February 1, 2021• Physics 14, 13
Colliding a large organic molecule with a surface can break a specific chemical bond in the molecule with surprising precision.
The ability to selectively excite and break specific bonds in molecules would open new vistas in synthetic chemistry, allowing the creation of compounds that are difficult to synthesize via conventional chemical techniques. However, decades of research have shown that, with a few exceptions [1], when energy is put into a specific molecular bondwith a laser, for exampleit is quickly redistributed among many vibrations in the molecule long before a reaction may occur. In other words, attempting to selectively put energy into a bond usually leads to the same chemical reaction as heating the reactants on a hot plate. Surprisingly, Lukas Krumbein, at the Max Planck Institute for Solid State Research in Germany, and colleagues have now observed that a bond in a large molecule can be selectively broken by adding energy to the system in the simplest way possibleby colliding the molecule with a surface [2]. The result improves our understanding of the dynamics of large molecules and could offer novel ways to control their reaction products.
The idea that energy imparted during a collision can promote chemical reactionsa process sometimes called splat chemistryhas been around for decades. Researchers have shown, for instance, that the collision of argon atoms onto methane (CH4) molecules adsorbed on a surface can lead to the molecules dissociation [3]. In that experiment, the equivalence of the four CH bonds means that the collision process is not bond specific. What is significant about the work by Krumbein and colleagues is that they demonstrate the cleavage of a particular bond.
The researchers use electrospray ionization and ion-beam deposition to accelerate a 73-atom molecule called Reichardts dye toward a copper surface. Using scanning tunneling microscopy to inspect the scene of the collision, they find that when the molecule collides with the surface at translational energies of 250 eVlarger than the energy associated with thermal excitationit selectively cracks at a specific carbonnitrogen (CN) bond. Breaking this bond results in the molecule opening into a more spread-out configuration. In contrast, when the molecule is simply heated, a different CN bond is broken, which splits the original molecule into two pieces. Krumbein and colleagues also observe this lower-energy splitting reaction in some collisions, but this reaction has a lower probability than the cracking reaction.
Key to the success of their experiment is the sheer size of the molecule involved. Previous studies of surface dynamics have focused on the reactions of small molecules, such as nitric oxide (NO) or CH4. The collision-induced excitation of single bonds in such small molecules is relatively ineffective. For example, when a molecule of NO collides with a surface, the efficient compression of the NO bond would require a perfectly aligned, head-on collision geometry. With any other alignment, the molecule would behave much like an American football, hitting with its long axis at an angle to the surface [4, 5]. This off-axis geometry causes most of the translational energy to be converted into rotational energy, sending the molecule spinning away from the surface but without inducing any chemical change.
The situation is very different for Reichardts dye, named after the doctoral student who developed the molecule while searching for a compound that would change its color depending on the solvent. This large organic molecule consists of seven rings surrounding a central nitrogen atom. When a Reichardts dye molecule hits the surface, the collision doesnt compress a single bond. Instead, the collision causes the entire molecule to undergo a large-scale distortion in a very short period of timemore like a prop-comedy rubber chicken hitting a wall than like a football.
Based on simulations of their experiment, Krumbein and colleagues explain that the fate of the molecule depends on its orientation when hitting the surface. The key difference between the collision geometries is how the large-scale distortion strains the three carbon atoms surrounding the central nitrogen atom (Fig. 1). Collisions that focus the molecules distortion on one particular carbon atom lead to splitting, with the molecule breaking apart into two fragments. Distortions focused on one of the other two (symmetry equivalent) carbon atoms lead to cracking, in which the molecule hinges open but remains in one piece. Other impact configurations produce no reaction, leaving all three bonds unbroken and the molecule intact (Fig. 2).
The experiments demonstrate that, as expected, the probability of a reaction is dependent on the initial translational energy of the molecule. Faster molecules split or crack with higher probability than slower molecules. Using simulations that account for the collision process, the researchers explain the experimental observation that the more common outcome is a cracking reaction, even though splitting is the thermally favored pathway. This is not contradictory, as the reaction rate is controlled both by the activation barrier and by the probability of attaining a suitable molecular configuration for the reaction. The simulations reveal that the collisions selectively strain the central nitrogen atom in a way that promotes CN bond cleavage. In contrast, heating the molecule distributes energy randomly.
