Constraining the chemistry of carbon-chain molecules in space – Phys.Org

February 27, 2017 An image of the Taurus Molecular Cloud, about 450 light-years from Earth. Many carbon-chain molecules have been detected towards dark clouds like these, but astronomers have sought HC11N without success. They speculate that chains this large preferentially transform into carbon rings. Credit: ESO; Digitized Sky Survey; Davide De Martin

The interstellar medium of the Milky Way contains 5-10% of the total mass of the galaxy (excluding its dark matter) and consists primarily of hydrogen gas. There are small but important contributions from other gases as well, including carbon-bearing molecules both simple, like carbon monoxide and carbon dioxide, and complex like ethene, benzene, propynal, methanol and other alcohols, and cyanides. There are even some very large molecules like polycyclic aromatic hydrocarbons and buckyballs with fifty or more carbon atoms. Some species like the cyanides have relative abundances similar to what is seen in comets in our solar system, suggesting that local carbon chemistry is not unique.

Astronomers think complex interstellar molecules are probably produced on dust grains, although some molecules might be produced in the gas phase. About one percent by mass of the interstellar material, these tiny grains are composed predominantly of silicates and provide the gas molecules with surfaces on which to react with other molecules. Carbon chain molecules are particularly interesting because they are thought to be the starting point for a significant fraction of the known complex chemicals in the interstellar medium. It is even suspected that carbon-chain species are a key stage in the formation of polycyclic aromatic hydrocarbons. Carbon-chain molecular chemistry thus provides insight into a large subset of interstellar chemistry.

A particularly well-studied family of carbon chains is the cyanopolyynes: linear molecules of the form HCnN, where n = 3, 5, 7, 9, etc. They have been observed in high abundance towards older stars and in cold dark clouds. The presence of the largest known cyanopolyyne, HC11N, however, is in dispute. It was reportedly detected in 1982 towards one dark cloud in Taurus, but that detection has not been confirmed. CfA astronomers Ryan Loomis and Brett McGuire and their colleagues used the Green Bank Telescope to search the Taurus region for HC11N in six of its characteristic radio wavelength transitions, including the two in which it was first reported, but without success.

The astronomers argue that the previous detection was an error, and they offer an explanation for the otherwise curious absence of the n=11 species. Laboratory experiments have shown that when carbon-chain molecules get to be longer than about n=9 they begin to curl on themselves and preferentially transform into carbon-ring molecules, which are more stable. A similar process could be occurring in the interstellar medium, siphoning away HC11N to form cyclic species. The non-detection of HC11N thus suggests the importance of this chemical pathway in producing cyclic molecules, although the authors note that further observations and laboratory experiments are needed to confirm the model.

Explore further: The formation of carbon-rich molecules in space

More information: Ryan A. Loomis et al. Non-detection of HCN towards TMC-1: constraining the chemistry of large carbon-chain molecules, Monthly Notices of the Royal Astronomical Society (2016). DOI: 10.1093/mnras/stw2302

The space between stars is not empty, but contains an abundance of diffuse material, about 5-10% of the total mass of our galaxy (excluding dark matter). Most of the material is gas, predominantly hydrogen, but with a small ...

The space between stars is not emptyit contains a vast reservoir of diffuse material with about 5-10% of the total mass of our Milky Way galaxy. Most of the material is gas, but about 1% of this mass (quite a lot in astronomical ...

Silicon, which is one of the most common elements in the Earth's crust, is also sprinkled abundantly throughout interstellar space. The only way to identify silicon-containing molecules in the far corners of the cosmos - ...

Scientists from the Max Planck Institute for Radio Astronomy, Cornell University, and the University of Cologne have for the first time detected a carbon-bearing molecule with a "branched" structure in interstellar space. ...

(Phys.org)The space between stars is not empty. It contains copious but diffuse amounts of gas and dust; in fact about 5-10% of the total mass of our Milky Way galaxy is in interstellar gas. About 1% of the mass of this ...

(Phys.org) A group of organic chemicals that are considered carcinogens and pollutants today on Earth, but are also thought to be the building blocks for the origins of life, may hold clues to how carbon-rich chemicals ...

(Phys.org)A team of astronomers led by Favio Faifer of the National University of La Plata, Argentina, has discovered the first ultra-compact dwarf (UCD) galaxy in an X-ray bright galaxy group designated NGC 5044. The ...

Every now and then a scientific paper makes a real splash. We had one recently, to judge from recent headlines. "Moon rises to claim its place as a planet" said The Sunday Times on February 19, while the Mail Online asked ...

The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos. We can detect these scars today by observing the oldest light in the universe. As it was created nearly ...

The interstellar medium of the Milky Way contains 5-10% of the total mass of the galaxy (excluding its dark matter) and consists primarily of hydrogen gas. There are small but important contributions from other gases as well, ...

Mars' mantle may be more complicated than previously thought. In a new study published today in the Nature-affiliated journal Scientific Reports, researchers at LSU document geochemical changes over time in the lava flows ...

A team of researchers has succeeded in measuring the brightnesses and temperatures of Saturn's rings using the mid-infrared images taken by the Subaru Telescope in 2008. The images are the highest resolution ground-based ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Original post:
Constraining the chemistry of carbon-chain molecules in space - Phys.Org

Related Posts

Comments are closed.