Research leaders at Boise state are taking the science of quantum … – Boise State University The Arbiter Online

From humble beginnings of one small room in the RUCH Engineering Building, to now expansive multi-million dollar laboratories in the Micron Center for Material Research building, the world-class materials research at Boise State University exists no where else in the world according to Dr. Ryan Pensack, qDNAs Ultrafast Laser Spectroscopy Team Lead.

In the last six years, the Nanoscale Materials and Device group has developed its facilities in leaps and bounds. Researchers Bernie Yurke, Will Huges, Jeunghoon Lee and Elton Graugnard since 2000 have advanced the research progress.

Now, the Nanoscale Materials and Device Group branched off into research areas and fields of study to include nanophotonics, gate oxide studies, multi-dielectric dand diagram programs, magnetic shape memory alloys, 3-D tech for advanced sensor systems and DNA nanotechnology.

Under the DNA nanotechnology field, a research group has been established the Quantum DNA Research Group (qDNA). The collaboration of five science and engineering teams, one management team with over 30 faculty, staff and students ranging 10 academic disciplines resulted in what the university is known for: innovation.

Dr. Ryan D. Pensack was hired on as the lead for qDNAs Ultrafast Laser Spectroscopy Team after his position from 2015-2017 as a postdoctoral research associate in the research group of Prof. Gregory Scholes at Princeton University.

From 2012-2015, he was a postdoctoral fellow in Scholes group at the University of Toronto. Alongside Pensack, Dr. Paul H. Davis led the tour exhibiting the achievements of the research team.

The collaboration Id say is unique, it sets us up to be competitive nationally and internationally actually, said Pensack during The Arbiters tour of the laboratories, led by both Pensack and Dr. Paul H. Davis.

Funding from the Department of Energy, Idaho National Laboratory, Laboratory Directed Research and Development, Office of Naval Research and other supporters provided the equipment the teams work with. In 2021, the Department of Energy granted the qDNA Team $5 million to further their efforts into phase II of attempting quantum entanglement.

For those unfamiliar with the term, quantum entanglement is a phenomenon when two particles become strongly dependent on one another and the physical states of those particles cannot be recognized as separate from the other. Dr. Pensack and Dr. Davis use the metaphor of a spinning coin to create a visual for quantum entanglement.

Dr. Paul Davis serves as the surface science lab manager, co-lead and co-director on the Ultrafast Spectroscopy Team.

When its spinning, its neither heads nor tails, and thats what the cubit is a superposition state, both heads and tails, Davis said.

Later, Pensack explained this through a demonstration with coins. When spun, the blue side and the orange side of the coin are continually moving. Davis said how the number of revolutions of a coin (particle) relates to the speed of the spinning, and the speed of the spinning relates to the strength of coupling. The length of a spinning coin or particle is referred to as its lifetime.

The excited state of these particles give off energy as a resource, which can be a tool for development in quantum mechanics; therefore, quantum computing.

In quantum information science we think about a third state which is actually a combination of the two: its the spinning coin heads or tails, blue or orange, Pensack said.

On Sept. 20, Nanoscale Materials and Device Group published the High-sensitivity electronic Stark spectrometer featuring a laser-driven light source in the Review of Scientific Instruments. The Stark spectrometer was engineered by the Ultrafast Spectroscopy Team. Spectrometers are used to measure wavelengths of light in relation to matter.

The spectrometer measures the property of pigments that enables them to interact such that we can realize entanglement, Pensack said.

Dr. Katelyn Duncan, a postdoctoral research fellow, and Dr. Johnathan Huff, a graduate research assistant, offered their insight on the instrument, mentioning that the entire setup is custom made and built according to Duncan. She alongside Pensack and Huff finalized measurements together.

Huff walked The Arbiter through the samples they utilized on the instrument, such as dye solutions, and the process of how the Stark Spectrometer works.

The work the qDNA team has done has received national recognition. Two of the teams technical manuscripts were featured in National Nanotechnology Initiative (NNI), the National Nanotechnology Initiative Supplement to the Presidents 2023 Budget submitted to Congress March 8, 2022. The team has submitted over 30 technical manuscripts and academic articles, in 2023 the dDNA published 12 articles so far.

We are all very passionate about what we do, Pensack said. While our main mission is this notion of room temperature quantum computing, there will be spin-offs of what we do. The new knowledge we create could be used to help serve society.

See the rest here:
Research leaders at Boise state are taking the science of quantum ... - Boise State University The Arbiter Online

Q&A With Rob Hovsapian: The Engineer Who Solves Crises Before … – NREL

About a decade ago, Rob Hovsapian bought a sailboat. He named it Vger.

For non-Trekkies, Vger was a probe sent into space by 20th century Earthlings in the first Star Trek movie. The probes task was to collect as much knowledge as possible. And it does. After amassing two centuries worth of data, the probe becomes a sentient being and changes its name from Voyager 6 to Vger.

Hovsapian, a mechanical engineer at the National Renewable Energy Laboratory (NREL), donated his sailboat to the sailing club at his alma mater, Florida State University. But he will not entirely lose Vgerat least not in spirit.

At NREL, he is building another massive, knowledge-gobbling machine, one that could help solve future crisesmaybe not Star-Trek-level Earth-ending crises, but close. How can we build a reliable clean energy grid, for example? Or make it easier to evacuate from natural disasters? Or protect banks from quantum hackers?

As a national lab, we need to be looking at the big picture, Hovsapian said, things that we can address five to 10 years down the road.

Like the Star Trek crew, Hovsapian is an explorer, but his final frontier is the future. And his spaceship (Vger light) is something called Advanced Research on Integrated Energy Systems, or ARIES for short. This sophisticated, one-of-a-kind research platform can emulate how our future technologies, including power plants, batteries, smart phones, electric vehicles, smart buildings, and more, would communicate (or fail to communicate) during an emergency.

Now, Hovsapian is adding new features to his spaceship. He is connecting NREL to other labsincluding national laboratories and academic institutionsto build a SuperLab and study how the country could respond to a massive, national-scale crisis. And he is adding quantum computers to the ARIES platform to quickly identify patterns and improve emergency response.

Its our duty to start identifying these challenges and developing solutions, Hovsapian said. We dont want to wait until a problem happens before figuring out how to solve it.

In NREL's latest Manufacturing Masterminds Q&A,Hovsapian shares why he stopped building fighter jets and army radios; what his kids think he builds now; and what kind of rare, national events the SuperLab might help solve.

How did you end up becoming an engineer?

I always wanted to be an engineer. From elementary school all the way to college, there was no doubt.

Wow. How were you so sure?

I just knew. I was taking things apart. I always took my toys apart because I wanted to know how they worked, right? I took the television and VCRs apart.

Im sure your parents were thrilled with that. Then, why pick mechanical engineering as opposed to a different engineering niche?

I started my career as an aerospace engineer and then eventually, since I didn't know exactly what I wanted to do, I got into mechanical engineering. It was more diverse, and controls was always my passion.

What does that mean, controls?

In robotics, controls refers to how you drive, say, your robotic arm to a specific location and, in real time, control its position and speed to manufacture a product.

Oh, cool! So, I know you went to the University of Alabama for your undergraduate studies. What did you do after that?

I read a book by Professor Krishna Karamcheti, who had written a lot of fluid mechanics books that I studied during my undergraduate years. When I saw he was a faculty member at Florida State University, I reached out, and he invited me to come and visit. I not only ended up admitted into the graduate school; he also gave me a job. But he made me promise to finish my doctorate and support other students. So, ever since then, I always have two or three doctoral students that I advise. Thats me keeping that promise.

Sounds like a pretty good deal. What job did he get you?

My first job was with General Dynamics, an aerospace and defense company. That was 1989. I worked on building a next-generation army radio, using robotics and manufacturing lines. After that, I went to work for the U.S. Air Forces F-22 stealth fighter jet program. I automated the production of F-22 fighter jets, using an automotive manufacturing line, which was more cost-effective. Then, while I completed my doctorate, I worked as a program manager and board member for the United States Department of the Navys Office of Naval Research where I managed a research program focused on developing all-electric ships.

Wow!

Yeah. My kids asked me, What are you building now? and I tell them I build PowerPoint presentations. From F-22 to army radios to all electrical ships to PowerPoints. Thats not true. I mean, I do a lot of PowerPoint presentations, but I was also part of the strategic planning that helped build the ARIES research platform.

Before we get to ARIES, how did you go from the U.S. Navy to NREL?

I was also a faculty member at Florida State University at that time. When I left my defense job and took my first job in academia, my salary dropped by 30%. Most people told me that Im crazy doing that. But I dont want to leave my career having built 400 F-22s or 10,000 army radios. I want to leave a legacy of something and make a difference in the community.

I spent two years supporting the U.S. Department of Energys Water Power Technologies Office, and then I went to Idaho National Laboratory for five years. When I heard NREL was building ARIES, that was my passion, so I dropped everything, and here I am.

Perfect transition. Now, lets talk about ARIES. What is it?

ARIES integrates software and hardware to help us understand how clean energy technologieslike renewable energy devices, batteries, electric vehicles, hydrogen, and buildingswill work together in a future carbon-free grid. Nobody has done this before. Nobody has paired hundreds of devices. And here, we are talking about thousands of devices at scale.

Thousands! And what problems are you trying to solve with ARIES?

Were trying to understand next-generation problems that we cant solve through traditional classical computing or modeling.

For example, do we have enough power for electrical vehicles in case of an emergency? Today, we know where the gas stations are. Im in Tallahassee, Florida, right now. If a hurricane comes in and theres an evacuation mandate, people know how they are going to evacuate. If all of us are using electric vehicles, how is that going to work?

So, when rare events happen, how do we mitigate them? That requires a bit more integration between technologies, including cell phones, electrical vehicles, satellites, emergency response systems, and building management systems.

I also heard, to address even bigger, national-scale challenges, youre building a SuperLab that might need to emulate communication between thousands of different devices, right?

The challenges that were facing as a nation are going to be much, much bigger than one or two labs can tackle. The SuperLab ties academic and national laboratories together, integrating not only people but also resources to answer those big questions. We already demonstrated connecting two laboratoriesPacific Northwest National Laboratory and Idaho National Laboratory. Our goal is to connect seven laboratories and 10,000 devices to address a large national event. Thats called SuperLab 2.0.

Have you decided which national event you might address?

No. But it has to be a significant, rare event, like a Hurricane Katrina, the Maui wildfires, or the 2021 Texas freeze.

