Fabrication and endothelialization of spiral tubes in PDMS and collagen gels
We exploited subtractive molding techniques to fabricate spiral tubes in both polydimethylsiloxane (PDMS) and collagen hydrogels and tested the fabrication limit and fidelity. In PDMS, stainless steel springs of various dimensions were molded in liquid-phase PDMS (10:1, base:curing agent) and manually removed after cross-linking. Robust perfusable spiral tubes with constant curvature were generated in PDMS with a diameter larger than 200 m and a pitch greater than 1 mm per turn. The fabrication of smaller spiral tubes in PDMS is less consistent because of the distortion of the channel structure during spring removal. In collagen hydrogels (6 to 7.5 mg/ml), an automatic two-axis motion system was designed to retract the spring from the hydrogel after thermal gelation. Automatic retraction was critical to minimize distortion of the spiral pattern and maximize continuity of the luminal geometry in three dimensions in soft matrices (see Materials and Methods) (Fig. 1A). Spiral tubes of a wide range of wire diameter (dw = 120 to 400 m), spiral diameter (ds = 1 to 3 mm), and pitch (p 400 m) were formed in collagen hydrogels, corresponding to curvature in the range of 0.43 to 1.05 mm1 and torsion in the range of 0.32 to 0.72 mm1 (fig. S1A). Fluorescent beads were perfused to visualize the 3D structure of the spiral lumen [Fig. 1B (a); fig. S1, A and B; and movie S1], where loops of the spiral tubes were periodically spaced with distinct boundaries. Using off-the-shelf springs, we were able to achieve spacing between loops ( = p dw) as small as 210 m. We further modified the spiral mold by adding a cylinder in the center of the spring to generate a second independently perfusable lumen in the hydrogel structure [Fig. 1B (b)]. We fabricated constructs with a central tube concentrically wrapped with a spiral tube and separated by a wall as thin as 200 m.
(A) Schematic of spiral vessel fabrication strategy. Top: A hydrogel is cross-linked around an off-the-shelf spring (a), the pattern is retracted from the gel via a two-axis motion system (b), and vessels were seeded with cells by perfusion (c). Bottom: An independent rod was introduced at the center of the spring to form an additional lumen for independent access and cell seeding. (B) (a) Maximum intensity projection (MIP) of a confocal z-stack of a spiral vessel in collagen perfused with fluorescent beads. (b) Optical section of a collagen spiral vessel (magenta) with an independently perfused center channel (green). Scale bars, 500 m. (C to E) MIP of side (C) and top (D) views of an endothelialized spiral vessel in PDMS and top view of endothelialized collagen vessel (E). Scale bars, 750, 600, and 150 m. (F) Integrated fabrication of spiral vessel (z directional flow) and planar microvessel (x and y directional flow) showing MIP of side and top views with magnified views of regions near (a) and distant from the connection of spiral to planar microvessels (b and c). Magenta, CD31; green, von Willebrand factor; blue, nuclei. Scale bars, 200 m and 50 m (inset). (G) Engineered vascularized tumor model with ECs from the spiral vessel sprouting toward avascular tumor cells embedded in the center lumen of the spiral. Green, CD31; red, KG1a cancer cells; blue, nuclei. Scale bars, 200 m (left) and 100 m (right). (H) Vascularized cardiac chamber model. Green, CD31; red, cTnT; blue, nuclei. Scale bars, 500 m.
Next, we perfused human umbilical vein ECs (HUVECs) into the spiral tubes in either PDMS or collagen to allow cell attachment followed by culture under flow. Both materials supported the growth of a robust endothelium under steady flow for at least 1 week (Q = 1 l/min; Fig. 1, C to E). PDMS spiral vessels with a lumen diameter of less than 200 m often had sparse coverage of ECs on the vessel surface after seeding and were not used in experimental conditions. Collagen spiral vessels better supported endothelialization, and HUVECs were seeded and cultured under similar flow conditions for spiral vessels as small as 180 m with high reproducibility (fig. S1C). ECs in PDMS vessels (lumen diameter > 200 m) and all sized collagen vessels had robust junctions at cell-cell contacts and localized expression of CD31 to the plasma membrane (Fig. 1, C to E). Together, we successfully generated spiral microvessels with constant curvature and torsion at high fidelity and reproducibility and with robust endothelialization and perfusion.
