On the Occasion of his 90th Birthday and Nobel Prize: Science & ROGER PENROSE – A Free Online Webinar August 3 6, 2021 – 9:00 am 12:30 pm…

FREE REGISTRATION

View Our Intro Highlight Reel

August 3 6, 2021

9:00 am 12:30 pm (PST/AZ) each day - Tues, Wed, Thur, Fri - 4 Online Live Sessions

R. Penrose / 20 Speakers

British physicist Sir Roger Penrose is widely acclaimed for fundamental advances in understanding the universe. He shared the 2020 Nobel Prize in physics for having shown that black holes are predictions of Einsteins general relativity. Roger has also proposed a solution to the measurement problem in quantum mechanics (objective reduction, OR) which, he further suggests, is the origin of consciousness, leading to a theory of brain function (orchestrated objective reduction, Orch OR). And Rogers concept of Cyclical Conformal Cosmology (CCC) posits a serial, eternal universe, with the Big Bang preceded by previous aeons. The conference will cover these 4 major inter-related areas of Rogers work.

Program Outline

TUESDAY, August 3, 2021. 9:00 am to 12:30 pm PST/AZ

9:00 am - 10:30 am Overview -Sir Roger Penrose, Nobel Laureate, Oxford University

10:30 am - 12:00 noon PST -Black Holes

10:30 am - 11:15 am -Reinhard Genzel, Nobel Laureate, Max Planck Institute | UC Berkeley

11:15 am - 12:00 noon -Roger Blandford, Stanford University

12:00 noon - 12:30 pm - Discussion

WEDNESDAY, August 4, 2021, 9:00 am to 12:30 pm PST/AZ

9:00 am - 12:30 pm PST - Quantum Measurement Objective Reduction (OR)

9:00 am - 9:45 am - Ivette Fuentes, University of Southampton

9:45 am - 10:30 am - Hendrik Ulbricht, University of Southhampton

10:30 am - 11:15 am - Dirk Bouwmeester, UC Santa Barbara | Leiden University

11:15 am - 12:00 noon - Philip Stamp, University of British Columbia

12:00 noon - 12:30 pm - Discussion

THURSDAY, August 5, 2021, 9:00 am to 12:30 pm PST/AZ

9:00 am - 12:30 pm PST - Consciousness - Orch OR

9:00 am - 9:45 am- Stuart Hameroff, University of Arizona

9:45 am - 10:30 am -Greg Scholes, Princeton University

10:30 am - 11:15 am - Alysson Muotri, UC San Diego

11:15 am - 12:30 pm - Panel & Discussion - Quantum biology of microtubules

Jack Tuszynski (Chair) University of Alberta; Aarat Kalra, Princeton University;

Travis Craddock, Nova Southeastern University; Aristide Dogariu, University of Central Florida;

M. Bruce MacIver, Stanford University; Anirban Bandyopadhyay, National Institute of Material Sciences, Japan

FRIDAY, August 6, 2021, 9:00 am to 12:30 pm PST/AZ

9:00 am - 12:30 pm.Pre-Big Bang Universe Cyclical Conformal Cosmology

9:00 am - 9:45 am - Paul Tod, Oxford University

9:45 am - 10:30 am - Brian Keating, UC San Diego

10:30 am - 11:15 am - Krzysztof Meissner, University of Warsaw

11:15 am - 12:00 noon - Vahe Gurzadyan,Yerevan Physics Institute, Armenia

12:00 noon - 12:30 pm - Discussion

Continued here:

On the Occasion of his 90th Birthday and Nobel Prize: Science & ROGER PENROSE - A Free Online Webinar August 3 6, 2021 - 9:00 am 12:30 pm...

Alumna Sheds Light on Mysterious World of Theoretical Physics – UKNow

LEXINGTON, Ky. (June 10, 2021) In theoretical physics, a significant outstanding challenge is the mathematical description of the collective motion of electrons in synthetic materials. Despite nearly a century of research, the subtle laws of quantum mechanics in this regime remain poorly understood.

But a University of Kentucky alumna is leading the field in the right direction.

Nisheeta Desai, a 2020 UK graduate and now postdoctoral fellow at the Tata Institute of Fundamental Research, in collaboration with her mentor Ribhu Kaul, in the UK Department of Physics and Astronomy, has developed a theory that sheds new light on these mysteries. Their work, which recently published in Nature Physics, shows how the quantum motion of a synthetic material can be controlled by external magnetic fields. Such magnets may be key to realizing new quantum technologies.

In our work, we study interactions between a large number of particles and their effecton properties of the material, Desai said. We devise models of electronic spins in atoms interacting with each other. The spin is a quantum mechanical property of an electron and interactions between different spins affect the properties of the material on a large scale. For example, when spins in neighboring atoms tend to align parallelly with each other, it gives rise to magnetism.

Desai and her team, which included experimental groups from Estonia, Princeton and Johns Hopkins University, used a synthetic material called cobalt niobate in their study which exhibits magnetism along with significant quantum effects. By using a modern time-domain spectroscopy experimental technique (which historically played a crucial role in the development of quantum mechanics by allowing the observations of quantized energy levels of atoms) and sophisticated theoretical simulations of quantum matter, the team found that a very simple model explains many of the essential features of the experiment.

The agreement between results from our computational simulations and those from the experiment is remarkable, she said.

Progress in thetheory of quantum materialscould lead to unfathomable new technological revolutions, including the mass production of quantum computers, of which there are only a handful of machines in the world currently.

The models of interacting spins can be used to explain natural phenomena such as magnetism and destruction of magnetic order due to quantum effects, Desai said.Studies of such models can shed light on phases of materials that cannot be explained using purely classical physics.

Originally from Mumbai, India, Desai joined the graduate program at UK in 2014. During that time, she was awarded the Keith B. MacAdam Graduate Excellence Fellowship, the departments most prestigious award. In addition to the Nature Physics article,Desai has also published as first author in Physical Review Letters, one of the most prestigious journals in the field of physics, among many other publications.

"Nisheetadidexceptionally well in hercareer as a Ph.D. student at UK. She has also developed independent collaborations with various scientists across the world during her time here and is well on her way to a successful career as a scientist, said Kaul. This research would not have been possible without the exceptional atmosphere in our department. The combination of world-class physicists and a collegial supportive environment is somethingvery special to UK. I feel very lucky to be part of this department."

Desai says her six years at UK contributed greatly to both her personal and professional growth.

I found the environment in the department to be very pleasantand stimulating, she said. Theculture in the condensed matter theory groupwas instrumental in my development as a researcher. I metmanywonderful and inspiring people here (including my husband!) and gotto work on veryinteresting problems.

Through her achievements and success, Kaul and his colleagues consider Desai a role model to the next generation of women Ph.D. students in their department. While women are underrepresented in physics, Desai says she is optimistic about the future.

When I taught undergraduates at UK as a TA, I saw a clear mentalblock forthe subject, especially among female students, she said. It is hard to ignore unconscious biases in society, especially when there are relatively few female role modelsin physics. Nevertheless, it is impossible to overlook thesignificant contributionswomen have made to physics historically despite all the barriers theyfaced.

Her advice to women, or any student startingout their careers in physics research: focus on one thing at a time, and do it well.

It is easy to get discouraged if you try to do something very difficult all at once, she said. It is also important to remember that the process of scientific enquiry is a humbling one and it requires you to constantly challenge your biases and assumptions in the face of new evidence. It is a lifelong process of learning that progressivelymakes you more objective, open minded and rational.

When it comes to her own career, Desai says she is inspired to know she is a small part of humankinds noble pursuit of knowledge.

When I witness the accomplishments of other people in my field, especially my peers, I get motivated to try my best and contribute my bit towardexpanding the vast body of knowledge, she said. I like to think I am making the world a little better every day in this way.

Research reported in this publication was supported by theNational Science Foundationunder Award Number1611161.The opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Read this article:

Alumna Sheds Light on Mysterious World of Theoretical Physics - UKNow

Some Scientists Believe the Universe Is Conscious – Popular Mechanics

In upcoming research, scientists will attempt to show the universe has consciousness. Yes, really. No matter the outcome, well soon learn more about what it means to be consciousand which objects around us might have a mind of their own.

What will that mean for how we treat objects and the world around us? Buckle in, because things are about to get weird.

The basic definition of consciousness intentionally leaves a lot of questions unanswered. Its the normal mental condition of the waking state of humans, characterized by the experience of perceptions, thoughts, feelings, awareness of the external world, and often in humans (but not necessarily in other animals) self-awareness, according to the Oxford Dictionary of Psychology.

Scientists simply dont have one unified theory of what consciousness is. We also dont know where it comes from, or what its made of.

However, one loophole of this knowledge gap is that we cant exhaustively say other organisms, and even inanimate objects, dont have consciousness. Humans relate to animals and can imagine, say, dogs and cats have some amount of consciousness because we see their facial expressions and how they appear to make decisions. But just because we dont relate to rocks, the ocean, or the night sky, that isnt the same as proving those things dont have consciousness.

This is where a philosophical stance called panpsychism comes into play, writes All About Spaces David Crookes:

Its also where physics enters the picture. Some scientists have posited that the thing we think of as consciousness is made of micro-scale quantum physics events and other spooky actions at a distance, somehow fluttering inside our brains and generating conscious thoughts.

One of the leading minds in physics, 2020 Nobel laureate and black hole pioneer Roger Penrose, has written extensively about quantum mechanics as a suspected vehicle of consciousness. In 1989, he wrote a book called The Emperors New Mind, in which he claimed that human consciousness is non-algorithmic and a product of quantum effects.

Lets quickly break down that statement. What does it mean for human consciousness to be algorithmic? Well, an algorithm is simply a series of predictable steps to reach an outcome, and in the study of philosophy, this idea plays a big part in questions about free will versus determinism.

Are our brains simply cranking out math-like processes that can be telescoped in advance? Or is something wild happening that allows us true free will, meaning the ability to make meaningfully different decisions that affect our lives?

Within philosophy itself, the study of free will dates back at least centuries. But the overlap with physics is much newer. And what Penrose claimed in The Emperors New Mind is that consciousness isnt strictly causal because, on the tiniest level, its a product of unpredictable quantum phenomena that dont conform to classical physics.

So, where does all that background information leave us? If youre scratching your head or having some uncomfortable thoughts, youre not alone. But these questions are essential to people who study philosophy and science, because the answers could change how we understand the entire universe around us. Whether or not humans do or dont have free will has huge moral implications, for example. How do you punish criminals who could never have done differently?

In physics, scientists could learn key things from a study of consciousness as a quantum effect. This is where we rejoin todays researchers: Johannes Kleiner, mathematician and theoretical physicist at the Munich Center For Mathematical Philosophy, and Sean Tull, mathematician at the University of Oxford.

Kleiner and Tull are following Penroses example, in both his 1989 book and a 2014 paper where he detailed his belief that our brains microprocesses can be used to model things about the whole universe. The resulting theory is called integrated information theory (IIT), and its an abstract, highly mathematical form of the philosophy weve been reviewing.

In IIT, consciousness is everywhere, but it accumulates in places where its needed to help glue together different related systems. This means the human body is jam-packed with a ton of systems that must interrelate, so theres a lot of consciousness (or phi, as the quantity is known in IIT) that can be calculated. Think about all the parts of the brain that work together to, for example, form a picture and sense memory of an apple in your minds eye.

The revolutionary thing in IIT isnt related to the human brainits that consciousness isnt biological at all, but rather is simply this value, phi, that can be calculated if you know a lot about the complexity of what youre studying.

If your brain has almost countless interrelated systems, then the entire universe must have virtually infinite ones. And if thats where consciousness accumulates, then the universe must have a lot of phi.

Hey, we told you this was going to get weird.