The results obtained by Krumbein and colleagues provide important new insight into the localization of energy in molecules: The large-scale distortion of the molecule focuses the energy on a single bond while simultaneously preventing the energy from rapidly delocalizingat least for the picosecond or so that it takes for the molecules geometry to stabilize after the collision. These types of large-scale deformations are common in macromolecules under strain, such as polymers, proteins, and DNA. Accounting for the way that energy is concentrated on specific bonds within these molecules will help predict how they respond to such strain. Insights such as those provided by this work are also important for understanding mechanochemistry, the coupling between macroscopic strain and chemical reactivity. Mechanochemistry underlies important phenomena, such as stress-corrosion cracking and polymer degradation under shear. An atomistic understanding of mechanochemistry is still in its infancy, but Krumbein and colleagues experiment represents a considerable advance.
Melissa A. Hines is a professor of chemistry at Cornell University. Her research focuses on understanding and controlling the chemical reactivity of surfaces to enable advances in areas ranging from photocatalysis and self-cleaning surfaces to the development of stable, high-brightness photocathodes.
Lukas Krumbein, Kelvin Anggara, Martina Stella, Tomasz Michnowicz, Hannah Ochner, Sabine Abb, Gordon Rinke, Andr Portz, Michael Drr, Uta Schlickum, Andrew Baldwin, Andrea Floris, Klaus Kern, and Stephan Rauschenbach
Phys. Rev. Lett. 126, 056001 (2021)
Published February 1, 2021
The rest is here:
Physics - Selective Bond Breaking with Splat Chemistry - Physics
- ONS t-shirts from Zazzle [Last Updated On: August 17th, 2024] [Originally Added On: April 6th, 2010]
- Scientists Embrace Openness Article in Science Careers [Last Updated On: August 17th, 2024] [Originally Added On: April 12th, 2010]
- ONS Books Wiki [Last Updated On: August 17th, 2024] [Originally Added On: April 20th, 2010]
- Reaction Attempts Book Edition 1 and UsefulChem Archive [Last Updated On: August 17th, 2024] [Originally Added On: April 28th, 2010]
- NMR integration web service expanded [Last Updated On: August 17th, 2024] [Originally Added On: May 1st, 2010]
- The Synaptic Leap Experiments on Reaction Attempts [Last Updated On: August 17th, 2024] [Originally Added On: May 3rd, 2010]
- ChemSpider SyntheticPages [Last Updated On: August 17th, 2024] [Originally Added On: May 4th, 2010]
- The Scientist Article on Electronic Lab Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: May 7th, 2010]
- OpenSciNY Open Notebook Science Talk [Last Updated On: August 17th, 2024] [Originally Added On: May 17th, 2010]
- Setac Europe 2010: ‘It’ll all come out in the wash’ [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- ASMS: Forget Vioxx, eat chocolate? [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Smoking could be good for you – if you get the message [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Chemistry World's round-up of money and molecules [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- ASMS: Anthrax attacks [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- This week on Chemistry World… [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- Use of ONS to protect Open Research: the case of the Ugi approach to Praziquantel [Last Updated On: August 17th, 2024] [Originally Added On: June 3rd, 2010]
- IGERT NSF panel on Digital Science [Last Updated On: August 17th, 2024] [Originally Added On: June 8th, 2010]
- Reaction Attempts Explorer [Last Updated On: August 17th, 2024] [Originally Added On: June 25th, 2010]
- Methanol Solubility Prediction Model 4 for Ugi reactions in the literature [Last Updated On: August 17th, 2024] [Originally Added On: July 8th, 2010]
- Secrecy in Astronomy and the Open Science Ratchet [Last Updated On: August 17th, 2024] [Originally Added On: July 12th, 2010]
- Resveratrol Thesis on Reaction Attempts [Last Updated On: August 17th, 2024] [Originally Added On: July 22nd, 2010]
- General Transparent Solubility Prediction using Abraham Descriptors [Last Updated On: August 17th, 2024] [Originally Added On: July 25th, 2010]
- Berkeley Open Science Summit 2010 Notes [Last Updated On: August 17th, 2024] [Originally Added On: August 2nd, 2010]
- The Reaction Attempts Solvent Selector [Last Updated On: August 17th, 2024] [Originally Added On: August 8th, 2010]
- Green Solvent Metric on Solvent Predictor [Last Updated On: August 17th, 2024] [Originally Added On: August 17th, 2010]
- ChemTaverna Workflows of ONS Web Services now on MyExperiment [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Open Notebook Science in Drug Discovery at Opal Event [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cheminfo Retrieval Classes 1 and 2 in 2010 [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- The Meaning of Data panel at a class on the Rhetoric of Science [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Dynamic links to private tagged Mendeley collections [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2010]