The fabrication process for spiral vessels has the flexibility to integrate with existing vascularization approaches to further enhance tissue perfusion. By incorporating ECs into the bulk matrix, the endothelium in spiral tubes was readily anastomosed with self-assembled vessel networks and increased vascular density (fig. S1D). When combined with lithography and injection molding techniques (31), we successfully connected a spiral vessel with a microfabricated rectilinear vessel so that the spiral outflow was connected to the perfusion of microvessels in an orthogonal direction to the spiral. This integration allows the rotation of the spiral flow direction into another plane and mimics the architecture of the spiral artery to vascular bed connection found in vivo (Fig. 1F). We observed a continuous endothelium in the spiral microvessel connection [Fig. 1F (a)]. ECs in the planar microvessels near the spiral vessel outflow showed greater alignment with the direction of flow, likely due to higher flow stresses [Fig. 1F (a); average angle, 13.5 10.2] compared to cells in regions distant from the spiral microvessel interface [Fig. 1F (b and c); average angle, 39.3 23.7 and 58.13 29.25, respectively]. These findings illustrate the potential of spiral vessels as a new strategy for rapidly generating long and high surface area vascular structures that may enhance tissue vascularization.
Using the concentric spiral platform in collagen gel, we further demonstrated the potential of spiral vessels in supporting 3D tissue function. By dispensing tumor cells (KG1a, a leukemia cell line; Materials and Methods) in a collagen gel (6 mg/ml) into the spatially defined center cylinder (1.3 mm diameter), we formed an artificial tumor surrounded by spiral vessels and monitored the sprouting of vessels from the spiral. This cell-remodelable system mimics the physiological origins of some tumors, where malignancies begin as an avascular cellular mass surrounded by host vasculature that it must recruit for expansion (32). When cultured under flow (Q = 1 l/min) in normal growth medium, spiral vessels (dw = 400 m, ds = 3.0 mm, and p = 1 mm) maintained patency throughout 7 days of culture and sprouted consistently by day 7, but not at day 3 (N = 4 for each time point) (Fig. 1G). These sprouts extended exclusively toward the tumor, with sprouts reaching as far as 220 m from the vessel wall by day 7. No sprouts were observed when there were no tumor cells in the center.
We also created a thick cardiac chamber supported by a spiral vessel using the same concentric model (1.3-mm-diameter by 6-mm-long chamber surrounded by spiral vessel). GCaMP3-transduced human embryonic stem cellderived cardiomyocytes (hESC-CMs) and stromal cells (HS27a) were added into the bulk collagen matrix (33) and ECs (HUVECs) into both the bulk matrix and the spiral lumen, while the center of the tissue was kept open (Fig. 1H). By day 12 of culture, organized calcium waves were observed and appeared to propagate in three dimensions along the spiral vessel wall (movie S2). The conduction velocity in engineered cardiac tissues was 2.7 0.97 cm/s, as determined by analysis of the GCaMP3 signal (fig. S2). These proof-of-concept examples show that the spiral vessel platform can be used to support 3D vascularization and perfusion in large tissues, to study the vascular-tissue interaction in a spatially and temporally controlled manner, and to model complex tissue functions.
