March 30, 2017 A mathematical model (left) uses a geometrical framework to explain how previous patterns grew and predict new carbonate-silica structures (right, imaged by scanning electron microscopy). Credit: Wim L. Noorduin/ C. Nadir Kaplan/ Harvard University
In 2013, materials scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering, grew a garden of self-assembled crystal microstructures. Now, applied mathematicians at SEAS and Wyss have developed a framework to better understand and control the fabrication of these microstructures.
Together, the researchers used that framework to grow sophisticated optical microcomponents.
The research is published in Science.
When it comes to the fabrication of multifunctional materials, nature has humans beat by miles. Marine mollusks can embed photonic structures into their curved shells without compromising shell strength; deep sea sponges evolved fiber optic cables to direct light to symbiotically living organisms; and brittlestars cover their skeletons with lenses to focus light into the body to "see" at night. During growth, these sophisticated optical structures tune tiny, well-defined curves and hollow shapes to better guide and trap light.
Manufacturing complex bio-inspired shapes in the lab is often time consuming and costly. The breakthrough in 2013 was led by materials scientists Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science and Chemistry and Chemical Biology and core faculty member of the Wyss Institute and former postdoctoral fellow Wim L. Noorduin. The research allowed researchers to fabricate delicate, flower-like structures on a substrate by simply manipulating chemical gradients in a beaker of fluid. These structures, composed of carbonate and glass, form a bouquet of thin walls.
What that research lacked then was a quantitative understanding of the mechanisms involved that would enable even more precise control over these structures.
Enter the theorists.
Inspired by the theory to explain solidification and crystallization patterns, L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Physics, and Organismic and Evolutionary Biology, and postdoctoral fellow C. Nadir Kaplan, developed a new geometrical framework to explain how previous precipitation patterns grew and even predicted new structures.
Mahadevan is also core member of the Wyss Institute.
In experiments, the shape of the structures can be controlled by changing the pH of the solution in which the shapes are fabricated.
"At high pH, these structures grow in a flat manner and you get flat shapes, like side of a vase," said Kaplan, co-first author of the paper. "At low pH, the structure starts to curve and you get helical structures."
When Kaplan solved the resulting equations as a function of pH, with a mathematical parameter standing in for the chemical change, he found that he could recreate all the shapes developed by Noorduin and Aizenbergand come up with new ones.
"Once we understood the growth and form of these structures and we could quantify them; our goal was to use the theory to come up with a strategy to build optical structures from the bottom up," said Kaplan.
Kaplan and Noorduin worked together to grow resonators, waveguides and beam splitters.
"When we had the theoretical framework, we were able to show the same process experimentally," said Noorduin, co-first author. "Not only were we able to grow these microstructures, but we could also demonstrate their ability to conduct light."
Noorduin is now a group lead at the Dutch materials research organization AMOLF.
"The approach may provide a scalable, inexpensive and accurate strategy to fabricate complex three-dimensional microstructures, which cannot be made by top-down manufacturing and tailor them for magnetic, electronic, or optical applications," said Joanna Aizenberg, co-author of the paper.
"Our theory reveals that, in addition to growth, carbonate-silica structures can also undergo bending along the edge of their thin walls," said Mahadevan, the senior author of the paper. "This additional degree of freedom is typically lacking in conventional crystals, such as a growing snowflake. This points to a new kind of growth mechanism in mineralization, and because the theory is independent of absolute scale, it may be adapted to other geometrically constrained growth phenomena in physical and biological systems."
Next, the researchers hope to model how groups of these structures compete against each other for chemicals, like trees in a forest competing for sunlight.
Explore further: Mathematical framework explains diverse plant stem forms
More information: "Controlled growth and form of precipitating microsculptures," Science, science.sciencemag.org/cgi/doi/10.1126/science.aah6350
It is well known that as plants grow, their stems and shoots respond to outside signals like light and gravity. But if plants all have similar stimuli, why are there so many different plant shapes? Why does a weeping willow ...
By simply manipulating chemical gradients in a beaker of fluid, materials scientists at Harvard have found that they can control the growth behavior of crystals to create precisely tailored structuressuch as delicate, ...
Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being compressed. The plant's hardiness comes from a combination of its ...