Our objective is to create a real-world event and environment, using actual hardware and various grid assetslike automation controls, energy storage systems, batteries, and wind turbineswhich lets us explore how we can address those rare events.

Interesting. But this is the Manufacturing Masterminds series, so how does all this relate to manufacturing?

All these technologies are next-generation devices that were building today. We need to think about how to make cell phones that can talk to weather stations and broadcast communications. 5G is a good example. People outside the United States are developing better 5G technologies than we are. Thats a sign that our advanced manufacturing is not on par with what we need today.

Gotcha. Are there other ways the United States manufacturing industry could outpace competitors?

Everybodys talking about quantum computing. Now, were tying quantum computing to our real-time simulation work that were doing at ARIES (called quantum in the loop). Hopefully, this will make it easier and faster for researchers to adopt quantum computing to solve next-generation power and energy system challenges.

So, would the quantum computers allow you to run faster simulations?

It would allow us to identify patterns much, much faster.

So, lets say you look at the state of charge of electric vehicles during a hurricane. With quantum computing, you can quickly find potential bottlenecks. That way, you can issue more effective evacuation notices. You could direct people to different routes and tell some to wait for an hour or two or charge at home X number of times before they go, so you dont have people stranded on the way with a hurricane coming in.

What advice would you give to those who might want to follow in your footsteps and help solve these future crises?

Absolutely do not follow in my footsteps. Just look at the big picture and see what you can do differently. Its OK to be wrong, learn from mistakes, and do something better the next time.

Interested in building a clean energy future? Read other Q&As from NREL researchers in advanced manufacturing, and browse open positions to see what it is like to work at NREL.

See more here:
Q&A With Rob Hovsapian: The Engineer Who Solves Crises Before ... - NREL

Quantum Computing Is Coming. What Can It Do? – Harvard Business Review

Digital computing has limitations in regards to an important category of calculation called combinatorics, in which the order of data is important to the optimal solution. These complex, iterative calculations can take even the fastest computers a long time to process. Computers and software that are predicated on the assumptions of quantum mechanics have the potential to perform combinatorics and other calculations much faster, and as a result many firms are already exploring the technology, whose known and probable applications already include cybersecurity, bio-engineering, AI, finance, and complex manufacturing.

Quantum technology is approaching the mainstream. Goldman Sachs recently announced that they could introduce quantum algorithms to price financial instruments in as soon as five years. Honeywell anticipates that quantum will form a $1 trillion industry in the decades ahead. But why are firms like Goldman taking this leap especially with commercial quantum computers being possibly years away?

To understand whats going on, its useful to take a step back and examine what exactly it is that computers do.

Lets start with todays digital technology. At its core, the digital computer is an arithmetic machine. It made performing mathematical calculations cheap and its impact on society has been immense. Advances in both hardware and software have made possible the application of all sorts of computing to products and services. Todays cars, dishwashers, and boilers all have some kind of computer embedded in them and thats before we even get to smartphones and the internet. Without computers we would never have reached the moon or put satellites in orbit.

These computers use binary signals (the famous 1s and 0s of code) that are measured in bits or bytes. The more complicated the code, the more processing power required and the longer the processing takes. What this means is that for all their advances from self-driving cars to beating grandmasters at Chess and Go there remain tasks that traditional computing devices struggle with, even when the task is dispersed across millions of machines.

A particular problem they struggle with is a category of calculation called combinatorics. These calculations involve finding an arrangement of items that optimizes some goal. As the number of items grows, the number of possible arrangements grows exponentially. To find the best arrangement, todays digital computers basically have to iterate through each permutation to find an outcome and then identify which does best at achieving the goal. In many cases this can require an enormous number of calculations (think about breaking passwords, for example). The challenge of combinatorics calculations, as well see in a minute, applies in many important fields, from finance to pharmaceuticals. It is also a critical bottleneck in the evolution of AI.

And this is where quantum computers come in. Just as classical computers reduced the cost of arithmetic, quantum presents a similar cost reduction to calculating daunting combinatoric problems.

Quantum computers (and quantum software) are based on a completely different model of how the world works. In classical physics, an object exists in a well-defined state. In the world of quantum mechanics, objects only occur in a well-defined state after we observe them. Prior to our observation, two objects states and how they are related are matters of probability.From a computing perspective, this means that data is recorded and stored in a different way through non-binary qubits of information rather than binary bits, reflecting the multiplicity of states in the quantum world. This multiplicity can enable faster and lower cost calculation for combinatoric arithmetic.

If that sounds mind-bending, its because it is. Even particle physicists struggle to get their minds around quantum mechanics and the many extraordinary properties of the subatomic world it describes, and this is not the place to attempt a full explanation. But what we can say is quantum mechanics does a better job of explaining many aspects of the natural world than classical physics does, and it accommodates nearly all of the theories that classical physics has produced.

Quantum translates, in the world of commercial computing, to machines and software that can, in principle, do many of the things that classical digital computers can and in addition do one big thing classical computers cant: perform combinatorics calculations quickly. As we describe in our paper, Commercial Applications of Quantum Computing, thats going to be a big deal in some important domains. In some cases, the importance of combinatorics is already known to be central to the domain.

As more people turn their attention to the potential of quantum computing, applications beyond quantum simulation and encryption are emerging:

The opportunity for quantum computing to solve large scale combinatorics problems faster and cheaper has encouraged billions of dollars of investment in recent years. The biggest opportunity may be in finding more new applications that benefit from the solutions offered through quantum. As professor and entrepreneur Alan Aspuru-Guzik said, there is a role for imagination, intuition, and adventure. Maybe its not about how many qubits we have; maybe its about how many hackers we have.

Excerpt from:
Quantum Computing Is Coming. What Can It Do? - Harvard Business Review

October: IoP Award Winners | News and features – University of Bristol

Two University of Bristol academics have been named among the winners at the prestigious Institute of Physics 2023 Awards for their pioneering scientific work.

Professor Belinda Wilkes has been awarded the Richard Glazebrook Medal and Prize for Leadership in Physics for her leadership of NASA Chandra X-Ray Centre, meanwhile Dr Nikolas Breuckmann was awarded a James Clerk Maxwell Bronze Medal for his work in helping to prove a famous open problem in quantum information theory.

The IoP awards celebrate physicists at every stage of their career; from those just starting out through to physicists at the peak of their careers, and those with a distinguished career behind them.

Professor Wilkes award is in recognition of her outstanding leadership over six years of the Chandra X-ray Center, during which the Chandra satellite provided the finest X-ray observing capabilities to international astronomers. Professor Wilkes was responsible for ensuring NASA gained optimal return from the mission, and managed a diverse staff of around 170 scientists and engineers.

During this time Professor Wilkes was the professional and public face of the Center, interfacing with NASA, giving talks and media interviews, and attending public events. She maintains her significant research on active galaxies, and has remained committed throughout her career to training the next generation of independent scientists. This work continues this work in her current position as a Royal Society Wolfson Visiting Professor at the University of Bristol.

Professor Wilkes said: "It is a distinct honour to be awarded the Institute of Physics Richard Glazebrook Medal and Prize for Leadership in Physics.Leading NASA's Chandra X-ray Observatory was an incredible privilege and, for me, the best job in the world. I am thrilled and deeply grateful to be recognised for this work by such a highly distinguished organisation as the IoP, which is respected around the world for its promotion and support of Physics, and for its ground-breaking advocation of diversity."

Dr Nikolas Breuckmanns award was in recognition of his outstanding contributions to the quantum error correction field. Working together with Anurag Anshu and Chinmay Nirkhe, Dr Breuckmann proved the no low-energy trivial state conjecture, a famous open problem in quantum information theory first formulated by Fields Medallist Michael Freedman and Matt Hastings in 2013.

Quanta Magazine described this achievement as one of the biggest developments in theoretical computer science this year.

Appointed Lecturer in Quantum Computing Theory at the University of Bristol in November 2022, Dr Breuckmann has worked on quantum information theory, which lies at the intersection of mathematics, physics and computer science.

Dr Breuckmann said: I am deeply honoured to receive this award and I feel fortunate to work in a field as rich and diverse as quantum information, which I have the privilege of exploring with my exceptional collaborators.

Congratulating this years Award winners, Institute of Physics President, Professor Sir Keith Burnett, said: On behalf of the Institute of Physics, I want to congratulate all of this years award winners. Each one has made a significant and positive impact in their profession, whether as a researcher, teacher, industrialist, technician or apprentice and I hope they are incredibly proud of their achievements.

There is so much focus today on the opportunities generated by a career in physics and the potential our science has to transform our society and economy and I hope the stories of our winners will help to inspire future generations of scientists.

Read more:
October: IoP Award Winners | News and features - University of Bristol

Quantum Computing Is Coming, And Its Reinventing The Tech Industry

getty

Quantum computing is an idea that has long been in the realm of science fiction. However, recent developments have made it seem more and more like a reality.

The rise of easily accessible quantum computing has significant implications for the tech industry and the world as a whole. With potential impacts in things like cybersecurity, simulations and more, investors are watching this industry closely (and getting invested).

Quantum computing relies on quantum mechanics, a fundamental theory of physics that describes how the world works at the level of the atom and subatomic particles, to solve problems that traditional computers find too complex.

Most quantum computers rely on the quantum bit or qubit. Unlike traditional bits in a computer, which are set to 0 or 1, qubits can be set to zero, one or a superposition of 0 and 1. Though the mechanics behind this is highly complex, qubits allow quantum computers to process information in a fraction of the time a traditional computer could.

To offer an idea of the scale, 500 qubits can represent the same information as 2^500 normal bits. While a typical computer would need millions of years to find all the prime factors of a 2,048-bit number (a number with 617 digits), a quantum computer can do the job in minutes.

Modern quantum theory was developed in the 1920s. Computers appeared shortly after that, and both technologies played a role in World War II. Over time, physicists began to merge the two fields of quantum theory and computing to create the field of quantum computing.

1998 saw the development of a two-bit quantum computer, which serves as a proof of concept for the technology. Further developments have increased the bit count and reduced the rate of errors.

Researchers believe that problems currently too large to be solved by traditional computers can be solved using quantum computers.

Given the substantial improvements that quantum computing can provide to computing power, research into quantum computers has been going on for decades. However, important breakthroughs have been seen in recent years.

Last week, Australian engineers announced the discovery of a way to control electrons within quantum dots that run logic gates without the need for a large, bulky system. This could help with building quantum computers that are reasonably sized.

Also, researchers at MIT recently developed an architecture for quantum computers that will allow for high-fidelity communication between quantum processors, allowing for the interconnection of multiple processors.