We next examined the flow characteristics in these spiral microvessels and compared them with straight vessels of the same caliber. We visualized the flow characteristics by perfusing fluorescent bead solutions in two parallel streams through straight and spiral PDMS vessels of the same diameter and length (dvessel = 400 m, dspiral = 3 mm, pspiral = 1 mm, spiral = 0.46 mm1, spiral = 0.31 mm1, and L = 6.5 cm) at three steady flow conditions (Q = 1, 50, and 100 l/min, corresponding to Re = 0.01, 0.76, and 1.52, respectively). The 3D flow images were taken under confocal fluorescence microscopy at set distances (Lv = 5, 30, and 55 mm in straight vessels, or loops 3/4, 3 3/4, and 6 3/4 in spiral vessels) from the vessel inlet. Straight tubes displayed a classical parallel flow profile where the two streams of beads traveled to the outlet and maintained their position over the whole vessel length at both flow rates (Fig. 2, A and C). In spiral tubes, the two bead streams remained distinct and parallel at low flow (Q = 1 l/min) but rotated over the vessel length without obvious mixing in the bulk [Fig. 2B (a to c)]. The orientation of the two parallel streams inverted after approximately four loops from the inlet [Fig. 2B (b)] and completed a full rotation at approximately loop 7 [Fig. 2B (c)]. At a higher flow rate (Q = 50 l/min) in the same spiral geometry (De = 2.77), the two bead streams developed obvious bulk mixing with the leading edge of flow rotating 270 after three loops [Fig. 2B (e)] and completed another full rotation by loop 7 [Fig. 2B (f)]. At even higher flow (Q = 100 l/min), a stronger mixing effect was observed in the same spiral geometry [Fig. 2B (g to i)], whereas the two streams remained parallel and unmixed in straight vessels under the same flow conditions.
(A and B) Confocal cross sections of perfusion of two parallel streams of red and blue beads into a straight PDMS vessel (A) at a flow rate of Q = 50 l/min and a spiral PDMS vessel (B) at three flow rates (Q = 1, 50, and 100 l/min) at three distances from the vessel inlet (Lv,a 5 mm, Lv,b 30 mm, and Lv,c 55 mm), corresponding to the 3/4, 3 3/4, and 6 3/4 spiral loops (LL = linear length, Lv = vessel length, dv = vessel diameter, p = pitch). (C and D) Computational fluid dynamics plots of straight (C) and spiral (D) vessels at Q = 50 l/min for (a) streamlines (color expressed with primary velocity magnitude), (b) primary velocity magnitude, (c) secondary flow velocity orthogonal to cross-sectional plane, and (d) shear rate at the cross-sectional views.
Using numerical simulation with COMSOL, we confirmed these flow characteristics: (i) Idealized parallel streamlines were present in fully developed flow in straight vessels [Fig. 2C (a)]; (ii) parallel streamlines in spiral vessels slightly rotate along circumferential direction at low flow (Q = 1 l/min; fig. S3A); and (iii) streamline rotation was enhanced in spiral vessels and developed twists at higher flow [Q = 50 l/min; Fig. 2D (a)] and had clear twists at Q = 100 l/min (fig. S3B). The spiral geometry did not induce a significant change in the primary flow compared to straight vessels but did lead to the emergence of secondary flows with a peak magnitude of around 1% of the primary flow velocity [Q = 50 l/min; Fig. 2, C (b and c) and D (b and c)]. This also led to the development of a shear stress gradient in 3D space and a change in the wall shear stress (WSS), with a maximum (10% increase over the straight tube) on the surface of the inner curvature and minimum on the outer bend, unlike in a straight tube where the WSS was constant across the lumen cross section with zero gradients [Fig. 2, C (d) and D (d)]. These data demonstrated that spiral vessels induced bulk flow mixing and heterogeneous hemodynamic forces on the endothelium lining the wall due to 3D curvature and torsion.