The theory consists of a very complicated algorithm that, when applied to a detailed mathematical description of a physical system, provides information about whether the system is conscious or not, and what it is conscious of, Kleiner told All About Space. If there is an isolated pair of particles floating around somewhere in space, they will have some rudimentary form of consciousness if they interact in the correct way.

Kleiner and Tull are working on turning IIT into this complex mathematical algorithmsetting down the standard that can then be used to examine how conscious things operate.

Think about the classic philosophical comment, I think, therefore I am, then imagine two geniuses turning that into a workable formula where you substitute in a hundred different number values and end up with your specific I am answer.

The next step is to actually crunch the numbers, and then to grapple with the moral implications of a hypothetically conscious universe. Its an exciting time to be a philosopheror a philosophers calculator.

This content is created and maintained by a third party, and imported onto this page to help users provide their email addresses. You may be able to find more information about this and similar content at piano.io

View original post here:

Some Scientists Believe the Universe Is Conscious - Popular Mechanics

How Do You Explain Quantum Computing To Your Dog (And Other Important People in Your Life)? – Medium

Image credit: Russell Huffman

By Ryan F. Mandelbaum and Olivia Lanes

What is Quantum Computing? Most of this blogs readers are already excited about this technology after all, weve spent many hours reading textbooks and documentation trying to figure out how to write programs for real quantum chips. But many of our friends, family members, and people we randomly encounter still scratch their heads when they hear the words quantum and computer put together. We think its high time that they learn about quantum computing, too.

Partially inspired by Talia Gershons awesome WIRED video where she explains quantum computing at five different difficulty levels, we came up with some stock quantum computing explanations you can use to start spreading your excitement for quantum computing to other people in your life (or, if youre new here, use to understand quantum yourself). While were excited about this technology, we tried our best to sidestep the hype; quantum computers are exciting enough on their own, and theres no need to exaggerate how far along they are, what they can do today, or what we hope theyll do in the future.

But, no matter who youre trying to explain quantum to, theres a core understanding we think everyone should have. A quantum computer is similar to a classical computer in a lot of ways. Just like a classical computer, you store information using some physical system. You have to initialize that system, then perform some sort of operations on it (in other words, run a program), and then extract the information. It differs from classical computing in two key elements, however:

These core counterintuitive ideas underlie the fundamental operations of quantum computing. Once you understand these two pieces, the rest is a matter of how deep youd like to learn, and how quantum algorithms might provide benefits to you, your life, or the industry you work in. You should also get started using Qiskit.

Each of these explanations are based mainly on our experiences and opinions, and you might have your own tricks to help get quantum computing across feel free to tell us about them, what worked, and what didnt in the comments!

Some problems are really hard for todays computers to tackle, like designing drugs, running machine learning algorithms, and solving certain kinds of math equations. But the ability to solve those problems could help humankind tackle some of its biggest challenges. Well, quantum computers represent a new kind of computing system under development today that solves problems using an architecture that follows the most fundamental laws of nature and we hope theyll one day be able to to solve these hard problems. You can even try them out for yourself.

Hey, you know what a computer is but do you know how it works? Well basically, it thinks of everything, the YouTube videos you watch, the letters on the screen, everything, in a special kind of code. Programs and apps are basically just instructions that change the code around, leading to the results you see on the screen. But theres only so many different kinds of things that a regular computer can do with that code. A quantum computer works similarly to a regular computer, but its code looks a little different, and it can do even more things to those codes than your parents computers can. Quantum computers are really new, so theyre not better than a regular computer juuust yet but we think that one day they might be able to solve some of the biggest challenges in the world. Maybe it will even help you do your homework faster or something.

What do I do for work? Well *cracks knuckles*

So, there are some problems that people would like to solve that take even the best supercomputers a ridiculously long amount of time to run problems like simulating chemistry or breaking big numbers into smaller factors. Quantum computers might be able to tackle these problems by relying on a different set of physical laws than your computer does. Your computer is really just lots of electrical switches, called bits, that represents everything using binary code. In other words, the language your computer speaks encodes everything as long strings of 0s or 1s, while programs are mathematical operations that can change zeros to ones and vice versa. However, at even at the most fundamental level, a quantum computers code and its corresponding hardware looks differently. Quantum bits, or qubits, dont have to be binary during the calculation; they can actually exist in well-defined combinations of 0 and 1.

Its kind of like, if I was a qubit, instead of having mashed potatoes OR asparagus, I can have a third of a helping of mashed potatoes and two thirds of a helping of asparagus so long as it adds up to a whole side dish. However, once the problem ends, the quantum computers can only give answers in binary code, with some probability determining the outcome. Its like, if someone wanted to know which side dish I had, they check by closing their eyes, shoving their fork onto my plate, and reporting only the first side dish they taste, with the probabilities determined by how much of each side I had on my plate when they went in for a bite. Qubits also interact differently from regular bits. Lets say that Olivia and Ryan are both at dinner, and you only know that between them theyve eaten a helping of potatoes and a helping of asparagus, and not whose dish has what sides on it. But even if they havent spoken since dinner started, if you did the same eyes-closed fork jab you did on my plate, the sides they picked will be more correlated than the usual rules of random guessing would allow.

A direct consequence of this quantum dinner behavior is that there exist different types of algorithms for quantum computers. In fact, due to the quantum nature of the processor, scientists have already shown that at least theoretically, some quantum algorithms can be run exponentially faster than their classical counterparts. Provided that we can build the hardware, all these sorts of near-impossible problems may one day have solutions within arms reach. Anyway, thats what I do at work. Can you pass the gravy?

Editor Note: While thankfully we havent encountered a large contingency of quantum computing conspiracies, hype and tabloid coverage has led to some worrying interpretations of what quantum can and cant do some indeed bordering on conspiracy-minded thinking. But according to at least one expert, the best way to speak with conspiracy theorists isnt with facts but with empathy.

Oh, youre worried about quantum computers? Whys that? I was actually really interested in learning more about them, too, and I didnt understand them at first. What have you learned so far? Huh, thats interesting. So far, Ive learned that some research labs are working on a new kind of computer that can solve certain problems that classical computers cant. I was definitely really interested in the science behind it. See, theyre more or less just computer processors that rely on a system of bits to solve problems. However, these quantum bits can perform a richer set of mathematical operations than classical bits, which makes them better at solving certain problems. What did you read that they could do? Portals and new dimensions, huh? Thats really interesting, but no, I did some research on my own and what the media doesnt want you to know is that these computers are more business-y than science fiction-y they might one day be revolutionary for chemistry, machine learning, and other topics. But the media also doesnt want you to know that these computers are still really early in their development like, they forget their information quickly and theres a lot of work to do before theyre something to worry about. There are actually services that let you try them out and program them on your own. Now tell me more about the UFO you saw

Quantum computers are a new kind of computer processor that one day might augment your current computing resources to tackle certain challenges difficult for todays classical computers alone. Quantum processors work in tandem with classical computers as part of a cloud-based computing workflow, providing value by performing mathematical operations challenging for classical processors. While theres no device capable of executing a killer app yet, research has demonstrated that the enhanced capabilities of quantum systems could accelerate the research and development process, and provide value to certain industries in the coming years chemical and materials design, drug development, finance, and machine learning, for example. In one report, Boston Consulting Group predicted that productivity gains by end users of quantum computing, both in cost savings and revenue generation opportunities, could equal $450 billion or more annually. Many Fortune-500 companies have already begun to research and develop domain-specific thought leadership in quantum computing so as to be prepared when the field matures.

Quantum processors are kind of like a GPU in the sense that theyre designed to handle specific tasks that the CPU isnt well-suited to handle. But unlike a GPU, quantum computers work using a different kind of hardware architecture, one that allows them to perform a richer array of logical operations than just Boolean logic. These hardware requirements lead to bulky systems, so todays developers hoping to exploit quantum resources run their code over the cloud, employing both classical and quantum processing power where necessary for their program.

Quantum computers are a nascent technology, so programming them today is can be a lot like writing code in assembly language, stringing individual quantum bits together into circuits using quantum logic gates. These circuits are similar to classical computers in that their programs begin by initializing the qubits into a string of zeroes and ones, then perform operations, then return an output. However, quantum gates can also produce superpositions of strings, creating well-defined combinations of bitstrings (though you can only end up with one of these bitstrings, determined by the rules of probability, at the end of the calculation). Further operations produce entanglement and interference, linking certain qubits together and changing those probability distributions such that certain bitstrings become more likely and certain bitstrings become less likely when you measure the final result.

Given how recently quantum programming languages arose, developers have organized into open source communities like Qiskit where they maintain the code used to access quantum computers. As part of that, theyre designing and implementing quantum algorithms that can run on these devices, and creating modules designed to harness the potential power of quantum computers without having to continually program individual bits kind of like building a higher-level programming language on top of the assembly language with which we access quantum computers today. You can learn more by getting started with Qiskit here!

Quantum mechanics might be confusing, but it can still be incredibly useful, even if youre not a physicist. A computer based on the laws of quantum physics might help solve problems in chemistry, machine learning, or even solving partial differential equations.

Objects following the rules of quantum mechanics can enter states called superpostions. If an objects state is in a superposition of 0 and 1, that means that the object is in a linear combination of both values simultaneously until a measurement forces the object into one state or the other, with the probability of measuring either state based on the coefficients of each state in the linear combination. These objects can also become entangled, meaning you cannot describe one object mathematically on its own; when we perform experiments on entangled particles, we find that their properties are more correlated than classical physics would otherwise allow. We use these principles to construct sets of quantum bits, or qubits. I cant know each qubit value individually I can only create these linear combinations from states that include both qubits. But if I measure one qubit and force it to choose, lets say it ends up measuring 1, then the other qubit will take on a value highly correlated with the first value more correlated than random chance alone would allow. We use these ideas to generate interference, where certain combinations of qubit values become more likely and certain ones become less likely.

In a classical computer, computational spaces add together, because bits can exist in only one state or the other, 0 or 1. In a quantum computer, the computational space grows exponentially as you add more bits (2^n where n is the number of bits) so its easy to understand how they can become powerful computational tools. Furthermore, there are certain problems that are hard for classical computers to compute. Because quantum computers themselves rely on quantum physics, they are better able to simulate quantum mechanical phenomena, like chemical interactions and bonds. Though the devices are noisy and error prone today, researchers hope that quantum computers will be able to utilize the properties of entanglement and interference to run some algorithms faster than a classical computer can, making solutions to these hard problems finally feasible. Together, these benefits might one day allow scientists to perform various elements of their jobs faster.

Macroscopic quantum effects have long been observed in superconducting circuits. However, it wasnt until theoretical developments showing that flux and voltage can be quantized circuit QED that this idea was applied to quantum information processing.

A superconducting transmon qubit is essentially a quantized anharmonic oscillator. The circuits macro state can be described by the quantized energy levels; the ground state (0), the excited state (1), or even higher order excited states as well (2, 3, 4, etc.). But because the circuit is anharmonic the energy transitions between states 0 and 1 is different than 1 and 2, so we can isolate the bottom levels with a microwave pulse at that frequency to create a quantum bit for information processing.

In order to read-out and control the state of a transmon, we couple the qubit to either a 2D or 3D resonator (the physics is the same). The qubit and the resonator interact in such a way that when we probe the resonator with a standing microwave tone, the resonant frequency will actually shift depending on if the qubit is in the ground or excited state. This is how we can read out and interact with the qubits that make up a quantum computer.

Coupling these qubit-cavity systems together in an array and allowing them to talk to other another with 2-qubit gates (essentially more finely tuned microwave pulses) creates a quantum processor. Running specific gates in a specific order on this processor can create quantum algorithms. By leveraging the processors quantum properties of entanglement, superposition and interference, some quantum algorithms can theoretically be run significantly faster than their classical counterparts. Once we have reached the point where applying these algorithms has become useful and advantageous, we will have achieved what we call the era of quantum advantage.