This allows for modular implementations of larger-scale machines built from smaller individual components, according to Bharath Kanna, a co-lead author of the research paper describing this breakthrough.

The ability to communicate between smaller subsystems will enable a modular architecture for quantum processors, and this may be a simpler way of scaling to larger system sizes compared to the brute-force approach of using a single large and complicated chip.

Furthermore, a Maryland-based company IonQ recently announced a 65,000-square-foot facility that it will use for manufacturing and production. The factory will be located in Bothell, WA and is the first dedicated quantum computer manufacturing facility in the United States.

Quantum computing could have massive impacts on the tech industry and the world.

One of the biggest impacts will be in the world of cybersecurity. The Department of Homeland Security believes that a quantum computer could be able to break current encryption methods as soon as 2030.

Without major developments in cryptography or a slowdown in quantum computing technology advances, we could be less than a decade away from malicious actors being able to view everything from peoples personal information to government and military secrets.

Some groups are already participating in Store Now, Decrypt Later attacks, which steal encrypted data and store it with the expectation that theyll be able to crack the encryption at a later date.

Quantum computing could also have major effects on the medical industry. For example, quantum machines could be used to model molecular processes. This could assist with breakthroughs in disease research and speed up the development of life-saving drugs.

These simulations could have similar impacts in industries that rely on materials science, such as battery making. Even the financial sector could benefit from the technology, using simulations to perform risk analysis more accurately and optimize investment portfolios.

Given its world-changing capabilities, its no surprise that governments have made major investments in the technology, with more than $30 billion going into research programs across the globe.

Quantum computing has the potential to impact almost every industry across the globe. Beyond impacting the tech industry, it could create shockwaves in the medical and financial industry while leading to the development of new products or materials that become a part of everyday life.

Given the relative youth of the technology, it can be challenging for investors to find ways to invest directly in quantum computing. Instead, they may look for investments in businesses that have an interest in quantum computers and that are poised to benefit from their development, such as pharmaceutical companies.

The rise of quantum computing could mean that the world will look very different just a few years from now. Investors will be looking for ways to profit from this game-changing technology, and the opportunities will be plentiful.

If you want to try a different type of high-tech investing, consider working with Q.ai. Its artificial intelligence can help you build a portfolio for any purpose that will succeed in any economy. With Investment Kits, Q.ai makes investing fun.

Download Q.ai today for access to AI-powered investment strategies.

Read the original:
Quantum Computing Is Coming, And Its Reinventing The Tech Industry

Quantum Could Solve Countless ProblemsAnd Create New Ones | Time

One of the secrets to building the worlds most powerful computer is probably perched by your bathroom sink.

At IBMs Thomas J. Watson Research Center in New York States Westchester County, scientists always keep a box of dental flossReach is the preferred brandclose by in case they need to tinker with their oil-drum-size quantum computers, the latest of which can complete certain tasks millions of times as fast as your laptop.

Inside the shimmering aluminum canister of IBMs System One, which sits shielded by the same kind of protective glass as the Mona Lisa, are three cylinders of diminishing circumference, rather like a set of Russian dolls. Together, these encase a chandelier of looping silver wires that cascade through chunky gold plates to a quantum chip in the base. To work properly, this chip requires super-cooling to 0.015 kelvinsa smidgen above absolute zero and colder than outer space. Most materials contract or grow brittle and snap under such intense chill. But ordinary dental floss, it turns out, maintains its integrity remarkably well if you need to secure wayward wires.

But only the unwaxed, unflavored kind, says Jay Gambetta, IBMs vice president of quantum. Otherwise, released vapors mess everything up.

Photograph by Thomas Prior for TIME

Buy a print of the Quantum cover here

Its a curiously homespun facet of a technology that is set to transform pretty much everything. Quantums unique ability to crunch stacks of data is already optimizing the routes of thousands of fuel tankers traversing the globe, helping decide which ICU patients require the most urgent care, and mimicking chemical processes at the atomic level to better design new materials. It also promises to supercharge artificial intelligence, with the power to better train algorithms that can finally turn driverless cars and drone taxis into a reality. Quantum AI simulations exhibit a degree of effectiveness and efficiency that is mind-boggling, U.S. National Cyber Director Chris Inglis tells TIME.

Read More: DeepMinds CEO Helped Take AI Mainstream. Now Hes Urging Caution

Quantums earliest adopters are asset-management firmsfor which incorporating quantum calculations involves few increased overhead costsbut commercial uses arent far behind. Spanish firm Multiverse Computing has run successful pilot projects with multinational clients like BASF and Bosch that show its quantum algorithms can double foreign-exchange trading profits and catch almost four times as many production-line defects. Quantum deep-learning algorithms are completely different from classical ones, says Multiverse CEO Enrique Lizaso Olmos. You can train them faster, try more strategies, and they are much better at getting the correlations that matter from a lot of data.

Quantum chandeliers may look spectacular but they arent practical for next generation computers. IBM has instead designed flexible cabling to replace the looped wires.

Thomas Prior for TIME

Data received from quantum computers must be fed to rack of classical control electronic systems to process the calculations.

Thomas Prior for TIME

Tech giants from Google to Amazon and Alibabanot to mention nation-states vying for technological supremacyare racing to dominate this space. The global quantum-computing industry is projected to grow from $412 million in 2020 to $8.6 billion in 2027, according to an International Data Corp. analysis.

Whereas traditional computers rely on binary bitsswitches either on or off, denoted as 1s and 0sto process information, the qubits that underpin quantum computing are tiny subatomic particles that can exist in some percentage of both states simultaneously, rather like a coin spinning in midair. This leap from dual to multivariate processing exponentially boosts computing power. Complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds. Future quantum computers could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security. A flurry of recent breakthroughs and government investment means we now sit on the cusp of a quantum revolution. I believe we will do more in the next five years in quantum innovation than we did in the last 30, says Gambetta.

But any disrupter comes with risks, and quantum has become a national-security migraine. Its problem-solving capacity will soon render all existing cryptography obsolete, jeopardizing communications, financial transactions, and even military defenses. People describe quantum as a new space race, says Dan OShea, operations manager for Inside Quantum Technology, an industry publication. In October, U.S. President Joe Biden toured IBMs quantum data center in Poughkeepsie, N.Y., calling quantum vital to our economy and equally important to our national security. In this new era of great-power competition, China and the U.S. are particularly hell-bent on conquering the technology lest they lose vital ground. This technology is going to be the next industrial revolution, says Tony Uttley, president and COO for Quantinuum, a Colorado-based firm that offers commercial quantum applications. Its like the beginning of the internet, or the beginning of classical computing.

Quantum chips are extremely sensitive. This decade-old IBM quantum processor was used in an experiment that proved how background microwaves affect qubits.

Thomas Prior for TIME

If anything, its surprising that traditional computing has taken us so far. From the trail-blazing Apple II of the late 1970s to todays smartphones and supercomputers, all processors break down tasks into binary. But life is so complex that rendering information in such a rudimentary manner is like playing a Rachmaninoff concerto in Morse code.

Quantum is also more in tune with nature. Moleculesthe building blocks of the universeare multiple atoms bound together by electrons that exist as part of each. The way these electrons essentially occupy two states at once is what quantum particles replicate, presenting applications for natural and material sciences by predicting how drugs interact with the human body, or substances perform under corrosion. Traditional manufacturing takes calculated guesses to make breakthroughs through trial and error; by mirroring the natural world, quantum should allow advances to be purposefully designed.

Read More: Column: How Our Cells Strategize To Keep Us Alive

While the worlds biggest companies, alongside hundreds of startups, are clamoring to harness quantum, IBM has emerged in recent years as the industry leader. Today, the firm has over 60 functioning quantum computersmore than the rest of the world combinedand a roster of collaborators that include titans of practically every industry from Exxon-Mobil to Sony. Its a welcome return to technologys zenith for the storied firm, founded over a century ago to produce tabulating machines fed with punch cards. In recent years, IBM had fallen behind rivals like Apple and Microsoft by not seizing the initiative with cloud computing and AI. Quantum offers some redemption. Its great to be back at the top again, says one executive. Its no secret that we let things slip by not jumping on cloud.

In November, IBM unveiled its new 433-qubit Osprey chipthe worlds most powerful quantum processor, the speed of which, if represented in traditional bits, would far exceed the total number of atoms in the known universe. IBM has more than 20 quantum computers available on its open-source quantum tool kit Qiskit, which has been downloaded more than 450,000 times to date. In order to build an industry around quantum, some machines are free to use, while paying clients such as startups and scholars can access more powerful ones remotely on a lease basis. IBM has a bold road map to launch a 1,121-qubit processor this year and, by 2025, surpass 4,000 qubits by creating modular quantum circuits that link multiple processor chips in the same computer. Modularity is a big inflection point, says Dario Gil, IBM senior vice president and director of research. We now have a way to engineer machines that will have tens of thousands of qubits.

Inside the IBM research lab in Yorktown Heights, New York

Thomas Prior for TIME

IBM research lab in Yorktown Heights, New York.

Thomas Prior for TIME

Quantums industrial uses are boundless. Inside BMWs headquarters in Munich there stands a wall that gives vehicle designers sleepless nights. Creating a new car model from scratch takes at least four years. First, designers use computer-aided styling to sketch an exterior that combines beauty with practicality. Next, a scale model is carved in clay and placed in a wind tunnel to assess aerodynamics. After countless decisions on interior, engine performance, and so on comes the ultimate test: a prototype is driven at 35 m.p.h. into that fabled wall to test how it performs in a crash. Should the car fail to meet various safety criteria, its back to the drawing board.

This is where quantum can help by accurately predicting how complex materials of different shapes will perform under stress. Robust simulated crash tests can save up to six months in the whole process, says Carsten Sapia, vice president of strategy, governance, and IT security at BMW Group, which has partnered with French quantum firm Pasqal. Quantum computing will also help us find the new optimum between design, maximum interior space, and best aerodynamics.

Thats just the start. Modern business teems with optimization problems that are ideally suited to quantum algorithms and could save time, energy, and resources. Were not just building the technology, we have to enable the workforce to use it, explains Katie Pizzolato, IBMs director of quantum strategy and applications research.

Sapia says finding uses for the technology is easy; the challenge will be ensuring that all divisions of BMW are able to utilize it. Already, BMW is unable to communicate from Europe to its cars in China for driving software maintenance and monitoring because of increasingly strict curbs on the transfer of data across borders. In the future, we will rely on everywhere in the world having access to quantum technology to run our business, Sapia says. So how can we set it up so no matter what happens on a geopolitical scale that we still have access to this technology?