To understand how the distinct hemodynamic features of flow in spiral vessels affected ECs, we cultured cells in both geometries under flow. In straight and spiral vessels, ECs formed robust junctions and a stable endothelium in low (Q = 1 l/min and WSS = 0.1 dyne/cm2 in straight vessels) and high (Q = 50 l/min and WSS = 4.6 dynes/cm2 in straight vessels) flow conditions. The increased flow appeared to change the EC morphology and enhance EC alignment in the direction of flow (Fig. 3A). Under low flow conditions (Q = 1 l/min; Fig. 3B), fewer Ki67+ proliferating cells were observed in spiral vessels than in straight vessels. When exposed to higher flow, however, more proliferating cells were observed in the spiral geometry than the straight geometry, suggesting distinct roles for geometry and flow on the ECs. Previous literature has highlighted that very low laminar flows activate ECs, whereas high laminar flow enhances EC quiescence (11). Our data were consistent with this in straight vessels with significantly reduced cell proliferation at higher flow. In spiral vessels, however, the flow rotation in low flow may alter transport and promote quiescence at low flow. Given that the magnitude of flow forces is very low in the low flow conditions, it is also likely that differences in substrate curvature between straight and spiral geometries contribute to these observed differences (34).
(A) MIP of EC cultured under flow (Q = 50 l/min) for 24 hours. Blue, nuclei; green, CD31; red, Ki67. Scale bar, 50 m. (B) Quantification of the percentage of Ki67-positive nuclei by counting 100+ cells per vessel in N = 3 vessels at two flow conditions (Q = 1 and 50 l/min). Error bars represent 95% confidence interval of the mean. *P < 0.05 using a one-way analysis of variance (ANOVA) with Tukeys pairwise comparisons. (C) PCA of RNA-seq data from cells cultured at static and at two flow conditions in two vessel geometries (N = 3). (D) Venn diagram showing the overlap of genes significantly changed by increasing flow in straight and spiral geometries. (E) Heatmap of log counts per million (CPM) values of known flow-responsive genes. All genes are present in the overlapping region of (D) (green). (F) Heatmaps of the CPM values of significantly regulated transcripts belonging to the nonoverlapping regions of (D). Three hundred fifty-five genes uniquely regulated in straight high versus low (top, yellow) and 1261 genes uniquely regulated in spiral high versus low (bottom, blue). (G) Heatmaps of the CPM values of selected growth factors, transporters, and transcription factors. (H) IPA functional pathways identified by comparing spiral to straight vessels under high flow.
We next examined the transcriptional changes in ECs in these conditions via RNA sequencing (RNA-seq) for ECs cultured under both flow conditions in straight and spiral vessels and under static conditions. Principal components analysis (PCA) of gene expression data showed clustering of individual groups, with the largest variance between static and all flow conditions (Fig. 3C). Activation of classical flow-dependent genes was confirmed in all flow conditions compared to static culture (Fig. 3, D and E). Among these genes, KLF2 and KLF4 appeared to only change with the onset of flow but were not sensitive to a further increase in flow, whereas SMAD6, SMAD7, and NOS3 increased further at higher flow conditions. Among the genes differentially expressed in straight vessels due to the increase of flow, 52% (533 of 1012) overlap with genes differentially expressed in the onset of flow (static versus low flow condition) (fig. S4, A and B). The genes unique to the increase of flow include up-regulation of many genes previously reported to regulate vascular development and flow sensing (35), such as Notch ligands JAG1 and JAG2; Notch target HEY2 and other transcription factors such as SNAI2; transmembrane proteins IL21R and EFNB2; transporter GJA5; peptidases MMP10, MMP1, and MT1F; growth factors and cytokines NOG, DKK2, WNT4, CXCL12, and TGFB1; and other molecules such as VCAN and CYP1B1 (fig. S4C). Gene Ontology (GO)enriched terms for this group of genes showed up-regulation of cellular response to growth factors, vascular development, transmembrane receptor protein tyrosine kinase signaling pathway, blood vessel morphogenesis, cell migration and motility, and others (fig. S4D).