Whispers: Hey there, pup, listen. I told my boss I would be able to teach you quantum computing, but you barely understand how your doggy door works. So heres what Im gonna do. Im gonna train you how to give me your left paw when I say initialize. Then youre gonna give me your right paw when I say X-gate. Then when I say Hadamard gate, youre going to hop on your hind legs and give me both paws. When I say CNOT, youre going to roll over, and when I say measure, youre going to bark. If you do this for me Ill cut some salami up into your dinner tonight.

Hey, Boss! Yeah! I finally figured out how to explain quantum computing to the dog! Yep, Ill write it all down in the blog post tonight. Wanna see?

Get started using Qiskit here!

See the original post:

How Do You Explain Quantum Computing To Your Dog (And Other Important People in Your Life)? - Medium

With cyberattacks on the rise, organizations are already bracing for devastating quantum hacks – CNBC

Amidst the houses and the car parks sits GCHQ, the Government Communications Headquarters, in this aerial photo taken on October 10, 2005.

David Goddard | Getty Images

LONDON A little-known U.K. company called Arqit is quietly preparing businesses and governments for what it sees as the next big threat to their cyber defenses: quantum computers.

It's still an incredibly young field of research, however some in the tech industry including the likes of Google, Microsoft and IBM believe quantum computing will become a reality in the next decade. And that could be worrying news for organizations' cyber security.

David Williams, co-founder and chairman of Arqit, says quantum computers will be several millions of times faster than classical computers, and would be able to break into one of the most widely-used methods of cryptography.

"The legacy encryption that we all use to keep our secrets safe is called PKI," or public-key infrastructure, Williams told CNBC in an interview. "It was invented in the 70s."

"PKI was originally designed to secure the communications of two computers," Williams added. "It wasn't designed for a hyper-connected world where there are a billion devices all over the world communicating in a complex round of interactions."

Arqit, which is planning to go public via a merger with a blank-check company, counts the likes of BT, Sumitomo Corporation, the British government and the European Space Agency as customers. Some of its team previously worked for GCHQ, the U.K. intelligence agency. The firm only recently came out of "stealth mode" a temporary state of secretness and its stock market listing couldn't be more timely.

The past month has seen a spate of devastating ransomware attacks on organizations from Colonial Pipeline, the largest fuel pipeline in the U.S., to JBS, the world's largest meatpacker.

Microsoft and several U.S. government agencies, meanwhile, were among those affected by an attack on IT firm SolarWinds. President Joe Biden recently signed an executive order aimed at ramping up U.S. cyber defenses.

Quantum computing aims to apply the principles of quantum physics a body of science that seeks to describe the world at the level of atoms and subatomic particles to computers.

Whereas today's computers use ones and zeroes to store information, a quantum computer relies on quantum bits, or qubits, which can consist of a combination of ones and zeroes simultaneously, something that's known in the field as superposition. These qubits can also be linked together through a phenomenon called entanglement.

Put simply, it means quantum computers are far more powerful than today's machines and are able to solve complex calculations much faster.

Kasper Rasmussen, associate professor of computer science at the University of Oxford, told CNBC that quantum computers are designed to do "certain very specific operations much faster than classical computers."

That it is not to say they'll be able to solve every task. "This is not a case of: 'This is a quantum computer, so it just runs whatever application you put on there much faster.' That's not the idea," Rasmussen said.

This could be a problem for modern encryption standards, according to experts.

"When you and I use PKI encryption, we do halves of a difficult math problem: prime factorisation," Williams told CNBC. "You give me a number and I work out what are the prime numbers to work out the new number. A classic computer can't break that but a quantum computer will."

Williams believes his company has found the solution. Instead of relying on public-key cryptography, Arqit sends out symmetric encryption keys long, random numbers via satellites, something it calls "quantum key distribution." Virgin Orbit, which invested in Arqit as part of its SPAC deal, plans to launch the satellites from Cornwall, England, by 2023.

Some experts say it will take some time before quantum computers finally arrive in a way that could pose a threat to existing cyber defenses. Rasmussen doesn't expect them to exist in any meaningful way for at least another 10 years. But he's not complacent.

"If we accept the fact that quantum computers will exist in 10 years, anyone with the foresight to record important conversations now might be in a position to decrypt them when quantum computers come about," Rasmussen said.

"Public-key cryptography is literally everywhere in our digitized world, from your bank card, to the way you connect to the internet, to your car key, to IOT (internet of things) devices," Ali Kaafarani, CEO and founder of cybersecurity start-up PQShield, told CNBC.

The U.S. Commerce Department's National Institute of Standards and Technology is looking to update its standards on cryptography to include what's known as post-quantum cryptography, algorithms that could be secure against an attack from a quantum computer.

Kaafarani expects NIST will decide on new standards by the end of 2021. But, he warns: "For me, the challenge is not the quantum threat and how can we build encryption methods that are secure. We solved that."

"The challenge now is how businesses need to prepare for the transition to the new standards," Kaafarani said. "Lessons from the past prove that it's too slow and takes years and decades to switch from one algorithm to another."

Williams thinks firms need to be ready now, adding that forming post-quantum algorithms that take public-key cryptography and make it "even more complex" are not the solution. He alluded to a report from NIST which noted challenges with post-quantum cryptographic solutions.

Read the original post:

With cyberattacks on the rise, organizations are already bracing for devastating quantum hacks - CNBC

In Quantum Physics, Everything Is Relative – The New York Times

The conceptual breakthrough initiated by Heisenberg (who was mentored by Niels Bohr), and firmed up with contributions from Max Born, Wolfgang Pauli, Paul Dirac, Erwin Schrdinger and others, makes it clear that the world of the very small that of photons, electrons, atoms and molecules obeys rules that go against the grain of our everyday physical reality.

Take an electron that is emitted at Point A and is detected at Point B. One would assume that the electron follows a trajectory, the way a baseball does from a pitchers hand to a catchers mitt. To explain experimental observations, Heisenberg rejected the notion of a trajectory for the electron. The resulting quantum theory deals in probabilities. It lets you calculate the probability of finding the electron at Point B. It says nothing of the path the electron takes. In its most austere form, quantum theory even denies any reality to the electron until it is detected (leading some to posit that a conscious observer somehow creates reality).

Since the 1950s, scientists have tried to make quantum theory conform to the dictates of classical physics, including arguing for a hidden reality in which the electron does have a trajectory, or suggesting that the electron takes every possible path, but these paths are manifest in different worlds. Rovelli dismisses these attempts. The cost of these approaches is to postulate a world full of invisible things.

Instead, in Helgoland Rovelli explains his relational interpretation, in which an electron, say, has properties only when it interacts with something else. When its not interacting, the electron is devoid of physical properties: no position, no velocity, no trajectory. Even more radical is Rovellis claim that the electrons properties are real only for the object its interacting with and not for other objects. The world fractures into a play of points of view that do not admit of a univocal, global vision, Rovelli writes. Or, as he puts it, Facts are relative. Its a dramatic denunciation of physics as a discipline that provides an objective, third-person description of reality.

This perspective blurs the distinction between mental and physical phenomena. Both are products of interactions between parts of the physical world, Rovelli says. In arguing that the mind is itself the outcome of a complex web of interactions, Rovelli takes on dualists who distinguish between the mental and the physical and nave materialists who say that everything begins with particles of matter with well-defined properties.

See the original post here:

In Quantum Physics, Everything Is Relative - The New York Times

CU Boulder the site of 53-year-old report on UFOs. What do the findings say? – CU Boulder Today

Later this month, U.S. intelligence agencies are expected to present to Congress a highly anticipated unclassified report detailing what they know about unidentified flying objects (UFOs).

According to unnamed officials reported to have been briefed on its contents, the task forcedid not find evidence that the unexplained aerial phenomena (likened to UFOs) that Navy pilots have witnessed in recent years are alien spacecrafts. But the report does not definitively say they aren't.

One of the last government-commissioned reports on UFOs was conducted right here at CU Boulder and resides in the archives at University Libraries. Edward Condon, a former professor of physics and astrophysics, was given $300,000 to produce a thousand-page report named The Scientific Study of Unidentified Flying Objects,or the Condon Report, as it became known.

Heather Bowden, head of Rare and Distinctive Collections, has preserved and reviewed the Condon Reportand spoke with CU Boulder Today about what it found.

Head of Rare and Distinctive Collections Heather Bowden

Edward U. Condon (190274), a former professor of physics and astrophysics and fellow of the Joint Institute of Laboratory Astrophysics (JILA), was a prominent theoretical physicist who made substantial contributions in academia, industry and government. He had a major impact in the development of scientific fields such as quantum mechanics, nuclear science and electronicsbut was most known for his report on UFOs.

The Condon Report was commissioned by the United States Air Force in the mid-1960s with the aim of producing an unbiased scientific investigation into the possibility that unidentified flying objects may be of extraterrestrial origin. The decision to conduct the study came from a March 1966 report from an ad hoc committee of the Air Force Scientific Advisory Board tasked with reviewing this issue.

The collection contains documents, journals, research papers, international newsletters, film reels of suspected sightings and books gathered during Condon's commissioned study.

In the first section, Condon reported, Our general conclusion is that nothing has come from the study of UFOs in the past 21 years that has added to science knowledge, meaning the researchers involved in the project did not find conclusive evidence there have been sightings of UFOs that were crafted by remote galactic or intergalactic civilizations.

The 2021 government-commissioned UFO report came to a similar conclusion, according to unnamed sources cited in articles from The New York Times and CNN, but did not rule out the possibility that alien life exists.

How studying UFOs could lead to new scientific breakthroughs

This month, a Pentagon task force will release a long-awaited report digging into a topic typically relegated to science fiction movies and tabloids: unidentified flying objects. Professor Carol Cleland talks about the report and why scientists should take weird and mysterious observations seriously.

Im always most fascinated by the handwritten materials and scraps of notes that accompany published pieces like the report, because it lends a human element to something that could otherwise be considered clinical and dry.I also think the film reels would be fascinating to watch.

Students can access materials from the collection when Norlin Library reopens this fall by contacting rad@colorado.edu to schedule an appointment in the Rare and Distinctive Collections (RaD) Reading Room. Students can also check out additional UFO-related University Libraries resources online.

Continue reading here:

CU Boulder the site of 53-year-old report on UFOs. What do the findings say? - CU Boulder Today

British innovation will be key to success of merger dubbed the ‘Apple of quantum computing’ – Sky News

Quantum computing is one of those technologies that, like artificial intelligence, has been attracting the interest of investors for some time - even though few can actually explain what it involves.

The technology, put very simply, involves harnessing quantum physics - the branch of the science that seeks to describe and explain how and why objects behave and move in the way that they do - to store data or perform computations to a vastly more efficient degree than traditional computers.

Quantum computers are said to be able to operate millions of times faster than existing ones.

A number of governments around the world are pumping capital into the sector in the hope of establishing a lead in the field. They include Germany which, in June last year, announced a 2bn (1.7bn) investment into two new quantum computers.

China, meanwhile, is setting up a national laboratory for quantum information sciences.

But the technology has also been the topic of much debate in investment circles.

Supporters believe it has the potential to transform many industries and sectors, including genetic medicine, pharmacology, financial services and materials development.

Sceptics argue that its vast potential may take many years, if ever, to be realised.

Wednesday, however, brought news of a deal that suggests quantum computing may indeed be on the verge of a breakthrough that could see it being applied more widely across business and industry.

Cambridge Quantum Computing, a British business founded in 2014, announced it is to combine with the quantum solutions arm of the US industrial giant Honeywell.