A team of scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A. Paulson School of Engineering and Applied Sciences has evolved their microscale 3D printing technology ...
Metamaterialsmaterials whose function is determined by structure, not compositionhave been designed to bend light and sound, transform from soft to stiff, and even dampen seismic waves from earthquakes. But each of ...
What if you could make any object out of a flat sheet of paper? That future is on the horizon thanks to new research by L. Mahadevan, the Lola England de Valpine Professor of Applied Mathematics, Organismic and Evolutionary ...
Classical physics states that a crystal consists of perfectly ordered particles from a continuous symmetrical atomic structure. The Mermin-Wagner theorem from 1966 broke with this view: it states that in one-dimensional and ...
Compressed sensing is an exciting new computational technique for extracting large amounts of information from a signal. In one high-profile demonstration, for instance, researchers at Rice University built a camera that ...
(Phys.org)A team of researchers from several institutions in Germany has used laser pulses to change an atomic wire from an insulator to a metal and back again in what the group describes as the fastest electronic switch ...
In 2013, materials scientists at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering, grew a garden of self-assembled crystal microstructures. ...
In November of 2005, the satellite Venus Express at a speed of about 18,000 miles per hour made the trip to the second planet from the sun in about 155 days.
A team of engineering researchers has made a fundamental advance in controlling so-called soft robots, using magnetic fields to remotely manipulate microparticle chains embedded in soft robotic devices. The researchers have ...
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Follow this link:
Sculpting optical microstructures with slight changes in chemistry - Phys.Org
- ONS t-shirts from Zazzle [Last Updated On: August 17th, 2024] [Originally Added On: April 6th, 2010]
- Scientists Embrace Openness Article in Science Careers [Last Updated On: August 17th, 2024] [Originally Added On: April 12th, 2010]
- ONS Books Wiki [Last Updated On: August 17th, 2024] [Originally Added On: April 20th, 2010]
- Reaction Attempts Book Edition 1 and UsefulChem Archive [Last Updated On: August 17th, 2024] [Originally Added On: April 28th, 2010]
- NMR integration web service expanded [Last Updated On: August 17th, 2024] [Originally Added On: May 1st, 2010]
- The Synaptic Leap Experiments on Reaction Attempts [Last Updated On: August 17th, 2024] [Originally Added On: May 3rd, 2010]
- ChemSpider SyntheticPages [Last Updated On: August 17th, 2024] [Originally Added On: May 4th, 2010]
- The Scientist Article on Electronic Lab Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: May 7th, 2010]
- OpenSciNY Open Notebook Science Talk [Last Updated On: August 17th, 2024] [Originally Added On: May 17th, 2010]
- Setac Europe 2010: ‘It’ll all come out in the wash’ [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- ASMS: Forget Vioxx, eat chocolate? [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Smoking could be good for you – if you get the message [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Chemistry World's round-up of money and molecules [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- ASMS: Anthrax attacks [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- This week on Chemistry World… [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Use of ONS to protect Open Research: the case of the Ugi approach to Praziquantel [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- IGERT NSF panel on Digital Science [Last Updated On: August 17th, 2024] [Originally Added On: June 8th, 2010]
- Reaction Attempts Explorer [Last Updated On: August 17th, 2024] [Originally Added On: June 25th, 2010]
- Methanol Solubility Prediction Model 4 for Ugi reactions in the literature [Last Updated On: August 17th, 2024] [Originally Added On: July 8th, 2010]
- Secrecy in Astronomy and the Open Science Ratchet [Last Updated On: August 17th, 2024] [Originally Added On: July 12th, 2010]
- Resveratrol Thesis on Reaction Attempts [Last Updated On: August 17th, 2024] [Originally Added On: July 22nd, 2010]
- General Transparent Solubility Prediction using Abraham Descriptors [Last Updated On: August 17th, 2024] [Originally Added On: July 25th, 2010]
- Berkeley Open Science Summit 2010 Notes [Last Updated On: August 17th, 2024] [Originally Added On: August 2nd, 2010]
- The Reaction Attempts Solvent Selector [Last Updated On: August 17th, 2024] [Originally Added On: August 8th, 2010]
- Green Solvent Metric on Solvent Predictor [Last Updated On: August 17th, 2024] [Originally Added On: August 17th, 2010]
- ChemTaverna Workflows of ONS Web Services now on MyExperiment [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Open Notebook Science in Drug Discovery at Opal Event [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cheminfo Retrieval Classes 1 and 2 in 2010 [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- The Meaning of Data panel at a class on the Rhetoric of Science [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Dynamic links to private tagged Mendeley collections [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2010]