Approximately 66% (722 of 1136) of differentially expressed genes in straight vessels overlap with those in spiral vessels in response to increased flow (Fig. 3D). Almost all overlapping genes are changed in the same direction (99%), suggesting a conserved response to flow in both geometries (fig. S5A). MARC2, PTX3, and STX11 did not follow this trend and were up-regulated in spiral vessels with increased flow but down-regulated in straight vessels. PTX3 has been reported as a biomarker for endothelial dysfunction in preeclampsia, which is a disease caused by spiral artery dysfunction (36). Many genes down-regulated in straight vessels by the increase of flow did not show changes in spiral vessels, such as growth factors CTGF, FGF2, NRG1, and FGF16; transmembrane proteins CAV1, UNC5A, KIT, and SMAD4A; transcription regulators EGR1/2/3, MAF, MYRF, and MZF1; transporters such as LDLR; and cytokines TNFSF18, IL12A, CCL2, CCL16, and CCL28 (fig. S5B). This suggests that the EC response to flow in spiral vessels is a combination of both canonical flow pathways and a distinct response involving a wide range of other transcripts.
Increased flow also led to an additional 1294 genes significantly changed in spiral vessels that were not in straight ones (Fig. 3F). High flow in spiral vessels appeared to activate growth factors such as DKK1, ESM1, BMP2, PDGFA, OSGIN2, and VEGFC; many solute carrier (SLC) and adenosine triphosphate (ATP)binding cassette (ABC) superfamily transporters; transcriptional regulators such as GLI2; cytokine CXCL1; peptidases TLL1, ADAMTS1, ADAMTS9, and TASP1; and kinases PODXL, EPHA5, HK2, PRKCA, CCT2, and MAP2K1 (Fig. 3G and fig. S6A). In addition, high flow in spiral vessels repressed growth factors such as MST, NRG2, GDF3, GAS6, and IGF2; transmembrane receptors CHRNA1, SELP, LRP1, ITGB3, and ROBO3; transporters including MAL2, ATP2A3, RBP1, and APOL1 and several members of SLC and ABC superfamilies; transcriptional regulators such as NOTCH3, CITED4, CAND2, FOXO4, DACH1, and EBF3; cytokines DKK3, CSF1, and FLT3LG; GPCR (G proteincoupled receptor) group SIPR4, OPRL1, and HTR2B; and kinases PDGFRB, CKB, and SBK1 (Fig. 3F and fig. S6A). GO term analysis showed the up-regulation of primarily ribosome biogenesis, which would be critical for cellular growth and proliferation (fig. S6B). These expression profiles show that spiral vessels share a common set of flow-responsive elements with straight vessels but have an additional response that appeared to promote vascular growth.
PCA analysis showed that the separation of straight and spiral geometries was enhanced under higher flow conditions (Fig. 3E). Under low flow conditions (Re << 1; inertia effect is negligible), ECs in the two geometries were largely similar, with only a handful of significantly regulated transcripts (fig. S7A). These included CYTL1, which is known to up-regulate proangiogenic function, but not proinflammatory pathways (37). HES2, a downstream Notch pathway gene, STK32B (serine/threonine kinase 32B), and CCND1, a cell cycle regulation gene, were also up-regulated in low flow spiral vessels. The up-regulation of these genes was further enhanced in high flow conditions. In addition, many genes that regulate vascular development were up-regulated when comparing spiral to straight vessels at high flow, for example, growth factors HGF, DKK1, ESM1, PGF, PDGFA, GDF6, PDGFB, CTGF, VEGFC, BMP2, and PDGFC; peptidases ADAMTS1, ADAMTS9, MME, and CTSS; kinases EPHA5, MPP4, PODXL, SPRY2, CDK7, and MAP2K1; transmembrane receptors KIT, SELE, ULBP2, PLXNA2, and LRP8; transcriptional regulators GLI2 (a hedgehog pathway mediator), ATF3 (required for endothelial regeneration) (38), and FOSL1 (required for vascular formation) (39); and many SLC and ATP family transporters (Fig. 3G). Ingenuity Pathway Analysis (IPA) showed that ECs in spiral vessels have activated upstream regulators including prosurvival factors HGF, PGF, EGF, VEGF, and HIF-1a. Up-regulated functional pathways included vascular development, angiogenesis, vasculogenesis, cell invasion, and cell survival, whereas cell death and necrosis were decreased compared to the straight vessel in high flow conditions (Fig. 3H and fig. S7B). Spiral vessels also showed the activation of antiapoptotic and proliferative pathways marked by cell cycle and mitotic genes. PDGF (platelet-derived growth factor) family members were relatively more abundant, as were molecules associated with IL-8 (interleukin-8) and HGF (hepatocyte growth factor) signaling (fig. S7B).