- Elizabeth Brown's guest lecture for ChemInfo Retrieval [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Nanoinformatics 2010 Conference Report [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Dana Vanderwall on Cheminformatics at Drexel [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Mirza PhD defense on the Ugi reaction for anti-malarial screening [Last Updated On: August 17th, 2024] [Originally Added On: December 13th, 2010]
- Visualizing Social Networks in Open Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: December 20th, 2010]
- Chemical Information Validation Results from Fall 2010 [Last Updated On: August 17th, 2024] [Originally Added On: January 12th, 2011]
- Science Online 2011 Thoughts [Last Updated On: August 17th, 2024] [Originally Added On: January 22nd, 2011]
- The Spectral Game with ChemDoodle [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Predicting temperature-dependent solubility for solvent selection [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Alfa Aesar melting point data now openly available [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- ONS Solubility Challenge Book cited in a Langmuir nanotechnology paper [Last Updated On: August 17th, 2024] [Originally Added On: February 27th, 2011]
- Validating Melting Point Data from Alfa Aesar, EPI and MDPI [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Open modeling of melting point data [Last Updated On: August 17th, 2024] [Originally Added On: March 23rd, 2011]
- Towards the automated discovery of useful solubility applications [Last Updated On: August 17th, 2024] [Originally Added On: March 29th, 2011]
- ACS and ACRL presentations on web services and trust in science [Last Updated On: August 17th, 2024] [Originally Added On: April 10th, 2011]
- Collaboration using Open Notebook Science in Academia book chapter [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Evan Curtin is the May 2011 RSC ONS Challenge Winner [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Breast Cancer Coalition talk on ONS and Taxol solubility [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- La Science par Cahier de Laboratoire Ouvert à l'Acfas [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- More Open Melting Points from EPI and other sources: on the path to ultimate curation [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- More on 4-benzyltoluene and the impact of melting point data curation and transparency [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- The quest to determine the melting point of 4-benzyltoluene [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- Open Melting Points on iPhone via MMDS [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- My talk at SLA on Trust in Science and Open Melting Point Collections [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Live Tweeting Haumea: the Open Science Ratchet at work? [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Google Apps Scripts for an intuitive interface to organic chemistry Open Notebooks [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- The 4-benzyltoluene melting point twist [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Open Notebook Science Talk at HUBbub 2011 [Last Updated On: August 17th, 2024] [Originally Added On: July 3rd, 2011]
- Practical Tips on using Google Apps Scripts for Chemistry Applications [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Burberry Acoustic - 'Chemistry' by One Night Only for Vogue Fashion Night Out [Last Updated On: August 17th, 2024] [Originally Added On: July 23rd, 2011]
- Rapid analysis of melting point trends and models using Google Apps Scripts [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Open Melting Point Collection Book Edition 1 [Last Updated On: August 17th, 2024] [Originally Added On: August 14th, 2011]
- Google Apps Scripts Workshop at Drexel University [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Patrick Ndungu talk at Drexel on Nanotechnology [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- MiniSymposium Bradley Lab 2011 [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Interpol - Rest My Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Queens Of The Stone Age - Better Living Through Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Greatest Chemistry Discoveries - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Butterfingers - The Chemistry - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Lec 1 Introduction to Chemistry [Last Updated On: August 17th, 2024] [Originally Added On: October 14th, 2011]
- KATNISS AND PEETA: Chemistry Screen Test using the cave scene from The Hunger Games - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- The Smiths - Live on Data Run c. 1984, a British TV Program - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Organic Chemistry reactions - 7 clues from Obi Wan - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- CHEMISTRY Period Live Fullmetal Alchemist Brotherhood 4 OP - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Rush - Chemistry - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The Office: Jim and Pam - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 17th, 2011]
- Chemistry 1A - Lecture 3 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Chemical Party - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Shiny Toy Guns-Chemistry of a Car Crash (with lyrics) - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 21st, 2011]