The pair said the combined business would be "extremely well-positioned to lead the quantum computing industry by offering advanced, fully integrated hardware and software solutions at an unprecedented pace, scale and level of performance to large high-growth markets worldwide".

Honeywell will be the majority shareholder of the new company, with CQ's shareholders, including Ilyas Khan, its founder and chief executive, owning just over 45% of the business.

Mr Khan said that he believed a breakthrough in the quantum computing had already arrived.

He told Sky News: "I think the tipping point was probably in the last 18 months. China, the United States, the United Kingdom, of course, have major programmes and lots of countries and companies have said that they face an existential risk if they don't get quantum computing right.

"In terms of applications, things that we will use on a day to day basis, I think a good analogy is mobile phones - at the end of the 1980s, before they arrived, nobody really knew that they're going to use them and of course, when they did arrive, the markets and their usage exploded.

"I would imagine that later on this year things like cyber security, for example, will be offering unhackable keys using the quantum computer, and it will begin to be more and more useful. Maybe the more esoteric uses are probably a couple of years away, machine learning, for example, [or] material discovery."

He said the combined business would be a "global powerhouse" capable of creating and commercialising quantum solutions that address "some of humanity's greatest challenges".

British tech start-ups are often accused of selling out too early but Mr Khan, who will lead the combined business, could not be described as such.

He added: "The UK is the leader in quantum and this is the first time since the Second World War that a major technology initiative is not being driven by Silicon Valley. We are a software and an algorithm provider and the merger creates an integrated business.

"[It will be] what I would describe as an Anglo American, actually a global business. The characterisation of a sell-out, I think, is probably not one I would agree with."

Honeywell will be investing between $270m (190m) and $300m (211m) in the new venture and Mr Khan said this money would be invested, predominantly, in people.

At the start of its life, the enlarged business will be employing around 350 people, of whom 200 are scientists - more than half of them boasting doctorates in disciplines such as chemistry, physics and maths.

Mr Khan went on: "This is a business where we are in scaling and growth mode - so it's primarily people. We will probably grow quite rapidly as far as the numbers are concerned, both in the United Kingdom, and in the United States, and then a reasonable amount of that capital will be in continuing to increase the capacity of the quantum computers. We have the world's best performing computer right now - and we will be deploying that for customer usage over the course of the next few years."

Hinting at a forthcoming stock market flotation of the business, Mr Khan said there would also be a fund-raising at some point in the near future, in which outside investors would be able to buy a stake in the business.

He declined to say what valuation had been put on Cambridge Quantum under the transaction but said some numbers would be released "over the course of the next week or two".

Mr Khan went on: "This is something which is obviously something that I'm very proud of. It's a British winner. The United Kingdom is the leader in this. We are the world's leader and, of course, consequently very valuable."

That reluctance to talk specific numbers is, perhaps, understandable.

Barron's, the influential US financial publication, has already suggested that the enlarged business could be the 'Apple of quantum computing' because the deal brings together Honeywell's expertise in quantum hardware with Cambridge Quantum's expertise in software and algorithms - emulating the way Apple straddles hardware, operating systems, and software applications. Honeywell itself has said that quantum computing will one day be a trillion dollar-a-year industry.

The deal marks another twist in what has been an inspiring story.

Born in Haslingden, in Lancashire, Mr Khan's father was a bus driver and he was brought up in what he told the Lancashire Telegraph in 2009 was a "two up, two down terrace". Educated at Haslingden Grammar School and University of London School of Oriental and African Studies, he want into banking on graduating, spending 20 years of his career in Hong Kong.

He first came to public attention when, in 2009, he rescued Accrington Stanley FC and later served as its chairman for three years. He has reportedly sunk more than 2m of his own money into the club over a 20-year period.

On returning to the UK he joined the University of Cambridge's Judge Business School and chairman of the Stephen Hawking Foundation and it was a comment from the late Professor Hawking, a friend, who prompted him to start Cambridge Quantum.

He told The Quantum Daily last year: "The prompt really came from a comment that Stephen made to me in a meeting that we were attending and Stephen said 'this is for real'. This really opened my eyes."

It is just possible that those investors still sceptical about quantum computing may well have had their eyes opened, too, following this deal.

Continue reading here:

British innovation will be key to success of merger dubbed the 'Apple of quantum computing' - Sky News

What happened before the Big Bang? – Big Think

Let's face it: to think that the universe has a history that started with a kind of birthday some 13.8 billion years ago is weird. It resonates with many religious narratives that posit that the cosmos was created by divine intervention, although science has nothing to say about that.

If everything that happens can be attributed to a cause, what caused the universe? To deal with the very tough question of the First Cause, religious creation myths use what cultural anthropologists sometimes call a "Positive Being," a supernatural entity. Since time itself had a beginning at some point in the distant past, that First Cause had to be special: it had to be an uncaused cause, a cause that just happened, with nothing preceding it.

Attributing the beginning of everything to the Big Bang begs the question, "What happened before that?" That's a different question when we are dealing with eternal gods, as for them, timelessness is not an issue. They exist outside of time, but we don't. For us, there is no "before" time. Thus, if you ask what was going on before the Big Bang, the question is somewhat meaningless, even if we need it to make sense. Stephen Hawking once equated it with asking, "What's north of the North Pole?" Or, the way I like to phrase it, "Who were you before you were born?"

Saint Augustine posited that time and space emerged with creation. For him, it was an act of God, of course. But for science?

Scientifically, we try to figure out the way the universe was in its adolescence and infancy by going backward in time, trying to reconstruct what was happening. Somewhat like paleontologists, we identify "fossils" material remnants of long-ago days and use them to learn about the different physics that was prevalent then.

The premise is that we are confident that the universe is expanding now and has been for billions of years. "Expansion" here means that the distances between galaxies are increasing; galaxies are receding from one another at a rate that depends on what was inside the universe at different eras, that is, the kinds of stuff that fill up space.

When we mention the Big Bang and expansion, it's hard not to think about an explosion that started everything. Especially since we call it the "Big Bang." But that's the wrong way to think about it. Galaxies move away from one another because they are literally carried by the stretch of space itself. Like an elastic fabric, space stretches out and the galaxies are carried along, like corks floating down a river. So, galaxies are not like pieces of shrapnel flying away from a central explosion. There is no central explosion. The universe expands in all directions and is perfectly democratic: every point is equally important. Someone in a faraway galaxy would see other galaxies moving away just like we do.

(Side note: For galaxies that are close enough to us, there are deviations from this cosmic flow, what's called "local motion." This is due to gravity, The Andromeda galaxy is moving toward us, for example.)

Credit: Andrea Danti / 98473600 via Adobe Stock

Playing the cosmic movie backward, we see matter getting squeezed more and more into a shrinking volume of space. Temperature rises, pressure rises, things break apart. Molecules get broken down into atoms, atoms into nuclei and electrons, atomic nuclei into protons and neutrons, and then protons and neutrons into their constituent quarks. This progressive dismantling of matter into its most basic constituents happens as the clock ticks backward toward the "bang" itself.

For example, hydrogen atoms dissociate at about 400,000 years after the Big Bang, atomic nuclei at about one minute, and protons and neutrons at about one-hundredth of a second. How do we know? We have found the radiation left over from when the first atoms formed (the cosmic microwave background radiation) and discovered how the first light atomic nuclei were made when the universe was merely a few minutes old. These are the cosmic fossils that show us the way backward.

Currently, our experiments can simulate conditions that happened when the universe was roughly one trillionth of a second old. That seems like a ridiculously small number for us, but for a photon a particle of light it's a long time, allowing it to travel the diameter of a proton a trillion times. When talking about the early universe, we must let go of our human standards and intuitions of time.

We want to keep going back as close to t = 0 as possible, of course. But eventually we hit a wall of ignorance, and all we can do is extrapolate our current theories, hoping that they will give us some hints of what was going on much earlier, at energies and temperatures we cannot test in the lab. One thing we do know for certain, that really close to t = 0, our current theory describing the properties of space and time, Einstein's general theory of relativity, breaks down.

This is the realm of quantum mechanics, where distances are so tiny that we must rethink space not as a continuous sheet but as a granular environment. Unfortunately, we don't have a good theory to describe this granularity of space or the physics of gravity at the quantum scale (known as quantum gravity). There are candidates, of course, like superstring theory and loop quantum gravity. But currently there is no evidence pointing toward either of the two as a viable description of physics.

Physics' greatest mystery: Michio Kaku explains the God Equation | Big Think http://www.youtube.com

Still, our curiosity insists on pushing the boundaries toward t = 0. What can we say? In the 1980s, James Hartle and Stephen Hawking, Alex Vilenkin, and Andrei Linde separately came up with three models of quantum cosmology, where the whole universe is treated like an atom, with an equation similar to the one used in quantum mechanics. In this equation, the universe would be a wave of probability that essentially links a quantum realm with no time to a classical one with time i.e., the universe we inhabit, now expanding. The transition from quantum to classical would be the literal emergence of the cosmos, what we call the Big Bang being an uncaused quantum fluctuation as random as radioactive decay: from no time to time.

If we assume that one of these simple models is correct, would that be the scientific explanation for the First Cause? Could we just do away with the need for a cause altogether using the probabilities of quantum physics?

Unfortunately, not. Sure, such a model would be an amazing intellectual feat. It would constitute a tremendous advance in understanding the origin of all things. But it's not good enough. Science can't happen in a vacuum. It needs a conceptual framework to operate, things like space, time, matter, energy, calculus, and conservation laws of quantities like energy and momentum. One can't build a skyscraper out of ideas, and one can't build models without concepts and laws. To ask from science to "explain" the First Cause is to ask science to explain its own structure. It's to ask for a scientific model that uses no precedents, no previous concepts to operate. And science can't do this, just as you can't think without a brain.

The mystery of the First Cause remains. You can choose religious faith as an answer, or you can choose to believe science will conquer it all. But you can also, like the Greek Skeptic Pyrrho, embrace the limits of our reach into the unknowable with humility, celebrating what we have accomplished and will surely keep on accomplishing, without the need to know all and understand all. It's okay to be left wondering.

Curiosity without mystery is blind, and mystery without curiosity is lame.

See original here:

What happened before the Big Bang? - Big Think

Spintronics: what you need to know about electron control – Verdict

Spintronics has already had profound impact on the computing industry and there is more to come.

The electron is a subatomic particle that plays an essential role in numerous physical phenomena like electricity and magnetism. It has been responsible for much of the technological marvels we see today.

Computers, reliant on the movement of electrons and their intrinsic charge, have ushered in a new era of innovation and societal development. However, as computers become small enough to fit on our wrists, quantum mechanics (the rules which govern subatomic physics) will soon prevent chips from getting any smaller.

The presence of electrons, and hence charge, on one side of a transistor (a semiconductor device which amplifies electric current) acts as something of an on switch representing a 1 and the lack of electrons represents a 0. But electrons dont really like staying in one place. They jump around. Soon, transistors will be so small that this becomes a problem.

Thankfully, electrons have another property that we can exploit. Its called spin, and manipulating electron spins could pave the way to the next generation of nanoelectronic devices.

Reduced power consumption, increased memory capacity, and improved processing capability can all be realised in applications from medicine to space research, with the aid of spintronics spin electronics.

What is spin?

Spin is a confusing area of physics but the essence of it is this: imagine the electron as a tiny bar magnet, with north pointing one way, and south the other. If the north side points up, it is a spin up electron, and if north points down it is spin down. This has nothing to do with the electron spinning like a billiard ball physicists do have a penchant for giving things confusing names.

What does this mean for our devices? Well, spin can be used to change how electrons flow which gives us more control.