Together, the bulk RNA-seq showed that spiral vessels maintain a normal flow response to a certain extent, but curvature and torsion modified the response by up-regulating markers for transporters, cycling, and survival and down-regulating markers of cell death. These data suggest that flow in spiral vessels promoted vascular growth or development rather than inducing a common inflammatory response to disturbed flow.
We hypothesized that ECs exposed to flow within spiral vessels experienced a spatial variation in hemodynamic forces not present in straight vessels that would result in a heterogeneous transcriptional response to flow. To understand this heterogeneity at the single-cell level, we sequenced the transcriptomes of more than 2000 individual ECs pooled from three to four devices of each geometry cultured at high flow (Q = 50 l/min). Dimensionality reduction by Uniform Manifold Approximation and Projection (UMAP) and cluster analysis was performed using Monocle (4042). Projection in the top two UMAP dimensions shows overlapping contributions of ECs from spiral and straight vessels that form mostly contiguous clusters with nearly uniform expression of pan-endothelial markers such as CDH5 (VE-cadherin) (Fig. 4, A and B). Expression of classical flow-dependent genes, including KLF4 and NOS3, is distributed throughout the major clusters of ECs in this projection (Fig. 4C). We identified variation in gene expression across the first UMAP dimension driven largely by cell cycle genes that have been shown to be regulated, in part, by flow. Specifically, a large cluster of cells to the right in UMAP space (cluster 3) express genes such as MKI67, consistent with active cell cycle status, whereas cells clustered to the opposite pole (cluster 1) express genes implicated in cell cycle arrest and arterial phenotype shown to be regulated by the Notch pathway downstream of laminar shear stress (including CDKN1C, EFNB2, HEY1, GJA4, and IL33; Fig. 4C) (4345).
(A) UMAP plots of spiral high flow and straight high flow cells, computationally derived clusters (B), and the distribution of endothelial and cell cycling genes across cells (C). (D) UMAP plots of the first and third UMAP dimensions, the corresponding location of clusters in this dimensional space (E) with examples of cluster specific genes (F), as well as a selection of genes identified as significantly differentially expressed (G).
To evaluate heterogeneity in the transcriptional response of ECs resulting from vessel geometry, we next identified differentially expressed genes on the basis of single-cell RNA-seq (scRNA-seq) data of EC from straight versus spiral vessels. Examination of the third UMAP dimension revealed separation in transcriptional space between EC from straight versus spiral vessels, with many of the identified differentially expressed genes polarized in this dimension (Fig. 4, D to F). Among the genes up-regulated in EC from spiral vessels are many that were also identified as differentially expressed in bulk RNA-seq analysis, including ATF3, SPRY2, IL8, JUN, AKAP12, ANGPTL4, FOSL1, ADAMTS1, and ADAMTS9 (Fig. 4G and fig. S8A). Most of these genes are expressed in a common pattern, with increased expression in cells localized in UMAP space to the lower (spiral) portion of cluster 2. This suggests a distinct transcriptional program among the primarily spiral ECs in this region that may correspond with their transcriptional response to specific hemodynamic conditions unique to spiral vessels under high flow. In further support of this hypothesis, analysis of the scRNA-seq data also identified differentially expressed genes not detected in bulk RNA-seq, including DCN, SLC6A9, GEM, NRG1, RSPO3, BAMBI, TGFBI, and PRRX2, that were highly specific to EC from spiral vessels localized in cluster 2 (Fig. 4G and fig. S8B). These data suggest that flow in spiral vessels induced a population of ECs with unique gene expression profiles that are not present in straight vessels, with potential roles in processes such as angiogenesis, vascular growth, and inflammatory and stress responses.
