New ACS podcast: Ancient effect harnessed to produce electricity from waste heat

Public release date: 27-Jun-2012 [ | E-mail | Share ]

Contact: Michael Bernstein m_bernstein@acs.org 202-872-6042 American Chemical Society

WASHINGTON, June 27, 2012 The latest episode in the American Chemical Society's (ACS') award-winning Global Challenges/Chemistry Solutions podcast series describes the first-of-its-kind "pyroelectric nanogenerator," a new device designed to harvest the enormous amounts of energy wasted as heat every year to produce electricity.

Based on a report by Zhong Lin Wang, Ph.D., and colleagues in the ACS journal Nano Letters, the new podcast is available without charge at iTunes and from http://www.acs.org/globalchallenges.

In the report, Wang and colleagues explain that more than 50 percent of the energy generated in the U.S. every year goes to waste, much of it as heat released to the environment by everything from computers to cars to long-distance electric transmission lines. Heat can be converted to electricity using something called the pyroelectric effect, first described by the Greek philosopher Theophrastus in 314 B.C., when he noticed that the gemstone tourmaline produced static electricity and attracted bits of straw when heated. Heating and cooling rearrange the molecular structure of certain materials, including tourmaline, and create an imbalance of electrons that generates an electric current. Wang's group wanted to apply the ancient principle to make a nanogenerator (NG), which uses a time-dependent temperature change to generate electricity and could take advantage of heat changes in the modern world.

To do that, the researchers made nanowires out of zinc oxide, a compound added to paints, plastics, electronics and even food. Using an array of short lengths of nanowire standing on end, they demonstrated a device that produces electricity when heated or cooled. They suggest the NGs could even produce power as temperatures fluctuate from day to night. "This new type of NG can be the basis for self-powered nanotechnology that harvests thermal energy from the time-dependent temperature fluctuation in our environment for applications such as wireless sensors, temperature imaging, medical diagnostics and personal microelectronics," the researchers said.

###

Global Challenges/Chemistry Solutions is a series of podcasts describing some of the 21st century's most daunting problems, and how cutting-edge research in chemistry matters in the quest for solutions. Global Challenges is the centerpiece in an alliance on sustainability between ACS and the Royal Society of Chemistry. Global Challenges is a sweeping panorama of global challenges that includes dilemmas such as providing a hungry and thirsty world with ample supplies of safe food and clean water, developing alternatives to petroleum to fuel society, preserving the environment and ensuring a sustainable future for our children and improving human health.

For more entertaining, informative science videos and podcasts from the ACS Office of Public Affairs, view Prized Science, Spellbound, Science Elements and Global Challenges/Chemistry Solutions.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Link:
New ACS podcast: Ancient effect harnessed to produce electricity from waste heat

Related Posts

Comments are closed.