The full chandelier inside a quantum computer.

Thomas Prior for TIME

Over the past few years quantum has moved from a footnote to the top of the global security agenda. To date, 17 countries have national quantum strategies and four more are developing them. China has invested an estimated $25 billion in quantum research since the mid-1980s, according to Quantum Computing Report. Its top quantum scientist, Pan Jianwei, led the launch of the worlds first quantum satellite in 2016 and in 2021 unveiled a then record-breaking 56-qubit quantum computer. Chinas 14th Five-Year Plan, published in March 2021, made mastery of quantum a policy priority. The blurred line between industry and national security in China gives them an advantage, says David Spirk, former chief data officer at the Department of Defense.

In response, the White House in May published a National Security Memorandum that ordered all federal agencies to transition to post-quantum security owing to significant risks to economic and national security. Given that upgrading critical infrastructure can take decades, and literally everything connected to the internet is at risk, the impetus is to act now. We realized that while [quantum is] wonderful for humanity, the first thing people are going to do is weaponize these systems, says Skip Sanzeri, founder and COO of QuSecure, a post-quantum cybersecurity firm enlisted by the U.S. military and federal government to handle what he says could be a $1 trillion cybersecurity upgrade.

Still, Spirk worries that the U.S. risks falling behind and is calling for a Manhattan Projectlike focus on quantum. Of the over $30 billion spent globally on quantum last year, according to the World Economic Forum, China accounted for roughly half and the E.U. almost a quarter. The U.S. National Quantum Initiative, meanwhile, spent just $1.2 billiona figure Spirk calls trivial against $1 trillion in total defense spending. This is not a coming wave, he says, its here.

Read More: The World Economic Forums Klaus Schwab on What Lies Ahead

The stakes couldnt be higher. Today, practically all cybersecuritywhether WhatsApp messages, bank transfers, or digital handshakesis based on RSA, an asymmetric cryptography algorithm used to safely transfer data. But while a regular computer needs billions of years to crack RSA, a fast quantum computer would take just hours. In December, a team of scientists in China published a paper that claimed it had a quantum algorithm that could break RSA with a 372-qubit computer (though its conclusions are hotly debated). The race is now on to devise postquantum securitya job that falls to the U.S. National Institute of Standards and Technology, or NIST. In 2016, NIST announced a competition for programmers to propose new post-quantum encryption algorithms. The results were mixed: one of the finalists announced on July 5, 2022, has since been cracked by a regular laptop in a little over an hour.

In some ways, its already too late. Even though quantum computers powerful enough to crack RSA are a few years away from being openly available, hackers are already seizing and storing sensitive data in the knowledge that they will be able to access it via quantum very soon. Every day that you dont convert to a quantum-safe protocol, theres no recovery plan, Gil says.

The glass shell around the quantum computer allows IBM to tightly control the temperature inside. This is critical for the quantum chip, which has to be kept at a fraction above absolute zero.

Thomas Prior for TIME

The war in Ukraine has also served as a wake-up call. It is historys first hot conflict to begin with cyber-attacks, as Russia targeted vital -communications and infrastructure to lay the groundwork for its military assault. Public services, energy grids, media, banks, businesses, and nonprofit organizations were subjected to a cyberblitzkrieg, impacting the distribution of medicines, food, and relief supplies. Modern warfare and nationalsecurity mechanisms are grounded in the speed and precision of decisionmaking. If your computer is faster than theirs, you win, its pretty simple, says Spirk. Quantum is that next leap.

Read More: Exclusive: OpenAI Used Kenyan Workers on Less Than $2 Per Hour to Make ChatGPT Less Toxic

But malign intentions are just one hazard. With the U.S. embroiled in a new Cold War, its also unclear if China and Russia would adopt new NIST protocols, not least since in the past, RSA cryptography has allegedly been breached by the U.S. National Security Agency. In September, National Security Adviser Jake Sullivan said quantum would have an outsized importance over the coming decade, adding that export controls could be used to maintain U.S. advantage. Competing post-quantum security standards across Washingtons and Beijings spheres of influence have the potential to cleave the world into divergent blocs, with grave implications for global trade. [The] balkanization of what we know today as a free and open internet is distinctly possible, Inglis says.

The trepidation surrounding quantum doesnt stem solely from security risks. We trust classical computers in part because we can verify their computations with pen and paper. But quantum computers involve such arcane physics, and deal with such complex problems, that traditional verification is extremely tricky. For now, its possible to simulate many quantum calculations on a traditional super-computer to check the outcome. But soon will come a time when trusting a quantum computer will require a leap of faith. Trust building across the entire ecosystem right now is really important, says Uttley.

Boeing, for one, has been working with IBMs quantum team since 2020 on designing new materials for its next generation of aircraft. But given the colossal reputational stakes, the firm is in no rush. The modeling tools that we use to design our airplanes are closely monitored, says Jay Lowell, chief engineer for disruptive computing and networks at Boeing. To turn [quantum] into an operational code is a huge, huge hurdle.

One that IBM knows only too well. But by making its quantum computers open source, and welcoming academics and entrepreneurs from all over, the firm hopes to mitigate the hesitancy. As Gil puts it, this is a new frontier of humanity.

With reporting by Leslie Dickstein

Correction, Jan. 28

The original version of this story misstated the name of a French quantum firm. It is Pasqal, not Pascal.

More Must-Reads From TIME

Write to Charlie Campbell at charlie.campbell@time.com.

More here:
Quantum Could Solve Countless ProblemsAnd Create New Ones | Time

What is Quantum Computing? – Data Center Knowledge

  1. What is Quantum Computing?  Data Center Knowledge
  2. What is Quantum Computing, and Why Should Security Professionals Care?  Security Boulevard
  3. Why quantum mechanics will be key to digital security  rea corporativa Banco Santander
  4. The quantum computing threat is real. Now we need to act.  CyberScoop
  5. Global Encryption Day: Why quantum-safe cryptography is the future of cybersecurity  World Economic Forum
  6. View Full Coverage on Google News

More:
What is Quantum Computing? - Data Center Knowledge

United States and The Netherlands Sign Joint Statement of Cooperation on Quantum Information Science and Technology – Quantum Computing Report

United States and The Netherlands Sign Joint Statement of Cooperation on Quantum Information Science and Technology  Quantum Computing Report

See the rest here:
United States and The Netherlands Sign Joint Statement of Cooperation on Quantum Information Science and Technology - Quantum Computing Report

Quantum Leap: "The big bang of quantum computing will come in this decade" – CTech

In the few images that IBM has released, its quantum computing lab looks like the engine room of a spaceship: bright white rooms with countless cables dangling from the ceiling down to a floating floor, pierced with vents. This technological tangle is just the background for the main show: rows of metal supports on which hang what look like... white solar boilers.

There, within these boilers, a historical revolution is taking shape. IBM, a computing dinosaur more than a century old, is trying to reinvent itself by winning one of the most grueling, expensive and potentially promising scientific races ever: the race to develop the quantum computer. "We are living in the most exciting era in the history of computing," says Dario Gil, Senior Vice President of IBM and head of the company's research division, in an exclusive interview with Calcalist. "We are witnessing a moment similar to the one recorded in the 40s & 50s of the last century, when the first classic computers were built." A few weeks after this conversation, his statements were further confirmed, when the Nobel Prize Committee announced the awarding of the prize in the field of physics to three researchers whose research served as a milestone in the development of the field.

The name Dario Gil shakes a lot of quanta and cells in the brains, and maybe even in the hearts, of physicists and computer engineers all over the world. This is the person who leads the most advanced effort in the world to develop a quantum computer. In September, when Gil landed in Tel Aviv for a short visit to give the opening lecture at the IBM conference, the hall was packed with senior engineers, researchers from the top universities in Israel, and representatives of government bodies - all enthralled by what Gil had to say.

2 View gallery

Dario Gil.

(Photo: Elad Gershgoren)

Gil (46) was born in Spain and moved to the United States to study at MIT University. He completed his doctoral studies there, and immediately after graduation began working at IBM in a series of research and development positions. Since 2019, he has been leading the company's research division, which has 3,000 engineers at 21 sites, including Israel. Under his management, in 2016, IBM built the first quantum computer whose services are available to anyone: if you have a complicated question, you can go to the IBM Quantum Experience website, remotely access one of the quantum computers through the cloud - and, perhaps, receive an answer. But as with everything related to quantum computing, it just sounds simple.

"Quantum computing is not just a name for an extremely fast computer," says Gill. In fact, he explains, the quantum computer is no longer a supercomputer that uses the same binary method that is accepted in every classical computer, but a completely new machine, another step in the evolution leading from strings of shells, through beaded invoices and calculating bars, to gear-based mechanical computers, to the electronic computer and now to the quantum computer. "Essentially, the quantum computer is a kind of simulator of nature, through which it is possible to simulate natural processes, and thus solve problems that previously had no solution," explains Gil. "If the classical computer is a combination of mathematics and information, then quantum computing is a combination of physics and information."

This connection makes it possible to solve certain types of problems with unprecedented speed: Google, which is also developing a quantum computer, claimed in 2019 that it had reached "quantum supremacy" a demonstration of a calculation that a quantum computer would perform more efficiently than a classical computer. The researchers at Google showed how a quantum computer performed in 200 seconds a calculation that they claim would have required a classical computer ten thousand years to complete. This claim has since been disproved by other researchers, who have presented an algorithm that allows a classical computer to perform the same calculation in a reasonable amount of timebut even this Google failure provides an idea of the enormous power a quantum computer will have.

"The quantum computer does not make the classical computer superfluous: they will live together, and each of them will solve different problems," explains Gil. "It's like asking you how to get from point A to point B: you can walk, ride a bicycle, travel by car or fly. If the distance between these points is 50 km, you won't fly between them, right? Accordingly, it is a mode suitable for a classic computer. A quantum computer allows you to fly, even to the moon, and quickly."

You will soon explain to me how it works, and in which areas exactly, but before that, let's start from the bottom line: what can we do with it?

"Quantum computing will make it possible to crack a series of problems that seemed unsolvable, in a way that will change the world. Many of these issues are related to energy. Others are related to the development of new and exciting materials. We tend to take the materials available to us for granted, but in the past there were eras that were defined by the materials that dominated them - The Stone Age', the 'Bronze Age', the 'Iron Age'. Quantum computing will help us develop materials with new properties, therefore the first sector that is already using it is industry, especially the car industry: the car manufacturers are interested in better chemistry, which will enable the production of more efficient and durable batteries for electric vehicles. For a normal computer this is a huge task, and to complete it we have to give up accuracy and settle for approximate answers only, but quantum computing can help quickly develop materials that will fit the task, even without entering the lab. The efficiency of a quantum computer when it comes to questions in chemistry is also used in the pharmaceutical industry, There they are beginning to make initial use of such computers to examine the properties of molecules, and in this way to speed up the development of new drugs; and also in the fertilizer industry, which will be able to develop substances whose production will not harm the environment.