Read this article:
3D curvature-instructed endothelial flow response and tissue vascularization - Science Advances
- Gene Therapy for Genetic Disease: The Long and Winding Road [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Gene Doping: Super Athletes in 2008 Beijing Olympics - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 14th, 2011]
- The 3 Rs of DNA: Molecules to Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- BIT 3.1 Entrez Gene - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Professor Ian Everall - Gene expression in schizophrenia - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Gene Therapy Promising Treatment (Part 2 of 4) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Cancer Research @ NC State's Centennial Biomedical Campus - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Gene Therapy Promising Treatment (Part 1 of 1) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- HiTech_U3L3_Biotech in Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Sri Sathya Sai Medical Camps Worldwide - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 20th, 2011]
- Dr. Joseph M. DeSimone: 2008 Winner, $500000 Lemelson-MIT Prize - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 21st, 2011]
- Non-Hodgkin's Lymphoma Cancer Survivor Testimony - (Sanoviv Medical Institute) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 22nd, 2011]
- Vaccines: Medicine for the Healthy - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- For Your Health - Health Care Informatics - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- A Century of Stem Cells - Johns Hopkins Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- Functional Repair of Human Donor Lung by IL-10 Gene Therapy (EX VIVO Lung) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Science Talk: Vaccine Made With Synthetic Gene Protects Against Deadly Pneumonia - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Health Matters: Family Medicine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Dr. Jeffrey Myers Explains Genetic Variations in Head and Neck Cancer - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- The Emerging Network of Data for Understanding the Interactions of Genes and Drugs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Burzynski_ Cancer Is Serious Business Part 4/8. wmv - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Pt2: Do you understand the new genetics? Maybe you don't have that gene! - Andrew Shelling - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Alien Genetic Takeover of Humanity! - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Burzynski | 2-DVD Set Extended Edition Montage Preview of New Material | Cancer Is Serious Business - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Genes, Genomes and the Future of Medicine - Richard Lifton, MD, Ph.D. - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Burzynski The Movie ~ Cancer Is Serious Business ~ High Quality - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Designing Life for Mars Colonization (Brainstorm Ep20) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Dedication Event: Santa Monica UCLA Medical Center [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- DR. Burzynski The Movie - Cancer Is Serious Business (PT.1) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- burzy - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Alien Genetic Takeover: The End of Humanity - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Burzynski_ Cancer Is Serious Business Part 1/8 .wmv - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Mike Schmidt - ECMO Patient - Penn State Hershey Medical Center - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Disrupting the HIV Virus (Brainstorm Ep24) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Diagnosis and Treatment of Hepatorenal Syndrome - Moving Targets? - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Big Bucks, Big Pharma: Marketing Disease and Pushing Drugs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Roles of RNA in Gene Regulation - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Diatom PCR Colony Screen - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Kleanthis G. Xanthopoulos, Ph.D., CEO, Regulus, talking on the impact of microRNA medicines - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Burzynski_ Cancer Is Serious Business Part 2/8 .wmv - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]
- Sickle Cell Anemia: Stem Cell Gene Therapy - A Patient's Perspective - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- Gene-based lung cancer treatment video - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- HIV Resistant Genes...Rhesus Negative, Excess PK [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- Futures in Biotech 83: Bioinformatics: Essential Gene names Skewed in a Network of Blame - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 29th, 2011]
