currently working closely with the Defense Advanced Research Projects Agency(DARPA) and Bill & Melinda Gates Foundation, as well as in active discussions with the NIH's National Institute of Allergy and Infectious Diseases(NIAID), Biomedical Advanced Research and Development Authority(BARDA), and Public Health England, as they all try to align and coordinate efforts to meet this monumental health challenge.

"The Wyss Institute and its collaborators are taking exactly the type of comprehensive, integrated approach to addressing this pandemic that is required at local, national, and international levels," said Walt.

PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard UniversityBenjamin Boettner,benjamin.boettner@wyss.harvard.edu, +1917-913-8051

The Wyss Institute for Biologically Inspired Engineering at Harvard University(http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, DanaFarber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charit Universittsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

View original content to download multimedia:http://www.prnewswire.com/news-releases/the-harvard-wyss-institutes-response-to-covid-19-beating-back-the-coronavirus-301029871.html

SOURCE Wyss Institute for Biologically Inspired Engineering at Harvard University

Continue reading here:

The Harvard Wyss Institute's response to COVID-19: beating back the coronavirus - P&T Community

Related Posts

Comments are closed.