- Elizabeth Brown's guest lecture for ChemInfo Retrieval [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Nanoinformatics 2010 Conference Report [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Dana Vanderwall on Cheminformatics at Drexel [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Mirza PhD defense on the Ugi reaction for anti-malarial screening [Last Updated On: August 17th, 2024] [Originally Added On: December 13th, 2010]
- Visualizing Social Networks in Open Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: December 20th, 2010]
- Chemical Information Validation Results from Fall 2010 [Last Updated On: August 17th, 2024] [Originally Added On: January 12th, 2011]
- Science Online 2011 Thoughts [Last Updated On: August 17th, 2024] [Originally Added On: January 22nd, 2011]
- The Spectral Game with ChemDoodle [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Predicting temperature-dependent solubility for solvent selection [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Alfa Aesar melting point data now openly available [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- ONS Solubility Challenge Book cited in a Langmuir nanotechnology paper [Last Updated On: August 17th, 2024] [Originally Added On: February 27th, 2011]
- Validating Melting Point Data from Alfa Aesar, EPI and MDPI [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Open modeling of melting point data [Last Updated On: August 17th, 2024] [Originally Added On: March 23rd, 2011]
- Towards the automated discovery of useful solubility applications [Last Updated On: August 17th, 2024] [Originally Added On: March 29th, 2011]
- ACS and ACRL presentations on web services and trust in science [Last Updated On: August 17th, 2024] [Originally Added On: April 10th, 2011]
- Collaboration using Open Notebook Science in Academia book chapter [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Evan Curtin is the May 2011 RSC ONS Challenge Winner [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Breast Cancer Coalition talk on ONS and Taxol solubility [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- La Science par Cahier de Laboratoire Ouvert à l'Acfas [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- More Open Melting Points from EPI and other sources: on the path to ultimate curation [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- More on 4-benzyltoluene and the impact of melting point data curation and transparency [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- The quest to determine the melting point of 4-benzyltoluene [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- Open Melting Points on iPhone via MMDS [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- My talk at SLA on Trust in Science and Open Melting Point Collections [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Live Tweeting Haumea: the Open Science Ratchet at work? [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Google Apps Scripts for an intuitive interface to organic chemistry Open Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- The 4-benzyltoluene melting point twist [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Open Notebook Science Talk at HUBbub 2011 [Last Updated On: August 17th, 2024] [Originally Added On: July 3rd, 2011]
- Practical Tips on using Google Apps Scripts for Chemistry Applications [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Burberry Acoustic - 'Chemistry' by One Night Only for Vogue Fashion Night Out [Last Updated On: August 17th, 2024] [Originally Added On: July 23rd, 2011]
- Rapid analysis of melting point trends and models using Google Apps Scripts [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Open Melting Point Collection Book Edition 1 [Last Updated On: August 17th, 2024] [Originally Added On: August 14th, 2011]
- Google Apps Scripts Workshop at Drexel University [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Patrick Ndungu talk at Drexel on Nanotechnology [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- MiniSymposium Bradley Lab 2011 [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Interpol - Rest My Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Queens Of The Stone Age - Better Living Through Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Greatest Chemistry Discoveries - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Butterfingers - The Chemistry - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Lec 1 Introduction to Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 14th, 2011]
- KATNISS AND PEETA: Chemistry Screen Test using the cave scene from The Hunger Games - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- The Smiths - Live on Data Run c. 1984, a British TV Program - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Organic Chemistry reactions - 7 clues from Obi Wan - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- CHEMISTRY Period Live Fullmetal Alchemist Brotherhood 4 OP - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Rush - Chemistry - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The Office: Jim and Pam - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 17th, 2011]
- Chemistry 1A - Lecture 3 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Chemical Party - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Shiny Toy Guns-Chemistry of a Car Crash (with lyrics) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 21st, 2011]