Dr Amalio Fernandez-Pacheco, an EPSRC Early Career Fellow in the University of Glasgows School of Physics and Astronomy, describes it as like being given an extra note in a musical scale to play with.

Why does spintronics matter?

Giant magnetoresistance (GMR) is a spintronic effect whereby electric current can flow between layers of magnetic and non-magnetic material, depending on the spins of the magnetic layers. The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grnberg for its discovery.

GMR is at the heart of todays read heads for hard disk drives (HDDs), which manipulate the structure of the disk to store information. GMR-based read heads were introduced by IBM in 1997 and led to an increase in information density by a factor of 1000.

Random access memory (RAM), hardware that stores data temporarily, can usually only hold onto data if there is an electric current supplied. Magnetic RAM (MRAM) has been in development over the past ten years, which uses spintronic effects to allow data storage without the supply of electricity. MRAM can resist high temperatures and radiation, which has led to applications in space research and a potential future in the automotive industry.

Spintronics is set to play a key role in the development of neuromorphic computing, which aims to create artificial circuits that mimic the structure of the brain. Quantum computers, which could speed up calculations of certain tasks by orders of magnitude, can also be spin-based.

The study of spintronics encompasses a wide variety of applications and has so far proved successful in areas such as HDDs. It is the subject of intense study, and those in the tech industry should expect more spin-based revolutions in the years to come.Related Report Download the full report from GlobalData's Report StoreGet the Report

Latest report from Visit GlobalData Store

Read more here:

Spintronics: what you need to know about electron control - Verdict

Is This a Real Science Textbook Introduction? – Snopes.com

Advanced science textbooks are not generally known for their jocularity, but a purported image showing the introductory sentences from one such work is downright gloomy:

This chapter on Thermodynamics and Statistical Mechanics opens, according to the displayed snippet, by discouragingly informing readers that Ludwig Boltzmann, who spent much of his life studying statistical mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on his work, died similarly in 1933. Now it is our turn to study statistical mechanics. Perhaps it will be wise to approach the subject cautiously.

These words do in fact form the beginning of the first chapter of the book States of Matter, a text by CalTech physicist David L. Goodstein, as documented by the following extract from a digital copy of the book:

For the curious, Boltzmann was an Austrian physicist whose greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodynamics and whose efforts radically changed several branches of physics. Boltzmann, who is thought to have experienced bipolar disorder, hanged himself while on vacation in Italy in 1906.

Boltzmann was the doctoral adviser of Austrian/Dutch theoretical physicist Ehrenfest, the latter of whom made major contributions to the field of statistical mechanics and its relations with quantum mechanics. Apparently suffering from depression, in 1933 Ehrenfest traveled to Amsterdam, where he shot his 15-year-old son (a Down syndrome child who was living in a care facility) and then killed himself.

Perhaps it will be wise to approach the subject cautiously, indeed.

See more here:

Is This a Real Science Textbook Introduction? - Snopes.com

What is an Electron: Its Discovery, Nature and Everything Else | IE – Interesting Engineering

An electron is a stable and negatively charged subatomic particle that also acts as the carrier of electricity. Each electron carries one unit of negative charge (1.602 x 10-19coulomb) and has a mass of just about 1/1836th of a proton.Electrons are found both not permanently attached to atoms andwithin the nucleus.

Quantum mechanics states that electrons can not be distinguished on the basis of any intrinsic property, so all electrons have thesamemass, thesameelectric charge, and thesamespin, so they can freely interchange their positions within a system without causing a noticeable change.

The possibility of electrons was predicted by Richard Laming (1838-1851), and other scientists.Irish physicistG. Johnstone Stoney(1874) coined the term electron in 1891, to refer to the unit of charge in his experiments. In 1897, English physicist Joseph John Thomson discovered electrons while conducting experiments with cathode-ray tubes. He called electrons "corpuscles".

Thomsondirected cathode rays between two parallelaluminumplates to the end of a tube, where they could be observed as luminescence on the glass. When the top aluminum plate was negative, the rays moved down; when the top plate was positive, the rays moved up. This deflection was proportional to the difference in potential between the plates, demonstrating that cathode rays were negatively charged particles.

From this,Thomson made the following hypotheses:

Today, we know that the third hypothesis is not accurate, but this discovery of the electron revolutionized physics and paved the way for developments concerning electricity, gravitation, electromagnetism, thermal conductivity, and many other areas. For his work, Thomson was awarded the 1906 Nobel Prize in Physics.

Prior to Thomson, scientists such as Richard Fleming had previously predicted the possible existence of electrons. The ancient Greeks are said to have discovered that when amber is rubbed with fur, it attracts small objects. The Greek word for amber,elektronwas used for the force that caused this attraction.

Protons and electrons have equal, but opposite charges. Electrons are attracted to positively charged particles, such as protons. Whether or not a substance has a net electric charge is determined by the balance between the number of electrons and the positive charge of atomic nuclei. If there are more electrons than positive charges, a material is said to be negatively charged. If there is an excess of protons, the object is considered to be positively charged. If the number of electrons and protons is balanced, a material is said to be electrically neutral.

The radius of an electron is approximately 2 x 10-10cm.Neutrons and protons, together known as nucleons, form 99.9% of the total atomic massof an atom, and as compared to these particles, electrons have negligible mass value, therefore, the mass of electrons is not considered when the mass number of an atom is calculated.

The symbol for an electron is e and for proton is p+ but, interestingly, protons are not the true antiparticles to electrons. The antiparticle of the electron is the positron, whichhas an electric charge of +1 e, a spin of 1/2 (the same as the electron), and has the same mass as an electron.

Positronsare not found in nature but are formed during the decay of nuclides that have an excess of protons in their nucleus. When decaying takes place, these radionuclides emit apositronand a neutrino.

For any element, the atomic mass number is the total number of protons and neutrons in the nucleus. It is measured in the atomic mass units (amu).

Atomic Mass Number = (Number of Protons) + (Number of Neutrons)

Whereas, the atomic number is the number of protons only. For example, the atomic number of carbon is six, therefore, carbon has six protons in its nucleus and six electrons in the energy orbits surrounding the nucleus.

Electrons are described as surrounding the nucleus of an atom in shells. These are not actual structures but are regions of probability.

Atomic Number = Number of Protons

However, in the case of charged atoms also known as ions, the number of protons and electrons differ and depends on the charge on the atom. The number of neutrons for an atom can be easily calculated by subtracting the number of protons from the total atomic mass number.

Number of Neutrons = Atomic Mass Number - Number of Protons

The nature of the electric charge on any substance is defined by the number of protons and electrons in its nuclei. If the number of protons exceeds the number of electrons, then the substance is positively charged. Where there are more electrons than protons, the substance is said to have an overall negative charge. Any substance is said to be balanced or electrically neutral when the number of protons and electrons is equal.

French physicist Louis De Broglie proposed the wave nature of electrons in his 1924 Ph.D. thesis. He stated that if light and radiation can show dual behavior, then the matter can also exist as both particle and wave.

De Broglie was influenced byAlbert Einsteins theory of relativity and the photoelectric effect. Twenty years earlier, Einstein has proposedthe idea that matter on the atomic scale might exhibit the properties of a wave and a particle.This idea of the dual nature of light was just beginning to gain scientific acceptance when de Broglie extended the idea to include matter.

According to De Broglies hypothesis, any moving object, whether macroscopic or microscopic has its own wavelength, and this wavelength is inversely proportional to the size of the object.

In the years that followed, the American physicists, Clinton Davisson and Lester Germer conducted electron diffraction experiments that further confirmed the dual nature of matter given by De Broglie. In 1929, De Broglie received the Nobel Prize in Physics for his exceptional contribution to quantum physics.

Read the original:

What is an Electron: Its Discovery, Nature and Everything Else | IE - Interesting Engineering

Exploring The Limitations of Quantum Machine Learning – Analytics India Magazine

In Quantum computing, users can physically control parameters like Electromagnetic fields strength, frequency of a laser pulse, or others to solve problems. Thus, Quantum computers can be trained like neural networks. The biggest advantage of quantum computers is that they can produce patterns that classical systems are thought to have difficulties in producing. Therefore, its reasonable to assume that quantum computers may outperform classical computers on Machine Learning tasks. This has led to a new field called quantum machine learning.

Become AChartered Data ScientistAchieve the highest distinction in the data science professionREGISTER NOW

Quantum technologies can enhance learning algorithms. This is known as quantum-enhanced machine learning. The most common application of quantum computers in the field refers to machine learning algorithms for the analysis of data that couldnt be executed through classical computing.

Quantum Machine Learning increases the computation speed and can manage data storage done by algorithms in a programme. It extends the proof of learning by running machine learning algorithms on new computing devices- quantum computers. The information processing depends on quantum physics and its law, substantially different from computer models.

However, the field of Quantum Machine Learningrightfully still operates in the realms of science that is closer to fiction.The limitations are palpable.

Recent research at the Los Alamos National Laboratory showed that Quantum Machine Learning cannot be used to investigate processes like Quantum Chaos and terminalization. This places a big limit on the learning of any new process linked to it through Quantum computing. The study was based on a Hayden-Preskill thought experiment. A fictitious character Alice tosses her book inside the black hole.

The book was pulled out by Bob, who used entanglement to pull it out. Through any computation bringing the book back to its original state is impossible. Though the book was pulled out using quantum computing algorithms, the information was scrambled and no quantum machine learning model could unscramble the book back to its original state. The research also found out that Bob can unscramble the book by collecting a few photons from the black hole and learning its dynamics but the answer to that cannot be reached through Quantum Machine Learning.

The size of the system determines the scalability and the difficulty in problem-solving increases exponentially when the problem is complex or data is large. The research proves that though Quantum computing is the solution to problems it has its limitations and challenges due to its dependence on raw physics and the unadvanced nature of other technologies that help in the hardware and software development of quantum computers on which complex algorithms can be created and run.

The frequent challenge that troubles researchers is isolation. Quantum decoherence can be caused by heat and light, when subjected to such conditions qubits can lose their quantum properties like entanglement that further leads to a loss in data stored in these qubits. Secondly, rotations in quantum computers logic gates are prone to error and these are also crucial to change the state of the qubit. Any wrong rotation can cause an error in the output. The requirement of computers with a greater circuit length and error correction( with redundancy for every qubit) is also crucial for the field of quantum machine learning.

The developer of algorithms for Quantum computers has to be concerned about their physics. While a classical algorithm can be developed along the lines of the Turing machine, to develop an algorithm for Quantum computers, the developer has to base it along the lines of raw physics with no simple formulas that would link it to logic.

The critical issue in such a design is always scalability. Designing a program to operate on larger data with more processing power. Very little information is available to develop such algorithms for quantum computing. Most of the development is therefore intuitive. Most known Quantum algorithms suffer from a proviso of specific simulations that limit their practical applicability and it becomes difficult to develop models that can have a significant impact on machine learning. The third limitation in quantum computing is that the number of qubits one can have on a quantum circle is limited. Though these limitations are applicable to quantum computing in general, the augmentation of fields such as machine learning can grab more eyeballs and push the field in the right direction.

I am a journalism undergrad who loves playing basketball and writing about finance and technology. I believe in the power of words.

More:

Exploring The Limitations of Quantum Machine Learning - Analytics India Magazine

Archer Materials CEO talks about importance of moving to Lot Fourteen as it develops 12CQ chip – Proactive Investors Australia

Lot Fourteen is a competitive and future industries-focused innovation precinct located in Adelaide.

() () (FRA:38A) CEO Dr Mohammad Choucair has sent a letter to investors outlining the importance of the companys move to the fledgling innovation precinct Lot Fourteen in Adelaide.

As reported by Proactive, Archer has relocated its head office to the Lot Fourteen innovation precinct in Adelaide, South Australia.