The uses are not limited to the material world. "For the financial sector, for example, the quantum computer enables the analysis of scenarios, risk management and forecasting, and the industry is already very interested in such possible applications, which could provide the general public with dramatically improved performance in investment portfolios, for example.

2 View gallery

IBM.

(Photo: Shutterstock)

At the same time, there are industries that quantum computing will force to recalculate their course, and the information security industry is at the forefront. The modern encryption systems (mainly RSA, one of whose developers is the Israeli Prof. Adi Shamir) are asymmetric: each recipient publishes a code that allows the information sent to them to be encrypted ("public key"), which includes the product of two large prime numbers that are kept secret. To decipher the encrypted information, this product must be broken down into factors - but without knowing what the initial numbers are, "this task would require a normal computer to calculate for many years," explains Gil. "However, for the quantum computer, such a calculation can be a matter of seconds."

There is a real threat here to an entire industry, the logic behind which has been built since the 1970s, and now suddenly the ground is cracking under it.

"True, a normal computer needs ten thousand years to solve an encryption that a quantum computer would solve in an instant. That is why the quantum computer threatens the world of cyberspace and encryption, which are the basis of all global information security. This is an example that is not related to physics or nature, but simply to the stronger and faster computing power of the quantum computer.

The computer that works against all the rules of intuition

To understand the power of the quantum computer, this concept, "quantum computing", must first be broken down. The first step is to stop thinking in the familiar concepts of one and zero. Forget about bits and binaries. The key to understanding quantum computing is the recognition that this dichotomy is not there: instead of the bit, quantum computing relies on a basic unit of information called a qubit (short for "quantum bit"). The qubit is simultaneously one, zero and everything in between.

This is the moment to stop and explain the theory that underlies the quantum computer, and which seems to go against common sense. "Quantum theory makes it possible to explain the behavior of very, very small particles," Gil explains. "At school we are presented with a model of an atom that looks like a planet, with a nucleus and electrons moving around, but at the beginning of the 20th century, this model turned out to be not very accurate." This happened when physicists such as Max Planck and Albert Einstein realized that light, which until then physics saw as a wave, also behaves as a particle - and the energy of this particle can only be described in "quantum" jumps, that is, as discrete packets. In the decades that followed, this theory was developed more and more, and proved to be effective in describing a variety of phenomena in the world of particles. And yet, its deep meanings remain obscure even today.

Such is, for example, the idea that a particle is in more than one place. According to quantum theory, a particle moving between two points moves simultaneously in all the paths between them, a state called "superposition". It's not that we don't know its exact location: it just doesn't have one. Instead, it has a distribution of possible locations that coexist. In other words, reality is not certain, but probabilistic.

And this is not the only puzzle posed by quantum theory. Another confusing concept is "entanglement", a situation in which several particles exhibit identical physical values, and respond simultaneously to a change in one of them, even if they are at a great distance from each other. Gil suggests thinking of it as tossing two coins: anyone who has studied statistics knows that the probabilities of getting a "head" or a "tail" on each of them are independent. But in the quantum model, if the coins (representing particles here) are intertwined, then tossing one of them will result in the same result in the other. "Einstein didn't believe in interweaving, and hated these patterns," Gil says with a smile.

Measurements that affect the results? A reality that is not absolute but statistical? Particles that become twins even at infinite distance? If these ideas sound puzzling, incomprehensible or counter-intuitive to you, you are not alone: "Whoever comes across quantum theory and is not left stunned, has not understood it," said the physicist Niels Bohr, Einstein's contemporary and his great nemesis, who won the Nobel Prize for his contribution to the development of the theory (Einstein, by the way, had reservations about Bohr's interpretation of the theory's conclusions). Another physicist who won the Nobel Prize for his contribution to the theory, Richard Feynman, commented on this when he said: "If you think you have understood quantum theory, you have not."

The same Feynman is the father of quantum computing: he wanted to simulate the behavior of particles, but due to the probabilistic nature of the theory, a classical computer that would try to perform such a simulation would require an enormous amount of calculations, so that the simulation would become impractical. "Feynman, and like him other physicists, thought that the field of computing focused on mathematical horizons and moved too far away from nature, and that physics could be more connected to the world of information," explains Gil. "In a historic lecture he gave in 1981, Feynman claimed that there was nothing to give a classical computer to deal with particle simulation, because nature is not classical. He said, 'If we want to simulate nature, we need a machine that behaves like nature, in a quantum way.'" In 1998, this vision was realized, when the first quantum computer was built at the University of Oxford in Great Britain.

A quantum computer utilizes the enigmatic properties of quantum theory, those that are not fully understood by us, to perform calculation operations. In a normal computer, the basic unit of information is a "bit", which can have one of two values, 0 or 1; Using such bits makes it possible to perform any calculation imaginable - although some of these calculations may take a very long time. In a quantum computer, the qubit, thanks to superposition, represents not one absolute value, but a distribution of values. "You can think of it as a question of more dimensions: one and zero are just the ends, the poles of a coin for example, but it can also have a sideways tilt," explains Gil. Using statistical approaches it is possible to examine the state of the qubit and obtain useful results. This probabilistic approach is not suitable for every problem, but in solving certain problems it is infinitely more efficient than the classical computer's search for an absolute answer.

"Because of the entanglement effect, it is also possible to cause the qubits to influence each other," says Gil. And since each qubit represents an entire field of possibilities, each addition of a qubit increases the number of possible connections between the qubits with exponentially increasing power (in the classical computer, on the other hand, the addition of bits grows linearly). At the moment, IBM holds the record for qubits: last year it unveiled a quantum processor with 127 qubits, and its stated goal is to launch a processor with 433 qubits this year, and a processor with 1,021 qubits next year.

Three degrees colder than outer space

This ambition is more pretentious than it seems. It turns out that "building a machine that will behave like nature" is a complex story like no other: the qubits are very sensitive to outside influences, which makes building a computer a very complicated and expensive business. "The quantum computer is very powerful, but at the same time also very delicate," explains Gil: "It utilizes physical processes that occur in the world, but such processes are a system in which everything is connected, everything affects everything, and this can disrupt the results: if energy from the outside world goes inside and connect to the qubits, this will make them behave like normal bits, and thus the unique ability of quantum computation will be lost. Therefore, a quantum computer must be very isolated from the entire environment. The big challenge is to produce a system that is sufficiently isolated from the outside world, but not too isolated."

When I try to find out what the cost of building a quantum computer is - and IBM has already built 40 of them - Gil avoids a clear answer, but it is enough to hear what this effort entails: "There are several different approaches to building a quantum computer; IBM chose a cryogenic approach, meaning deep freezing, and the use of superconductors. The temperature in the computer is close to absolute zero: at the bottom of its case the temperature is minus 273 degrees Celsiusthree degrees less than the temperature of outer space, and less than one degree above absolute zero. The temperature should be close to absolute zero, but not reach it, because then there is no movement at all, Not even of the atoms."

The result is a cooling and protection case that resembles a water heater in its shape, and inside it has the calculation unit, whose shape gave it the nickname "chandelier" according to Gil and his team. "Inside the layers of protection there is a cylinder with the processor in it. Even if only a fraction of an energy particle enters the computer, literally a fraction of nothing, it will be enough to disrupt the results," Gil clarifies.

The great sensitivity, and the protection requirements derived from it, mean that the quantum computer is quite cumbersome: in the newest models, which try to include more and more qubits, the case already reaches a height of several meters. To some extent it is reminiscent of the first generations of classic computers, which looked like huge cabinets. Those classic computers kept getting smaller and smaller, until today we squeeze millions of times more computing power into a simple smartphone, but in the case of quantum computers, we cannot expect a similar process: "The quantum computer requires unique conditions that cannot be produced in a simple terminal device, and this will not change in the foreseeable future," Gil explains. "I believe that quantum computing will be a service that we can access remotely, as we access cloud services today. It will work similar to what IBM already enables today: the computer sits with us, and we make it possible to access the 'brain' and receive answers. Of the 40 computers we have built since 2016, today 20 are available to the public. About half a million users all over the world have already made use of the capabilities of the quantum computer we built, and based on this use, about a thousand scientific publications have already been published."

Google and Microsoft are heating up the competition

IBM is not the only company participating in the quantum computing race, but Gil exudes full confidence in its ability to lead it: according to him, most competitors only have parts of the overall system, but not a complete computer available to solve problems. Google, as mentioned, is a strong contender in this race, and it also allows remote access to its quantum computing service, Google Quantum AI; Microsoft is also working to provide a similar service on its cloud platform, Azure.

Meanwhile, quantum computing is a promise "on paper". The theoretical foundations for this revolution were laid already 40 years ago, the first proofs were presented more than 20 years ago, the industry has been buzzing around this field for several years - and we still haven't seen uses that would serve a regular person.

"If you go back to the 1940s, when the first computers were invented, you will see that even then the uses and advantages of the new invention were not clear. Those who saw the first computers said, 'Oh, great, you can use it to crack the code of encryption machines in wars, maybe even calculate routes of ballistic missiles, and that's it. Who's going to use it? Nobody,'" Gil laughs. "In the same way, the success of quantum computing will depend on its uses: how easy it will be to program, how large the community of users will be, what talents will get there. The quantum revolution will be led by a community, which is why education for this field is so important: we need more and more smart people to start to think 'how can I use quantum computing to advance my field'.

"What is beginning these days is the democratization phase of quantum computing, which will allow anyone to communicate with the computer without being an advanced programmer in the field: it will be possible to approach it with a question or a task that will be written in the classical languages of one or zero. That is why we are already seeing more use of quantum computing capacity today.

"There are also many startups that do not actually work to establish a quantum computer, but focus on various components of this world (for example, the Israeli company Quantum Machines, which develops hardware and software systems for quantum computers, and last July was selected by the Innovation Authority to establish the Israeli Quantum Computing Center). The activity of such companies creates a completely new ecosystem, thus promoting the industry and accelerating its development, just as is happening today in the field of ordinary computers. IBM will not rely only on itself either: we would like to benefit from the innovation of smart people in this field, of course also in Israel.