- Keeping Blood Young, Fighting Sickle Cells (Brainstorm Ep28 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 31st, 2011]
- News@Northwestern - NUGENE - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 31st, 2011]
- UK Medical Student Mary Burchett's Research is Personal - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 31st, 2011]
- Cannabis 4 Crohn's: 2 Years As Medical Marijuana Patient, Dr Mind Bender [Last Updated On: August 17th, 2024] [Originally Added On: November 8th, 2011]
- Medical Haptical Robot for the Eye - Eye-Rhas, - TU Eindhoven - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 8th, 2011]
- The Ghost in Your Genes - Horizon - BBC - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 9th, 2011]
- The Ghost in Your Genes - BBC Horizon - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 13th, 2011]
- Burzynski: Cancer Is Serious Business (Trailer) - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 16th, 2011]
- Genes, Ancestry, and Personalized Medicine with Dr. Michael Kane - Interview Part 1.mp4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 25th, 2011]
- The Suicide Gene - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 29th, 2011]
- Ard Louis on Dawkins and Selfish Genes - Video [Last Updated On: August 17th, 2024] [Originally Added On: November 30th, 2011]
- TEDxLex - Dr. Alicia L. Bertone - Gene Jockeying for a Win in Regenerative Medicine.mp4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 3rd, 2011]
- Introduction to Gene Network - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 7th, 2011]
- The demise of a dogma. The deaf somatic gene listens - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 7th, 2011]
- Future of health care, hospitals, medicine and wellbeing - by Dr Patrick Dixon - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 8th, 2011]
- Electro-Medicine : Biological Physics : Neurological Research Advancements - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 12th, 2011]
- Haemophilia gene therapy breakthrough - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 15th, 2011]
- Duke researchers: Gene discovery explains how fruit flies retreat from heat - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 16th, 2011]
- Focus on Nikolaus Rajewsky - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 18th, 2011]
- Deadly Monopolies Medical Ethicist Harriet Washington on How Firms are Taking Over Life Itself - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 23rd, 2011]
- Open fetal surgery: past, present and future - Video [Last Updated On: August 17th, 2024] [Originally Added On: December 23rd, 2011]
- The Human Genome and Individualized Medicine - David Valle, MD - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 14th, 2012]
- Environmental Contributors to Autism Spectrum Disorders - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 20th, 2012]
- When Cancer Runs in the Family - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 20th, 2012]
- Genome Enabled Electronic Medical Record (GenE EMR) - William Knaus - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 22nd, 2012]
- Nuvigil withdrawal - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 23rd, 2012]
- Cancer Cure Documentary - Dr. Burzynski Antineoplaston Therapy - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 26th, 2012]
- Next Generation Cancer Gene Sequencing for Clinically Actionable Mutations - Video [Last Updated On: August 17th, 2024] [Originally Added On: January 26th, 2012]
- Fibrocell Science, Inc. Announces Recognition for LAVIVâ„¢ (azficel-T) at The 2012 Cell & Gene Therapy Forum, Washington ... [Last Updated On: August 17th, 2024] [Originally Added On: January 31st, 2012]
- Gene Mutation Linked to Inappropriate Lipid Buildup in Liver [Last Updated On: August 17th, 2024] [Originally Added On: February 1st, 2012]
- 'Goldilocks' gene could determine best treatment for tuberculosis patients [Last Updated On: August 17th, 2024] [Originally Added On: February 3rd, 2012]
- James Wilson, MD, Ph.D., on Gene Therapy as a Disruptive Technology - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 3rd, 2012]
- 'Goldilocks' gene used to find drug treatment that is 'just right' for TB patients [Last Updated On: August 17th, 2024] [Originally Added On: February 4th, 2012]
- Gene therapy, a totally Italian success - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 4th, 2012]
- Electro-Medicine : Neurons function revealed - Video [Last Updated On: August 17th, 2024] [Originally Added On: February 4th, 2012]
- Gene mutation discovery sparks hope for effective endometriosis screening [Last Updated On: August 17th, 2024] [Originally Added On: February 7th, 2012]