The company, which is hard at work developing its flagship 12CQ chip - a world-first qubit processor technology that will enable quantum computing-powered devices for mobile and data-centric applications - made the move to be closer to quantum computing end users.

Hardware and software firms working together at an early stage of technology development provides a foundation for success in the computing industry and our recent move to Lot Fourteen is a step in that direction, aligning us with quantum computing end users and potential collaborative partners, Dr Choucair said.

Lot Fourteen is focusing on the high-growth industries of space, defence and hi-tech, encompassing cybersecurity, artificial intelligence, machine learning and big data.

All of these high-growth industries could benefit from quantum computing and in some instances require integrated quantum processor hardware to reach their full potential.

We expect our 12CQ quantum processor chip technology to create entirely new quantum computing powered mobile devices that enable industry-wide innovation, and we are already actively working with global leaders in computing and AI to enable the operation of our 12CQ chip in high impact end-use applications.

Archer began collaborating with leading AI and machine learning company Max Kelsen in December last year, to develop quantum algorithms relevant to the operation of the 12CQ quantum computing processor.

It is currently working on optimising Quantum Neural Networks, which could be relevant to consumer and enterprise-scale AI technology products.

The company also passed a key technological milestone earlier this year, with electronic transport achieved in a single qubit at room temperature.

Archer also signed a quantum computing agreement with IBM Corporation () thatprogressesthe work conducted with IBM under a previous agreement.

There is an immense amount of value to be generated and captured from outperforming modern computing using mobile quantum devices, spanning autonomous tech, cybersecurity, AI and big data, blockchain, space, and finance, Dr Choucair said.

We continue to make significant progress in the development of our 12CQ quantum chip, and I look forward to updating you on key technical advances, international patent prosecution, and collaborations with local and international industry members of the deep tech ecosystem.

Quantum computing aims to utilise quantum mechanical phenomena to power the next generation of computers.

At a basic level, quantum mechanics describes the way nature and matter function at the scale of atoms and subatomic particles. Thisis fundamentally different from the way they function at the many scales above that size (which is described by classical physics).

Functioning quantum computers remain a matter of theory at this point in time but, should they be successfully developed, it is hypothesised that they could solve computational problems substantially faster than existing computers.

- Daniel Paproth

See the original post here:

Archer Materials CEO talks about importance of moving to Lot Fourteen as it develops 12CQ chip - Proactive Investors Australia

Quantum Physics to Disrupt Geospatial Industry over the Coming Decade – GIM International

Article

5 Questions to Hansjrg Kutterer, DVW

April 1, 2021

Innovative developments based on quantum physics will lead to further disruption of our professional field over the coming decade, predicts Hansjrg Kutterer who, besides being president of DVW, is also a professor of geodetic Earth system science. 'GIM International'asked him five questions relating to the challenges and opportunities in the geospatial industry, now and in the future.

2020 was an extraordinary year. How has the COVID-19 pandemic changed the way the industry operates, and which other factors are influencing the geospatial business?

The pandemic was and is extremely influential on our professional life. At very short notice, we had to considerably change our approaches from on-site and immediate to remote and fully virtual settings. Fortunately, we could benefit from the ongoing digital transformation. The existing digital infrastructure and established procedures based on digital communication and collaboration tools could be used in order to overcome obstacles caused by the pandemic. Thus, it was possible to provide effective substitutes in the given situation, such as digital meetings, digital conferences or digital teaching. Nevertheless, both technical capacities and personal capabilities needed rapid upgrades. Actually, the accelerated digitalization is both an opportunity and an obligation for the geospatial business, as work can generally be continued on a digital basis but very often relies on digital geospatial data.

Which new technologies do you foresee becoming important to your work?

This is going to be the decade of continuous Earth observation based on a sustainably maintained infrastructure and a comprehensive open-data policy. The European Copernicus system may serve as an example. Rapidly increasing amounts of heterogeneous geospatial data are obtained within very short time spans. These new opportunities are accompanied by the strong need for effective data management using integrated research data infrastructures, for example. Moreover, advanced data processing is required which comprises things like deep learning techniques. I also expect that innovative developments based on quantum physics will lead to further disruption of our professional field over the coming decade. Quantum sensors such as optical clocks will provide accurate height differences over large distances, and quantum computers will further speed up time-consuming computations.

Is the surveying profession able to attract enough qualified personnel?

The number of qualified personnel is becoming increasingly crucial for the further development of the surveying profession. Despite the broad appeal of our professional field and the high number of vacancies, there is still a lack of public visibility and thus limited awareness among potential candidates. For this reason, there have been various activities in Germany over the years aimed at reaching and attracting more young people to the industry. For example, the Instagram campaign #weltvermesserer has been launched in 2021 by a consortium consisting of all national stakeholders, including the private sector, administration, science and all relevant professional organizations. Both the expected impact of this campaign and the increasing interdisciplinary nature of our professional community will provide a good basis for tackling this sizeable challenge successfully.

What is your policy on crowdsourcing and open data?

Due to my academic role and my volunteer position within DVW, my answer is twofold. Open data policies are mandatory for a more comprehensive scientific, administrative or private exploitation of existing and newly incoming data. This definitely refers to all stakeholders who rely on geospatial data. Data generated and used in science and education must be open and available through efficient digital data infrastructures. Sustainable open-data initiatives and programmes are highly appreciated. Crowdsourcing offers the opportunity to collect data that is either outside the scope of public agencies or could offer an alternative to existing administrative data that is only available with a licence. The DVW organization encourages any initiative that advances the fields of geodesy, geoinformation and land management.

In terms of meeting your goals, what is the biggest challenge for your organization in the next five years?

As a university professor I am very aware of the increasing need of the professional community for enhanced capabilities in the digital transformation, in smart and integrated systems, in the widespread application of our contributions, and in interdisciplinary work. This needs to be further implemented in the curricula over the coming years, including effective digital settings and dedicated competence-oriented techniques. Actually, this is also linked to DVWs activities, albeit from the perspective of a non-profit organization. As DVW, we offer professional expertise, conferences, post-graduate training, highly skilled working groups, and last but not least an attractive networking platform for our members, essentially based on volunteering. This needs to be sustainably maintained and further developed.

Read more:

Quantum Physics to Disrupt Geospatial Industry over the Coming Decade - GIM International

Imaginarity: New Paper Says The Imaginary Part Of Quantum Mechanics Can Be Observed – Science 2.0

Mathematics is a language and languages can be used to create stories. It just takes imagination to create time travel or wormholes or theories of strings or lots of nice things theoretical physicists throw into arXiv.

Sometimes math has to create a story because real numbers don't work, even if the physics does.

Wave-particle duality, a foundation of quantum mechanics, has a fascinating science history. James Clerk Maxwell, whose equations govern the device you are reading this article on, couldn't explain everything - he died of cancer at age 46. It was left to Albert Einstein a generation later, in his 1905 paper, to describe light as photons containing properties of both particles and electromagnetic fields - the waves of Maxwell.

In 1923, Louis de Broglie came up with an idea for how particles could behave like waves and then two physicists at Western Electric, Lester Germer and Clinton Davisson, proved it with electrons. But there was still something missing from that physical proof - an explanation using using real numbers. I mentioned Maxwell's Equations being fundamental to the device you are this reading on, and they are the basis for a trillion-dollar industry, but despite that I wish you good luck defining a magnetic field without being recursive (like it's a field in the presence of a magnet). So it goes with wave-particle duality without using imaginary numbers. Real numbers are for measurable physical quantities. This has not really been an obstacle. Sometimes things work even if it's a bit of a black box how, so complex numbers have real and imaginary aspects; a and bi. a and b are real while i is imaginary.

A new paper says that rather than complex numbers being a purely mathematical invention to "facilitate calculations for physicists", quantum states and complex numbers are instead ironically and inextricably linked. They even can show it experimentally.

There is no i in the real world. You can have one pair of shoes, you can have two, and if the dog takes the left one you can have 1/2 of a pair of shoes but you can never have i pairs of shoes - shoes are not roots of negative numbers. Yet quantum mechanics deals with probability - if it will behave like a particle or a wave a la Schrdinger. Such changes in 'time' are called the wave function,and i is next to the wave function in Schrdinger's equation.

Complex numbers have an amplitude and phase and i describes the phase. Without it, the sum of all the probabilities can't be equal to one.

All fine for math, but you can see why the public thinks that is not real, any more than subject-verb agreement in a story is "real", even as it's important, or that adjectives need to go in a certain order - "size comes before colour, green great dragons can't exist"- in a story. Obviously such a thing can exist, English is not the only language and I am tempted to write a story in English using no adjective in commonly accepted order because I am a rebel. That is why complex numbers also have their place when the math is not middle school.

Scientists have debated whether or not the quantum realm can be shown with real numbers. That is what the new paper sought to answer, and they used our old friends Alice and Bob, from the seminal 1978 paper by Rivest and Adleman, when encryption was already a big concern.

If two photons are in one of two quantum states, you need complex numbers to tell them apart. Only then can you send one photon to Alice and the other to Bob where they can be measured and compared.

"Let's assume Alice and Bob's measurement results can only take on the values of 0 or 1. Alice sees a nonsensical sequence of 0s and 1s, as does Bob. However, if they communicate, they can establish links between the relevant measurements. If the game master sends them a correlated state, when one sees a result of 0, so will the other. If they receive an anti-correlated state, when Alice measures 0, Bob will have 1. By mutual agreement, Alice and Bob could distinguish our states, but only if their quantum nature was fundamentally complex," says co-author Dr. Alexander Streltsov from the University of Warsaw.

More importantly, if you value experimental physics over theoretical, is that they did an experiment using linear optics. It proved "that complex numbers are an integral, indelible part of quantum mechanics."

Credit: USTC

What does it all mean in a practical sense? Quantum superposition in the real world has been a pipe dream since I was young but that is because it is evolutionary in the real world unlike revolutionary in the theoretical. Yet the real world has to accept that some things will always be complex and proceed from there. This paper moves us along that path.

Continued here:

Imaginarity: New Paper Says The Imaginary Part Of Quantum Mechanics Can Be Observed - Science 2.0

The mystery of the muon’s magnetism | symmetry magazine – Symmetry magazine

Modern physics is full of the sort of twisty, puzzle-within-a-puzzle plots youd find in a classic detective story: Both physicists and detectives must carefully separate important clues from unrelated information. Both physicists and detectives must sometimes push beyond the obvious explanation to fully reveal whats going on.

And for both physicists and detectives, momentous discoveries can hinge upon Sherlock Holmes-level deductions based on evidence that is easy to overlook. Case in point: the Muon g-2 experiment currently underway at the US Department of Energys Fermi National Accelerator Laboratory.

The current Muon g-2 (pronounced g minus two) experiment is actually a sequel, an experiment designed to reexamine a slight discrepancy between theory and the results from an earlier experiment at Brookhaven National Laboratory, which was also called Muon g-2.

The discrepancy could be a sign that new physics is afoot. Scientists want to know whether the measurement holds up or if its nothing but a red herring.

The Fermilab Muon g-2 collaboration has announced it will present its first result on April 7. Until then, lets unpack the facts of the case.

Illustration by Sandbox Studio, Chicago with Steve Shanabruch

All spinning, charged objectsincluding muons and their better-known particle siblings, electronsgenerate their own magnetic fields. The strength of a particles magnetic field is referred to as its magnetic moment or its g-factor. (Thats what the g part of g-2 refers to.)

To understand the -2 part of g-2, we have to travel a bit back in time.

Spectroscopy experiments in the 1920s (before the discovery of muons in 1936) revealed that the electron has an intrinsic spin and a magnetic moment. The value of that magnetic moment, g, was found experimentally to be 2. As for why that was the valuethat mystery was soon solved using the new but fast-growing field of quantum mechanics.