"I am convinced that the big bang of quantum computing will happen in this decade. Our ambition at IBM is to demonstrate 'quantum supremacy' already in the next three years. I believe that the combination of advances in artificial intelligence, together with quantum computing, will bring about a revolution in the industry of the kind that Nvidia made in its market (Nvidia developed unique processors for gaming computers, which made it the chip company that reached a billion dollar revenue the fastest.) Quantum computing can generate enormous value in the industry. It is phenomenally difficult, but it is clear to me that we will see the uses already in the current decade."

The Nobel Prize opens a new horizon for quantum computing

Quantum computing has ignited the imagination of researchers for many decades, but until now it has not left the confines of laboratories. However, the awarding of the Nobel Prize to three researchers in the field indicates that the vision is becoming a real revolution. Alain Aspect of France, the American John Clauser and Austrian Anton Zeilinger received the award for research they conducted (separately) since the 1970s, in which they examined the phenomenon of quantum entanglement (described in the article), proved its existence and laid tracks for its technological use.

The awarding of the Nobel Prize to the entanglement researchers proves that quantum computing is more than a mental exercise for a sect of physicists, and is a defining moment for companies that invest capital in the development of the field. They are pushed to this effort due to a fundamental change in the world in which they operate: in recent decades, the world of computing has operated according to "Moore's Law", which foresees that the density of transistors in computer processors will double every two years in a way that will increase the computing power of these chips. However, as the industry approaches the physical limit after which it will be impossible to cram more transistors onto a chip, the need to develop a quantum computer has become acute.

The numbers also signal that something is happening in the field. In 2020, the scope of the quantum computing market was less than half a billion dollars, but at the end of 2021, in a signal that the vision is beginning to be realized, the research company IDC published an estimate according to which in 2027 the scope of the market will reach $8.6 billion and investments in the field will amount to $16 billion (compared to $700 million in 2020 and $1.4 billion in 2021). IBM CEO Arvind Krishna also recently estimated that in 2027 quantum computing will become a real commercial industry.

Link:
Quantum Leap: "The big bang of quantum computing will come in this decade" - CTech

7 Best Quantum Computing Stocks to Buy in 2022 | InvestorPlace

Quantum computing offers the potential to harness big data, make intricate predictions and use artificial intelligence (AI) to revolutionize business operations. Many industries such as automotive, agriculture, finance, healthcare, energy, logistics and space will be affected from the growth in this technology. As a result, Wall Street has been paying significant attention to quantum computing stocks.

Once considered science fiction, quantum computing has made significant progress in recent years to solve complex problems at lightning speed. This advanced technology uses the power of quantum mechanics to represent complex problems. These computers can take seconds to calculate equations that normally take days for machines that use a binary framework.

International Data Corporation forecasts that the global market for quantum computing should grow from about $412 million in 2020 to more than $8.5 billion in 2027. This increase would mean a compound annual growth rate (CAGR) of an eye-popping 50% between now and 2027. Given such metrics, its understandable why investors are thrilled about the future of quantum computing stocks.

While it is currently in its early days, Wall Street has already warmed up to long-term prospects of this technology. Besides several pure-play quantum computing stocks going public in 2021, well-known tech names are pouring significant research dollars to invest in this advanced segment.

With that information, here are the seven best quantum computing stocks to buy in 2022:

52-week range: $142.25 $191.95

Dividend yield: 1.7%

Semiconductor group Analog Devices manufactures integrated circuits that process analog and digital signals. ADIs chips are used in data converters, high-performance amplifiers and microwave-integrated circuits.

Analog Devices issuedQ4 2021 metricson Nov. 23. Revenue increased 53% year-over-year (YOY) to $2.34 billion. Adjusted earnings soared from $1.44 per share to $1.73 per share. The company generated a free cash flow of $810 million. Cash and equivalents ended the period at $1.98 billion.

Factory automation has fueled demand for sensors and machine connectivity, which increasingly rely on Analogs chips. In addition, the automotive industry has also become a key growth driver due to the rising use of advanced electronics in electric vehicles (EVs).

In late August, the chipmaker completed theacquisition of Maxim Integrated. The billion transaction should increase ADIs market share in automotive and 5G chipmaking.

ADI currently trades just under $160, up 7% over the past 12 months. Shares are trading at 21.5 times forward earnings and 8.9 times trailing sales. The 12-month median price forecast for Analog Devices stock stands at $210.

52-Week Range:$42.96 $57.15

Expense Ratio:0.40% per year

QTUM is an exchange-traded fund (ETF) that focuses on the next generation of computing. It offers exposure to names leading the way in quantum computing, machine learning and cloud computing. The fund tracks the BlueStar Quantum Computing and Machine Learning Index.

QTUM, which started trading in September 2018, has 71 holdings. The top 10 holdings account for less than 20% of net assets of $161.5 million. Put another way, fund managers are not taking major bets on any company.

Among the leading holdings on the roster are the security and aerospace company Lockheed Martin(NYSE:LMT), French telecommunications operator Orange(NYSE:ORAN) and IBM.

For most retail investors, QTUM could potentially be a safe and diversified place to start investing in quantum computing. As portfolio companies come from a wide range of technology segments, wide swings in the price of one stock will not affect the ETF significantly.

The fund has gained 8.7% over the past year and saw an all-time high in November 2021. However, the recent selloff in tech stocks led to a 10.7% decline year-to-date (YTD). Interested readers could regard this decline as a good entry point into QTUM.

52-week range: $113.17 $146.12

Dividend Yield: 4.8%

Technology giant International Business Machines (IBM) needs little introduction. The legacy tech name offers integrated solutions and services, including infrastructure, software, information technology (IT) and hardware.

IBM announcedQ4 2021 financials on Jan. 24. The company generated revenues of $16.7 billion, up 6.5% YOY. Net income stood at $2.33 billion, or $2.57 per diluted share, up from $1.36 billion, or $1.51 per diluted share, in the prior-year quarter. Cash and equivalents ended the period at $6.65 billion.

After the announcement, CEO Arvind Krishna said, We increased revenue in the fourth quarter with hybrid cloud adoption driving growth insoftware and consulting.

The company launched its Quantum System One quantum computer in 2019. Around 150 research groups and partner companies currently use IBMs quantum computing services. These names come from financial services businesses, automakers and energy suppliers.

In June 2021, IBMunveiledEuropes most powerful quantum computer in Germany. Moreover, the tech giant recentlyannounced a deal with Raytheon Technologies(NYSE:RTX) to provide quantum computing and AI services for the aerospace, defense and intelligence industries.

IBM currently changes hands around $137, up 20% over the past 12 months. Shares are trading at 13.5 times forward earnings and 2.2 times trailing sales. The 12-month median price forecast for IBM stock is $144.50. Interested readers could consider buying IBM shares around these levels.

52-week range: $7.07 $35.90

IonQ is one of the first publicly traded pure-play quantum computing stocks. It went public via a merger with the special purpose acquisition company (SPAC) dMY Technology Group III in late 2021.

The quantum name released Q3 2021 results on Nov. 15. Its net loss was $14.8 million, or 12 cents loss per diluted share, compared to a net loss of $3.6 million a year ago. Cash and equivalents ended the quarter at $587 million. Wall Street was pleased that at the time, YTD contract bookings came in at $15.1 million.

IonQ is currently developing a network of quantum computers accessible from various cloud services. The technology uses ionized atoms that allow IonQs machines to perform complex calculations with fewer errors than any other quantum computer available.

The start-up has the financial backing of prominent investors, including Bill Gates and the Japanese telecommunications companySoftbank Group(OTCMKTS:SFTBF). In addition, IonQ has been developing strategic partnerships with Microsoft, Amazons (NASDAQ:AMZN) Amazon Web Services and Alphabets(NASDAQ:GOOG, NASDAQ:GOOGL) GoogleCloud.

While IonQ is taking steps to become a commercialization-stage name, it is still a speculative investment. With its potential for explosive growth, it could be an attractive quantum computing stock for investors looking to take a risk.

IONQ stock hovers around $12. The recent selloff in tech stocks has led to a 26.7% decline YTD. Yet, the 12-month median price forecast for IONQ stock stands at $23.

52-week range: $224.26 $349.67

Dividend Yield: 0.8%

Microsoft is one the largest and most prominent technology firms worldwide. It offers software products and services, including Azure cloud service, the Office 365 productivity suite and the customer relationship management (CRM) platform Dynamics 365.

Meanwhile, the Microsoft Quantum is the worlds first full-stack, open cloud quantum computing ecosystem that allows developers to create quantum applications and run them on multiple platforms. The software giant provides quantum computing services via the cloud on Azure.

Management announced robust Q2 FY22 metricson Jan. 25. Revenue increased 20% YOY to $51.7 billion. Net income surged 21% YOY to $18.8 billion, or $2.48 per diluted share, compared to $15.5 billion, or $2.03 per diluted share, in the prior-year quarter. Cash and equivalents ended the period at $20.6 billion.

On Jan. 18, Microsoft announced plans to acquire Activision Blizzard(NASDAQ:ATVI), a leading player in game and interactive entertainment development. It will be an all-cash transaction valued at $68.7 billion. Wall Street expects this deal to provide tailwinds for Microsofts gaming business and building blocks for the metaverse.

MSFT stock currently trades just under $310, up 27% over the past 12 months. Shares support a valuation of 32.6 times forward earnings and 12.3 times trailing sales. And the 12-month median price forecast for Microsoft stock stands at $370.

52-week range: $115.67 $346.47

Dividend Yield: 0.06%

Santa Clara, California-based Nvidia has become an important name in advanced semiconductor design and software for next-generation computing development. InvestorPlace readers likely know the chipmaker is a market leader in the gaming and data center markets.

Nvidia announced impressive Q3 FY 2022 numbers on Nov. 17. Revenue soared 50% YOY to a record $7.1 billion, fueled by record sales in the gaming and data center businesses. Net income increased 62% YOY to $2.97 billion, or $1.17 per diluted share. Cash and equivalents ended the period at $1.29 billion.

The chipmaker provides the necessary processing power that drives the development of quantum computing. Additionally, Nvidia recently released cuQuantum, a software development kit designed for building quantum computing workflows. It has partnered with Google, IBM and other quantum computing players that rely on cuQuantum to accelerate their quantum computing work.

Given its growing addressable market in cloud computing, gaming, AI, and more recently the metaverse, NVDA stock deserves your attention. Share are changing hands around $245, up nearly 80% over the past year. However, despite an 18% decline YTD, shares are trading at 46.5 times forward earnings and 25 times trailing sales.

