The molecular basis of touch sensation

Public release date: 21-Feb-2012
[ | E-mail | Share ]

Contact: Barbara Bachtler
bachtler@mdc-berlin.de
49-309-406-3896
Helmholtz Association of German Research Centres

A gene known to control lens development in mice and humans is also crucial for the development of neurons responsible for mechanosensory function, as neurobiologists of the Max Delbr?ck Center for Molecular Medicine (MDC) Berlin-Buch have now discovered. They found that in mice in which they had removed the c-Maf gene in the nerve cells, touch sensation is impaired. This similarly applies to human carriers of a mutant c-Maf gene. People with such a mutation suffer already at a young age from cataracts, a clouding of the lens which typically affects the elderly. The patients, as demonstrated by Professor Carmen Birchmeier and Dr. Hagen Wende in collaboration with Professor Gary Lewin and Dr. Stefan Lechner, have difficulty holding objects such as a sheet of paper as a consequence of this mutation. (Science Express, 16 February 2012 / Page 1 / 10.1126/science.1214314)*.

Professor Birchmeier, a developmental biologist, commented on the findings of her research group: "c-Maf is an important gene for the development of the peripheral nerve cells." The gene controls the development of neurons that detect touch, the mechanosensory neurons. Previously, c-Maf was known as a key regulator of lens development.

Furthermore, the gene is also active in the dorsal root ganglia, an aggregate of nerve cells next to the spinal cord in which the cell bodies of mechanosensory neurons are localized. The nerve cells form long axons, which terminate in the skin in touch corpuscles or at hair shafts. These axons detect mechanical stimuli, which in turn are converted into electrical signals and transmitted to the brain. When you stroke your fingers over a surface, its structure triggers high-frequency vibrations in the finger, to which specific touch receptors, the Pacinian corpuscles, respond.

In mice with deactivated c-Maf gene only few Pacinian corpuscles are formed, and moreover these few are not intact. The mice are therefore unable to recognize high-frequency vibrations. The same is true for a Swiss family with an inherited mutant c-Maf gene. The consequence is that the affected patients develop cataracts at an early age and have an impaired sense of touch.

###

*The transcription factor c-Maf controls touch receptor development and function
Hagen Wende1, Stefan G. Lechner2, Cyril Cheret1, Steeve Bourane3, Maria E. Kolanczyk1, Alexandre Pattyn4, Katja Reuter1,5, Francis L. Munier6, Patrick Carroll4, Gary R. Lewin2 and Carmen Birchmeier1,*

1Developmental Biology, 2Molecular Physiology, Max-Delbr?ck-Center for Molecular Medicine, Robert-R?ssle-Strasse 10, 13125 Berlin, Germany.
3Molecular Neurobiology Laboratory, Salk Institute, La Jolla, California, USA.
4INSERM U.1051, 80 Rue Augustin Fliche, 34091 Montpellier cedex 05, France.
5New address: University of California, San Francisco, CA 94107.
6Jules Gonin Eye Hospital, Av. de France 15, 1004 Lausanne, Switzerland

A photo can be downloaded from the Internet at: http://www.mdc-berlin.de/de/index.html

Contact:
Barbara Bachtler
Press Department
Max Delbr?ck Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-R?ssle-Stra?e 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

[ | E-mail | Share ]

 

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

Go here to see the original:
The molecular basis of touch sensation

Related Posts

Comments are closed.