In 1928, physicist Paul Diracbuilding upon the work of Llewelyn Thomas and othersproduced a now-famous equation that combined quantum mechanics and special relativity to accurately describe the motion and electromagnetic interactions of electrons and all other particles with the same spin quantum number. The Dirac equation, which incorporated spin as a fundamental part of the theory, predicted that g should be equal to 2, exactly what scientists had measured at the time.

But as experiments became more precise in the 1940s, new evidence came to light that reopened the case and led to surprising new insights about the quantum realm.

Illustration by Sandbox Studio, Chicago with Steve Shanabruch

The electron, it turned out, hada little bit of extra magnetism that Diracs equation didnt account for. That extra magnetism, mathematically expressed as g-2 (or the amount that g differs from Diracs prediction), is known as the anomalous magnetic moment. For a while, scientists didnt know what caused it.

If this were a murder mystery, the anomalous magnetic moment would be sort of like an extra fingerprint of unknown provenance on a knife used to stab a victima small but suspicious detail that warrants further investigation and could unveil a whole new dimension ofthe story.

Physicist Julian Schwinger explained the anomaly in 1947 by theorizing that the electron could emit and then reabsorb a virtual photon. The fleeting interaction would slightly boost the electrons internal magnetism by a tenth of a percent, the amount needed to bring the predicted value into line with the experimental evidence. But the photon isnt the only accomplice.

Over time, researchers discovered that there was an extensive network of virtual particles constantly popping in and out of existence from the quantum vacuum. Thats what had been messing with the electrons little spinning magnet.

The anomalous magnetic moment represents the simultaneous combined influence of every possible effect of those ephemeral quantum conspirators on the electron. Some interactions are more likely to occur, or are more strongly felt than others, and they therefore make a larger contribution. But every particle and force in the Standard Model takes part.

The theoretical models that describe these virtual interactions have been quite successful in describing the magnetism of electrons. For the electrons g-2, theoretical calculations are now in such close agreement with the experimental value that its like measuring the circumference of the Earth with an accuracy smaller than the width of a single human hair.

All of the evidence points to quantum mischief perpetrated by known particles causing any magnetic anomalies. Case closed, right?

Not quite. Its now time to hear the muons side of the story.

Illustration by Sandbox Studio, Chicago with Steve Shanabruch

Early measurements of the muons anomalous magnetic moment at Columbia University in the 1950s and at the European physics laboratory CERN in the 1960s and 1970s agreed well with theoretical predictions. The measurements uncertainty shrank from 2% in 1961 to 0.0007% in 1979. It looked as if the same conspiracy of particles that affected the electrons g-2 were responsible for the magnetic moment of the muon as well.

But then, in 2001, the Brookhaven Muon g-2 experiment turned up something strange. The experiment was designed to increase the precision from the CERN measurements and look at the weak forces contribution to the anomaly. It succeeded in shrinking the error bars to half a part per million. But it also showed a tiny discrepancyless than 3 parts per millionbetween the new measurement and the theoretical value. This time, theorists couldnt come up with a way to recalculate their models to explain it. Nothing in the Standard Model could account for the difference.

It was the physics mystery equivalent of a single hair found at a crime scene with DNA that didnt seem to match anyone connected to the case. The question wasand still iswhether the presence of the hair is just a coincidence, or whether it is actually an important clue.

Physicists are now re-examining this hairat Fermilab, with support from the DOE Office of Science, the National Science Foundation and several international agencies in Italy, the UK, the EU, China, Korea and Germany.

In the new Muon g-2 experiment, a beam of muonstheir spins all pointing the same directionare shot into a type of accelerator called a storage ring. The rings strong magnetic field keeps the muons on a well-defined circular path. If g were exactly 2, then the muons spins would follow their momentum exactly. But, because of the anomalous magnetic moment, the muons have a slight additional wobble in the rotation of their spins.

When a muon decays into an electron and two neutrinos, the electron tends to shoot off in the direction that the muons spin was pointing. Detectors on the inside of the ring pick up a portion of the electrons flung by muons experiencing the wobble. Recording the numbers and energies of electrons they detect over time will tell researchers how much the muon spin has rotated.

Using the same magnet from the Brookhaven experiment with significantly better instrumentation, plus a more intense beam of muons produced by Fermilabs accelerator complex, researchers are collecting 21 times more data to achieve four times greater precision.

The experiment may confirm the existence of the discrepancy; it may find no discrepancy at all, pointing to a problem with the Brookhaven result; or it may find something in between, leaving the case unsolved.

Illustration by Sandbox Studio, Chicago with Steve Shanabruch

Theres reason to believe something is going on that the Standard Model hasnt told us about.

The Standard Model is a remarkably consistent explanation for pretty much everything that goes on in the subatomic world. But there are still a number of unsolved mysteries in physics that it doesnt address.

Dark matter, for instance, makes up about 27% of the universe. And yet, scientists still have no idea what its made of. None of the known particles seem to fit the bill. The Standard Model also cant explain the mass of the Higgs boson, which is surprisingly small. If the Fermilab Muon g-2 experiment determines that something beyond the Standard Modelfor example an unknown particleis measurably messing with the muons magnetic moment, it may point researchers in the right direction to close another one of these open files.

A confirmed discrepancy wont actually provide DNA-level details about what particle or force is making its presence known, but it will help narrow down the ranges of mass and interaction strength in which future experiments are most likely to find something new. Even if the discrepancy fades, the data will still be useful for deciding where to look.

It might be that a shadowy quantum figure lurking beyond the Standard Model is too well hidden for current technology to detect. But if its not, physicists will leave no stone unturned and no speck of evidence un-analyzed until they crack the case.

Read the original post:

The mystery of the muon's magnetism | symmetry magazine - Symmetry magazine

Your Guide to Products and Technologies That Are Pseudoscience – Interesting Engineering

Miracle drugs and revolutionary products seem to pop up daily in todays social-media-driven world. Maybe its a magic diet that will make you lose 20 pounds in a week or an amino-acid-fortified shampoo that cures baldness in 24 hours. But one way or the other, theres a good chance youve come across a few of them.

Unfortunately, these so-called miracle products are generally terrible disappointments. And that shouldnt be surprising. Most if not all of these magic products have little to no scientific evidence backing them. At best, they are a waste of your time and money. At worst? They can lead to sickness or even death.

Here's a guide to everything you need to know about pseudoscience, how to spot fake products, and a list of some of the most popular products and technologies that are all hype and no science.

First things first what exactly is pseudoscience? The word pseudo means "false," so pseudoscience simply translates to false science. Or better put it is nonsense dressed up as science. Pseudoscience is almost always either loosely based on real science or what sounds like science.

In his recently published research paper, Sven Hanson, a Swedish philosopher, defines pseudoscience as "a doctrine that is claimed to be scientific in spite of not being so." He goes on to say that, unlike science, which is open to change and new information, pseudoscience is ideological in nature. It is "characterized by a staunch commitment to doctrines that are irreconcilable with legitimate science."

Hanson identifies the three major boxes that pseudoscience must check as: 1) It refers to issues that rest within the domain of science. 2) Its results are unreliable (not reproducible). 3) It is based on a body of knowledge that is ideological and generally stands as a doctrine

According to Hanson, pseudotechnology is, an alleged technology that is irreparably dysfunctional for its intended purpose since it is based on construction principles that cannot be made to work. To paraphrase, it doesnt do what its supposed to and can never do so. Interestingly, the term pseudotechnology is pretty unpopular. In fact, as of April 2020, the word pseudoscience was searched on Google 700 times more than pseudotechnology, notes Hanson.

And heres why you dont hear so much about pseudotechnology if a piece of tech doesnt work, youll know right there on the spot. Additionally, a technology typically only impacts the end-user (or those near to them). Science, on the other hand, involves all-encompassing concepts that usually impact us all and is more difficult to refute than a technology that does or does not do a specific thing.

In an ideal world, pseudoscience would be easy to spot. Unfortunately, the many so-called experts who promote these products usually make the task more challenging. For instance, Dr. Mehmet Oz, a doctor and popular TV host, has been repeatedly accused of peddling pseudoscientific information on his show and even had to appear before the US senate in 2014. In one of his episodes, he proclaimed green coffee extract as a magic weight-loss compound. In his defense, a handful of research studies did report a mildweight-loss benefit for this compound. But heres the kicker: these studies are based on poor methodological quality, according to a systematic review on the subject published in Gastroenterology Research and Practice.

In short, Dr. Oz's claims were not based on reliable peer review or what actual science shows.

Elsewhere, Goop, Gwyneth Paltrows company, has also been heavily criticized for peddling false health claims. In fact, in 2018, they were forced to pay a $145,000 settlement in a lawsuit they faced for peddling false health claims for financial profit. For instance, Goop claimed that one of their products the vaginal jade egg could regulate menstrual cycles, balance hormones, increase bladder control and prevent urinary prolapse. Wow. Sounds like a cureall.

Unfortunately, it cannot do any of those things.

So, how do you ensure you dont fall for con artists parading as scientists? Well, here are a few telltale signs of pseudoscience-based products.

They rely heavily on testimonials

As far as real science is concerned, you dont need to oversell anything. If it works, your results should do the talking. But marketers of pseudoscientific products understand that people respond well to emotional stimulation and the story of others. So, instead of sharing real data, they emphasize the numerous testimonials they have from current users.

If the science behind a product is legit, the manufacturers will go out of their way to share the results. Testimonials will only be secondary. But if you find a so-called science-based product that is marketed largely based on testimonials, then be careful... its probably a scam.

Theyre based on new and evolving sciences

Evolving sciences are a major breeding ground for quacks and people who want to get away with whatever explanation they provide. This isnt yet fully understood, but it works, is the catchphrase they use to deceive the innocent public, so you might want to look out for that.

Speaking of evolving sciences, quantum mechanics has been heavily abused in this regard. For instance, one business created a so-called tick-repelling barrier that supposedly utilizes the "power of the bio-energetic field which surrounds all living things"to create a repelling barrier against insects and its all based on "natures energetic principles in combination with physics, quantum physics, and advanced computer software technology". But guess what quantum physics doesn't work like that.

One Product cures many diseases

Okay heres the thing the human body is very complex and even a single disease can have multiple root causes. So, the idea of a single product curing multiple ailments is simply impractical and irrational no matter how many testimonials they display or how shiny the science looks.

They ignore real scientific processes

Evidence-based products or treatments undergo multiple steps in the scientific process before theyre released for public use. For a new medicine or treatment, such steps may include basic lab research, animal tests, clinical trials, and eventually, peer-reviewed publications. If a so-called miracle product hasnt been rigorously tested enough to result in a published peer-reviewed paper, you should probably stay away from it.

One Genius figured it out

While it may be easy for a fictional Tony Stark to create some of the world's greatest technologies all by himself, the truth is far from this in the real world. Even geniuses like Elon Musk and Bill Gates dont claim to figure out everything all by themselves.

The truth is that science and medicine have been practiced for thousands of years. And even the most novel findings are largely based on building on the existing knowledge provided by many people. So, when you hear that one person figured out some new technique or cure overnight, without it going through some sort of critique or review by other experts, you can almost be certain its pseudoscience.

Read the rest here:

Your Guide to Products and Technologies That Are Pseudoscience - Interesting Engineering

‘Spacekime theory’ could speed up research and heal the rift in physics – Big Think

We take for granted the western concept of linear time. In ancient Greece, time was cyclical and if the Big Bounce theory is true, they were right. In Buddhism, there is only the eternal now. Both the past and the future are illusions. Meanwhile, the Amondawa people of the Amazon, a group that first made contact with the outside world in 1986, have no abstract concept of time. While we think we know time pretty well, some scientists believe our linear model hobbles scientific progress. We're missing whole dimensions of time, in this view, and our limited perception could be the last obstacle to a sweeping theory of everything.