Finally, the 12-month median price forecast for Nvidia stock is $350. As the company gets ready to report earnings soon, investors should expect increased choppiness in price.

52-week range: $9.62 $12.75

Our final stock is Supernova Partners Acquisition II, a SPAC. It is merging with Rigetti Computing, a start-up focused on quantum computer development. As a result of the merger, Rigetti Computing was valued at about $1.5 billion and received $458 million in gross cash proceeds.

Rigetti designs quantum chips and then integrates those chips with a controlling architecture. It also develops software used to build algorithms for these chips.

Rigetti recently announced business highlightsfor the nine months ended Oct. 31, 2021. Revenue came in at $6.9 million. Net operating loss declined 3% YOY to $26.2 million.

We believe the time for quantum computing has arrived, said founder and CEO Chad Rigetti. Customer demand is increasing as Rigetti quantum computers begin to address high-impact computational problems.

The start-up launched the worlds first scalable multi-chip quantum processor in June 2021. This processor boasts a proprietary modular architecture. Now Wall Street expects the company to move toward commercialization.

Rigetti collaborates with government entities and technology to advance its quantum processors. For instance, it boasts strategic partnerships with the National Aeronautics and Space Administration (NASA) and the U.S. Department of Energy. It also works with data analytics firm Palantir Technologies (NYSE:PLTR) and electronics manufacturer Keysight Technologies(NYSE:KEYS).

SNII stock is currently shy of $10, down about 4% YTD. As investors interest in quantum computing names grow, shares are likely to become hot.

On the date of publication, Tezcan Gecgil holds both long and short positions in NVDA stock. The opinions expressed in this article are those of the writer, subject to the InvestorPlace.comPublishing Guidelines.

TezcanGecgil has worked in investment management for over two decades in the U.S. and U.K. In addition to formal higher education in the field, she has also completed all 3 levels of the Chartered Market Technician (CMT) examination. Her passion is for options trading based on technical analysis of fundamentally strong companies. She especially enjoys setting up weekly covered calls for income generation.

More here:
7 Best Quantum Computing Stocks to Buy in 2022 | InvestorPlace

AI Summit and IoT World Austin Will Focus on Smart Mobility, Artificial Intelligence in the Everyday and Transformative Quantum Computing – Business…

AI Summit and IoT World Austin Will Focus on Smart Mobility, Artificial Intelligence in the Everyday and Transformative Quantum Computing  Business Wire

Read the original post:
AI Summit and IoT World Austin Will Focus on Smart Mobility, Artificial Intelligence in the Everyday and Transformative Quantum Computing - Business...

VW teams with Canadian quantum computing company Xanadu on batteries – Automotive News Canada

Quantum computing, Ardey added in a release, might trigger a revolution in material science that will feed into the companys in-house battery expertise.

Leaving the bits and bytes of classical computing behind, quantum computers rely on qubits, and are widely seen as having potential to solve complex problems that traditional computers could not work through on reasonable timelines.

The automaker and Toronto-based technology firm have already been collaborating on research into material science, computational chemistry, and quantum algorithms for about a year. That early work set the foundation for the formal partnership, Volkswagen said.

The goal of the research is to develop quantum algorithms that can simulate how a blend of battery materials will interact more quickly than traditional computer models. Computational chemistry, which is traditionally used for such work, Ardey said, is reaching limitations when it comes to battery research.

Juan Miguel Arrazola, head of algorithms at Xanadu, said the partnership is part of the Canadian companys drive to make quantum computers truly useful.

Focusing on batteries is a strategic choice given the demand from industry and the prospects for quantum computing to aid in understanding the complex chemistry inside a battery cell.

Using the quantum algorithms, Volkswagen said it aims to develop battery materials that are safer, lighter and cheaper.

Here is the original post:
VW teams with Canadian quantum computing company Xanadu on batteries - Automotive News Canada

Cleveland Clinic and IBM Begin Installation of IBM Quantum System One – Cleveland Clinic Newsroom

Cleveland Clinicand IBM have begundeployment of the first private sector onsite,IBM-managedquantum computer in the United States.The IBM Quantum Systemis to be located on Cleveland Clinics main campus in Cleveland.

The first quantum computer in healthcare, anticipated to be completed in early 2023, is a key part of the two organizations10-year partnership aimed at fundamentally advancing the pace of biomedical research through high-performance computing. Announced in 2021, the Cleveland Clinic-IBM Discovery Accelerator is a joint center that leverages Cleveland Clinics medical expertise with the technology expertise of IBM, including its leadership in quantum computing.

The current pace of scientific discovery is unacceptably slow, while our research needs are growing exponentially, said Lara Jehi, M.D., Cleveland Clinics Chief Research Information Officer. We cannot afford to continue to spend a decade or more going from a research idea in a lab to therapies on the market. Quantum offers a future to transform this pace, particularly in drug discovery and machine learning.

A step change in the way we solve scientific problems is on the horizon, said Ruoyi Zhou, Director, Ph.D., IBM Research Cleveland Clinic Partnership. At IBM, were more motivated than ever to create with Cleveland Clinic and others lasting communities of discovery and harness the power of quantum computing, AI and hybrid cloud to usher in a new era of accelerated discovery in healthcare and life sciences.

The Discovery Accelerator at Cleveland Clinic draws upon a variety of IBMs latest advancements in high performance computing, including:

Lara Jehi, M.D., and Ruoyi Zhou, Ph.D., at the site of the IBM Quantum System One on Cleveland Clinics main campus. (Courtesy: Cleveland Clinic/IBM)

The Discovery Accelerator also serves as the technology foundation for Cleveland Clinics Global Center for Pathogen Research & Human Health, part of the Cleveland Innovation District. The center, supported by a $500 million investment from the State of Ohio, Jobs Ohio and Cleveland Clinic, brings together a team focused on studying, preparing and protecting against emerging pathogens and virus-related diseases. Through Discovery Accelerator, researchers are leveraging advanced computational technology to expedite critical research into treatments and vaccines.

Together, the teams have already begun several collaborative projects that benefit from the new computational power. The Discovery Accelerator projects include a research study developing a quantum computing method to screen and optimize drugs targeted to specific proteins; improving a prediction model for cardiovascular risk following non-cardiac surgery; and using artificial intelligence to search genome sequencing findings and large drug-target databases to find effective, existing drugs that could help patients with Alzheimers and other diseases.

A significant part of the collaboration is a focus on educating the workforce of the future and creating jobs to grow the economy. An innovative educational curriculum has been designed for participants from high school to professional level, offering training and certification programs in data science, machine learning and quantum computing to build the skilled workforce needed for cutting-edge computational research of the future.

Read more here:
Cleveland Clinic and IBM Begin Installation of IBM Quantum System One - Cleveland Clinic Newsroom

CEO Jack Hidary on SandboxAQ’s Ambitions and Near-term Milestones – HPCwire

Spun out from Google last March, SandboxAQ is a fascinating, well-funded start-up targeting the intersection of AI and quantum technology. As the world enters the third quantum revolution, AI + Quantum software will address significant business and scientific challenges, is the companys broad self-described mission. Part software company, part investor, SandboxAQ foresees a blended classical computing-quantum computing landscape with AI infused throughout.

Its developing product portfolio comprises enterprise software for assessing and managing cryptography/data security in the so-called post-quantum era. NIST, of course, released its first official post-quantum algorithms in July and SandboxAQ is one of 12 companies selected to participate in its newproject Migration to Post Quantum Cryptography to build and commercialize tools. SandboxAQs AQ Analyzer product, says the company, is already available and being used by a few marquee customers.

Then theres SandboxAQs Strategic Investment Program, announced in August, which acquires or invests in technology companies of interest. So far, it has acquired one company (Cryptosense) and invested in two others (evolutionQ, and Qunnect).

Last week, HPCwire talked with SandboxAQ CEO Jack Hidary about the companys products and strategy. One has the sense that SandboxAQs aspirations are broad, and with nine figure funding, it has the wherewithal to pivot or expand. The A in the name stands for AI and the Q stands for quantum. One area not on the current agenda: building a quantum computer.

We want to sit above that layer. All these [qubit] technologies ion trap, and NV center (nitrogen vacancy center), neutral atoms, superconducting, photonic are very interesting and we encourage and mentor a lot of these companies who are quantum computing hardware companies. But we are not going to be building one because we really see our value as a layer on top of those computing [blocks], said Hidary. Google, of course, has another group working on quantum hardware.

Hidary joined Google in 2016 as Sandbox group director. A self-described serial entrepreneur, Hidarys varied experience includes founding EarthWeb, being a trustee of the XPrize Foundation, and running for Mayor in New York City in 2013. While at Google Sandbox, he wrote a textbook Quantum Computing: An Applied Approach.

I was recruited in to start a new division to focus on the use of AI and ultimately also quantum in solving really hard problems in the world. We realized that we needed to be multi-platform and focus on all the clouds and to do [other] kinds of stuff so we ended up spinning out earlier this year, said Hidary.

Eric Schmidt joined us about three and a half years ago as he wrapped up his chairmanship at Alphabet (Google parent company). He got really into what were doing, looking at the impact that scaled computation can have both on the AI side and the quantum side. He became chairman of SandboxAQ. I became CEO. Weve other backers like Marc Benioff from Salesforce and T. Rowe Price and Guggenheim, who are very long-term investors. What youll notice here thats interesting is we dont have short-term VCs. Wehave really long term investors who are here for 10 to 15 years.

The immediate focus is on post quantum cryptography tools delivered mostly by a SaaS model. By now were all familiar with the threat that fault-tolerant quantum computers will be able to crack conventionally encrypted (RSA) data using Shors algorithm. While fault-tolerant quantum computers are still many years away, the National Institute of Standards and Technology (NIST) and others, including SandboxAQ, have warned against Store Now/Decrypt Later attacks. (See HPCwire article, The Race to Ensure Post Quantum Data Security).

What adversaries are doing now is siphoning off information over VPNs. Theyre not cracking into your network. Theyre just doing it over VPNs, siphoning that information. They cant read it today, because its RSA protected, but theyll store it and read it in a number of years when they can, he said. The good news is you dont have to scrap your hardware. You could just upgrade the software. But thats still a monumental challenge. As you can imagine, for all the datacenters and the high-performance computing centers this is a non-trivial operation to do all that.

A big part of the problem is simply finding where encryption code is in existing infrastructure. That, in turn, has prompted calls for what is being called crypto-agility a comprehensive yet modular approach that allows easy swapping in-and-out cryptography code.