Theoretical physicist Itzhak Bars of the University of Southern California, Los Angeles, is the most famous scientist with such a hypothesis, known as two-time physics. Here, time is 2D, visualized as a curved plane interwoven into the fabric of the "normal" dimensionsup-down, left-right, and backward-forward. While the hypothesis is over a decade old, Bars isn't the only scientist with such an idea. But what's different with spacekime theory is that it uses a data analytics approach, rather than a physics one. And while it posits that there are at least two dimensions of time, it allows for up to five.

In the spacekime model, space is 5D. Besides the ones we normally encounter, the extra dimensions are so infinitesimally small, we never notice them. This relates to the KaluzaKlein theory developed in the early 20th century, which stated that there might be an extra, microscopic dimension of space. In this view, space would be curved like the surface of Earth. And like Earth, those who travel the entire distance would, eventually, loop back to their place of origin.

Kaluza-Klein theory unified electromagnetism and gravity, but wasn't accepted at the time, although it did help in the search for quantum gravity. The concept of additional dimensions was revived in the 1990s with Paul Wesson's Space-Time-Matter Consortium. Today, proponents of superstring theory say there may be as many as 10 different dimensions, including nine of space and one of time.

Spacekime theory was developed by two data scientists. Dr. Ivo Dinov is the University of Michigan's SOCR Director, as well as a professor of Health Behavior and Biological Sciences, and Computational Medicine and Bioinformatics. SOCR stands for: Statistics Online Computational Resource designs. Dr. Dinov is an expert in "mathematical modeling, statistical analysis, computational processing, scientific visualization of large datasets (Big Data) and predictive health analytics." His research has focused on mathematical modeling, statistical inference, and biomedical computing.

His colleague, Dr. Milen Velchev Velev, is an associate professor at the Prof. Dr. A. Zlatarov University in Bulgaria. He studies relativistic mechanics in multiple time dimensions, and his interests include "applied mathematics, special and general relativity, quantum mechanics, cosmology, philosophy of science, the nature of space and time, chaos theory, mathematical economics, and micro-and-macroeconomics."

Drs. Dinov and Velev began developing spacekime theory around four or five years ago, while working with big data in the healthcare field. "We started looking at data that intrinsically has a temporal dimension to it," Dr. Dinov told me during a video chat. "It's called longitudinal or time varying data, longitudinal time varianceit has many, many names. This is data that varies with time. In biomedicine, this is the de facto, standard data. All big health data is characterized by space, time, phenotypes, genotypes, clinical assessments, and so forth."

"We started asking big questions," Dinov said. "Why are our models not really fitting too well? Why do we need so many observations? And then, we started playing around with time. We started digging and experimenting with various things. And then we realized two important facts.

"Number one, if we use what's called color-coded representations of the complex plane, we can define spacekime, or higher dimensional spacetime, in such a way that it agrees with the common observations that we make in (the longitudinal time series in) ordinary spacetime. That agreement was very important to us, because it basically says, yes, the higher dimensional theory does not contradict our common observations.

"The second realization was that, since this extra dimension of time is imperceptible, we needed to approximate, model, or estimate, one of the unobservable time characteristics, which we call the kime phase. After about a year, we discovered that there is a mathematically elegant tool called the Laplace Transform that allows us to analytically represent time series data as kime-surfaces. Turns out, the spacekime mathematical manifold is a natural, higher dimensional extension of classical Minkowski, four-dimensional spacetime."

Our understanding of the world is becoming more complex. As a result, we have big data to contend with. How do we find new ways to analyze, interpret and visual such data? Dinov believes spacekime theory can help in some pretty impressive ways. "The result of this multidimensional manifold generalization is that you can make scientific inferences using smaller data samples. This requires that you have a good model or prior knowledge about the phase distribution," he said. "For instance, we can use spacekime process representation to better understand the development or pathogenesis to model the distributions of certain diseases.

"Suppose we are evaluating fMRIs of Alzheimer's disease subjects. Assume we know the kime phase distribution for another cohort of patients suffering from amyotrophic lateral sclerosis, Lou Gehrig's disease. The ALS kime-phase distribution could be used for evaluating the Alzheimer's patients," and many other neurodegenerative populations. Dinov also thinks spacekime analytics could help improve political polling, increase our understanding of complex financial and environmental events, and even the innerworkings of the human brain, all without having to take the huge samples required today to make accurate models or predictions. Spacekime theory even offers opportunities to design novel AI analytical techniques. But it goes beyond that.

Spacekime theory can help us make headway on some of the most pernicious inconsistencies in physics, such as Heisenberg's uncertainty principle and the seemingly irreconcilable rift between quantum physics and general relativity, what's known as "the problem of time."

Dinov wrote that the "approach relies on extending the notions of time, events, particles, and wave functions to complex-time (kime), complex-events (kevents), data, and inference-functions." Basically, working with two points of time allows you to make inferences on a radius of points associated with a certain event. With Heisenberg's uncertainty principle, according to this model, since time is a plane, a certain particle would be in one position or phase, time-wise, in terms of velocity, and another phase, in terms of position.

This idea of hidden dimensions of time is a little like Plato's allegory of the cave or how an X-ray signifies what's underneath, but doesn't convey a 3D image. From a data science perspective, it all comes down to utility. Dinov believes that if we can calculate the true phase dispersion of complex phenomena, we can better understand and control them.

Drs. Dinov and Velev's book on spacekime theory comes out this August. It's called "Data Science: Time Complexity, Inferential Uncertainty, and Spacekime Analytics".

From Your Site Articles

Related Articles Around the Web

Excerpt from:

'Spacekime theory' could speed up research and heal the rift in physics - Big Think

Can science explain the mystery of consciousness? – The Irish Times

In the second part of a series on the science of consciousness, Sen Duke features those who believe the human brain works more like a quantum computer.

The mystery of consciousness, according to Roger Penrose, the 89-year-old winner of the 2020 Nobel Prize in physics, will only be solved when an understanding is found for how brain structures can harness the properties of quantum mechanics to make it possible.

Penrose, emeritus professor of mathematics at the University of Oxford a collaborator of the late Stephen Hawking who won the Nobel for his work on the nature of black holes, has been interested in consciousness since he was a Cambridge graduate student. He has authored many books on consciousness, most notably The Emperors New Mind (1989), and believes it to be so complex that it cannot be explained by our current understanding of physics and biology.

As a young mathematician, Penrose believed, and still does today, that something is true, not because it is derived from the rules or axioms, but because its possible to see that its true. The ultimate truth in mathematics, he reasoned, cannot, therefore, be proven by following algorithms; a set of calculations performed to instruction.

It followed, Penrose deduced, that the truth of how consciousness operates in the brain may not be provable by algorithms or thinking of the brain as a computer. This idea set off a life-long quest to understand the mysterious processes governing consciousness going on in our heads, which, Penrose says, remain beyond our existing understanding of physics, mathematics, biology or computers.

After The Emperors New Mind was published, Penrose received a letter from Stuart Hameroff, professor of anaesthesiology at the University of Arizona, who also had a long interest in understanding consciousness. In the letter, Hameroff described tiny structures in the brain called microtubules, which he believed were capable of generating consciousness by tapping into the quantum world.

Hameroff, who has worked as an anaesthesiologist for 45 years, believes anaesthesia may work through specifically targeting consciousness through its action on the neural microtubules. After writing the letter, he met Penrose in 1992, and over the next two years they developed radical ideas about consciousness which ran counter to the thinking of most neuroscientists, and still do.

Penrose and Hameroff believe that the human brain works more like a quantum computer than any classical computers. This is because future quantum computers will be designed to harness the ability of quantum particles to exist in multiple locations, states and positions all at once. These quantum effects arise in the microtubules, they suggest, which then act as the brains link to the quantum world.

The microtubules were structures that Hameroff had studied in since his graduate student days. They interested him initially, he recalls, because of their role in cancer. The microtubules were crucial to cell division, by splitting chromosomes perfectly in two. If microtubules did not function then chromosomes could be divided unevenly in three or four, not two, he says, thus triggering cancer.

The central role that the microtubules played in cell division, led Hameroff to speculate that they were controlled by some form of natural computing. In his book Ultimate Computing (1987), he argues that microtubules have sufficient computation power to produce thought. He also argues that the microtubules the tiny structures which give the cell its shape and act like a scaffold are the most basic units of information processing in the brain, not the neurons.

The fact that microtubules are found in animals, plants and even single-celled amoeba, says Hameroff means that consciousness is probably widespread and exists at many levels. The way microtubules work to produce consciousness, he says, can be thought of as being similar to how a conductor directs the sounds produced by individual musicians and orchestrates it into a coherent functioning orchestra.

Consciousness will be a different experience in humans compared to amoeba, says Hameroff. A single-celled organism might have proto-consciousness; that is consciousness without no memory, without context, isolated, not connected with anything else, and occurring at low intensity. There wouldnt be any sense of self memory or meaning, but there would be some glimmer of feeling or awareness.

Penrose agreed with Hameroff that the microtubules could possibly maintain the quantum coherence needed for complex thought and a collaboration began that continues today. Consciousness, the two believed, was a non-logarithmic, quantum process that could only be understood by a theory that linked the brain to quantum mechanics.

This led Penrose and Hameroff to develop a theory called orchestrated reduction, or OR. This proposed that areas of the brain where consciousness occurs must be structured so that they can hold innumerable quantum possibilities all at once per the rules of quantum mechanics while permitting the controlled reduction of such endless possibilities, without destroying the quantum system.

The microtubules were, both agreed, the best currently known structures in the brain where quantum processes could take place in a stable way and be harnessed to generate our conscious experience. They agreed that consciousness might ultimately be found in many locations across the brain, not just confined to the microtubules.

According to Hameroff, the presence of pyramid-shaped cells containing microtubules organised to run in two directions, rather than in parallel, which is more usual, was the difference between the parts of the brain where consciousness happens and the unconscious brain. Its notable, he says, that these pyramidal cells are not present in the cerebellum; an area considered to be unconscious.

One of the main criticisms of the Penrose-Hameroff quantum-based theory of consciousness is that there is no way to measure whether quantum processes are happening in the microtubules or any other parts of the brain. Penrose accepts such criticism but believes such measurements will become possible over the long term.

Hameroff already has plans to test whether quantum states exist inside microtubules. If he can prove this, his next step will be to see if such states disappear under anaesthesia. If they do then he says it strengthens the theory that microtubules host conscious thought.

Brain scanning techniques like PET and MRI, have become very powerful but are of little or no use in consciousness studies, says Penrose. They can, he notes, monitor blood flow and where activity is happening in the brain but they cant say whether that activity involves conscious thought. For that something else is required.

One way to measure thought, some scientists believe, is by observing brainwaves. For example, some evidence suggests that brainwaves, oscillating at about 40 Hertz, can be correlated with consciousness.

Penrose and Hameroff would like to find evidence for quantum brain oscillations in the microtubules but have no tools yet to achieve this.

This is a long-term project, which I dont see resolving for many years, says Penrose who, given his age, would like to see things moving faster. I feel pretty sure that we havent really understood fully how biological systems are organised and how they may be taking advantage of the subtle effects of [quantum] physics.

The big difficulty with trying to measure quantum processes in the brain, Penrose points out, is that such effects are destroyed when they are observed or brought into contact with the outside world. It is going to be very hard to have direct access to consciousness, as to observe it, currently, would be to destroy it.

Read more here:

Can science explain the mystery of consciousness? - The Irish Times