We want crypto-agility, and what we find is large corporations, large organizations, and large governments dont have crypto-agility. What were hoping is to develop tools to implement this idea. For example, as a first step to crypto-agility, were trying to see if people even have an MRI (discovery metaphor) machine for use on their own cybersecurity, and they really dont when it comes to encryption. Theres no diagnostic tools that these companies are using to find where their [encryption] footprint is or if they are encrypting everything appropriately. Maybe some stuff is not even being encrypted, said Hidary, who favors the MRI metaphor for a discovery tool.

No doubt, the need to modernize encryption/decryption methods and tools represents a huge problem and a huge market.

Without getting into technical details, Hidary said SandboxAQ is leveraging technology from its recent Cryptosense acquisition and internally developed technologies to develop a product portfolio planned to broadly encompass cryptography assessment, deployment and management. Its core current product is AQ Analyzer.

The idea, says Hidary returning to the MRI metaphor, is to take an MRI scan of inside the organization on-premise, cloud, private cloud, and so forth and this feeds into compliance vulnerabilities and post-quantum analysis. Its not just a quantum thing. Its about your general vulnerabilities on encryption. Overall, it happens to be that post quantum is helped by this, but this is a bigger issue. Then that feeds into your general sysops, network ops, and management tools that youre using.

AQ Analyzer, he says, is enterprise software that starts the process for organizations to become crypto-agile. Its now being used at large banks and telcos, and also by Mount Sinai Hospital. Healthcare replete with sensitive information is another early target for SandboxAQ. Long-term the idea is for Sandbox software tools to be able to automate much of the crypto management process from assessment to deployment through ongoing monitoring and management.

Thats the whole crypto-agility ballgame, says Hidary.

The business model, says Hidary, is carbon copy of Salesforce.coms SaaS model. Broadly, SandboxAQ uses a three-prong go-to-market via direct sales, global systems integrators in May it began programs with Ernst & Young (EY) and Deloitte and strategic partners/resellers. Vodafone and SoftBank are among the latter. Even though these are still early days for SandboxAQ as an independent entity, its moving fast, having benefitted from years of development inside Google. AQ Analyzer, said Hidary, is in general availability.

Were doing extremely well in banks and financial institutions. Theyre typically early adopters of cybersecurity because of the regulatory and compliance environment, and the trust they have with their customers, said Hidary.

Looking at near-term milestones, he said, Wed like to see a more global footprint of banks. Well be back in Europe soon now that we have Cryptosense (UK and Paris-based), and we have a local strong team in Europe. Weve had a lot of traction in the U.S. and the Canadian markets. So thats one key milestone over the next 18 months or so. Second, wed like to see [more adoption] into healthcare and telcos. We have Vodafone and Softbank mobile, on the telco side. We have Mount Sinai, wed like to see if that can be extended into additional players in those two spaces. The fourth vertical well probably go into is the energy grid. These are all critical infrastructure pieces of our society the financial structure of our society, energy, healthcare and the medical centers, the telecommunications grid.

While SandboxAQs AQ Analyzer is the companys first offering, its worth noting that the company aggressively looking for niches it can serve. For example, the company is keeping close tab on efforts to build a quantum internet.

Theres going to be a parallel quantum coherent internet to connect for distributed quantum computing, said Hidary. So nothing to do with cyber at all.

Our vision of the future that we share with I think everyone in the industry is that quantum does not take over classical, said Hidary. Its a mesh, a hybridization of CPU, GPU and quantum processing units. And the program, the code, in Python for example: part of it runs on CPUs, part of it on GPUs, and then yes, part of it will run on a QPU. In that mesh, youd want to have access both to the traditional Internet TCP IP today, but you also want to be able to connect over a quantum coherence intranet. So thats Qunnect.

Qunnect, of course, is one of the companies SandboxAQ has invested in and it is working on hardware (quantum memory and repeaters) to enable a quantum internet. Like dealing with post quantum cryptography, outfitting the quantum internet is likely to be as huge business. Looking at SandboxAQ, just seven months after being spun out from Google, the scope of its ambitions is hard to pin down.

Stay tuned.

See more here:
CEO Jack Hidary on SandboxAQ's Ambitions and Near-term Milestones - HPCwire

The world, and todays employees, need quantum computing more than ever – VentureBeat

Did you miss a session from MetaBeat 2022? Head over to the on-demand library for all of our featured sessions here.

Quantum computing can soon address many of the worlds toughest, most urgent problems.

Thats why the semiconductor legislation Congress just passed is part of a $280 billion package that will, among other things, direct federal research dollars toward quantum computing.

Quantum computing will soon be able to:

The economy and the environment are clearly two top federal government agenda items.Congress in July was poised to pass the most ambitious climate bill in U.S. history. The New York Times said that the bill would pump hundreds of billions of dollars into low-carbon energy technologies like wind turbines, solar panels and electric vehicles and would put the United States on track to slash its greenhouse gas emissions to roughly 40% below 2005 levels by 2030. This could help to further advance and accelerate the adoption of quantum computing.

Low-Code/No-Code Summit

Join todays leading executives at the Low-Code/No-Code Summit virtually on November 9. Register for your free pass today.

Because quantum technology can solve many previously unsolvable problems, a long list of the worlds leading businesses including BMW and Volkswagen, FedEx, Mastercard and Wells Fargo, and Merck and Roche are making significant quantum investments. These businesses understand that transformation via quantum computing, which is quickly advancing with breakthrough technologies, is coming soon. They want to be ready when that happens.

Its wise for businesses to invest in quantum computing because the risk is low and the payoff is going to be huge. As BCG notes: No one can afford to sit on the sidelines as this transformative technology accelerates toward several critical milestones.

The reality is that quantum computing is coming, and its likely not going to be a standalone technology. It will be tied to the rest of the IT infrastructure supercomputers, CPUs and GPUs.

This is why companies like Hewlett Packard Enterprise are thinking about how to integrate quantum computing into the fabric of the IT infrastructure. Its also why Terra Quantum AG is building hybrid data centers that combine the power of quantum and classical computing.

Amid these changes, employees should start now to get prepared. There is going to be a tidal wave of need for both quantum Ph.D.s and for other talent such as skilled quantum software developers to contribute to quantum efforts.

Earning a doctorate in a field relevant to quantum computing requires a multi-year commitment. But obtaining valuable quantum computing skills doesnt require a developer to go back to college, take out a student loan or spend years studying.

With modern tools that abstract the complexity of quantum software and circuit creation, developers no longer require Ph.D.-level knowledge to contribute to the quantum revolution, enabling a more diverse workforce to help businesses achieve quantum advantage. Just look at the winners in the coding competition that my company staged. Some of these winners were recent high school graduates, and they delivered highly innovative solutions.

Leading the software stack, quantum algorithm design platforms allow developers to design sophisticated quantum circuits that could not be created otherwise. Rather than defining tedious low-level gate connections, this approach uses high-level functional models and automatically searches millions of circuit configurations to find an implementation that fits resource considerations, designer-supplied constraints and the target hardware platform. New tools like Nvidias QODA also empower developers by making quantum programming similar to how classical programming is done.

Developers will want to familiarize themselves with quantum computing, whichwill be an integral arrow in their metaphorical quiver of engineering skills. People who add quantum skills to their classical programming and data center skills will position themselves to make more money and be more appealing to employers in the long term.

Many companies and countries are experimenting with and adopting quantum computing. They understand that quantum computing is evolving rapidly and is the way of the future.

Whether you are a business leader or a developer, its important to understand that quantum computing is moving forward. The train is leaving the station will you be on board?

Erik Garcell is technical marketing manager at Classiq.

Welcome to the VentureBeat community!

DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.

If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.

You might even considercontributing an articleof your own!

Read More From DataDecisionMakers

See the original post:
The world, and todays employees, need quantum computing more than ever - VentureBeat

There’s a New Quantum Computing Record: Control of a 6-Qubit Processor in Silicon – ScienceAlert

Another record has been broken on the way to fully operational and capable quantum computers: the complete control of a 6-qubit quantum processor in silicon.

Researchers are calling it "a major stepping stone" for the technology.

Qubits (or quantum bits) are the quantum equivalents of classical computing bits, only they can potentially process much more information. Thanks to quantum physics, they can be in two states at once, rather than just a single 1 or 0.

The difficulty is in getting a lot of qubits to behave as we need them to, which is why this jump to six is important. Being able to operate them in silicon the same material used in today's electronic devices makes the technology potentially more viable.

"The quantum computing challenge today consists of two parts," says quantum computing researcher Stephan Philips from the Delft University of Technology in the Netherlands. "Developing qubits that are of good enough quality, and developing an architecture that allows one to build large systems of qubits."

"Our work fits into both categories. And since the overall goal of building a quantum computer is an enormous effort, I think it is fair to say we have made a contribution in the right direction."

The qubits are made from individual electrons fixed in a row, 90 nanometers apart (a human hair is around 75,000 nanometers in diameter). This line of 'quantum dots' is placed in silicon, using a structure similar to the transistors used in standard processors.

By making careful improvements to the way the electrons were prepared, managed, and monitored, the team was able to successfully control their spin the quantum mechanical property that enables the qubit state.

The researchers were also able to create logic gates and entangle systems of two or three electrons, on demand, with low error rates.

Researchers used microwave radiation, magnetic fields, and electric potentials to control and read electron spin, operating them as qubits, and getting them to interact with each other as required.

"In this research, we push the envelope of the number of qubits in silicon, and achieve high initialization fidelities, high readout fidelities, high single-qubit gate fidelities, and high two-qubit state fidelities," says electrical engineer Lieven Vandersypen, also from the Delft University of Technology.

"What really stands out though is that we demonstrate all these characteristics together in one single experiment on a record number of qubits."

Up until this point, only 3-qubit processors have been successfully built in silicon and controlled up to the necessary level of quality so we're talking about a major step forward in terms of what's possible in this type of qubit.

There are different ways of building qubits including on superconductors, where many more qubits have been operated together and scientists are still figuring out the method that might be the best way forward.

The advantage of silicon is that the manufacturing and supply chains are all already in place, meaning the transition from a scientific laboratory to an actual machine should be more straightforward. Work continues to keep pushing the qubit record even higher.

"With careful engineering, it is possible to increase the silicon spin qubit count while keeping the same precision as for single qubits," says electrical engineer Mateusz Madzik from the Delft University of Technology.

"The key building block developed in this research could be used to add even more qubits in the next iterations of study."

The research has been published in Nature.

See original here:
There's a New Quantum Computing Record: Control of a 6-Qubit Processor in Silicon - ScienceAlert

Cancer to Be Treated as Easily as Common Cold When Humans Crack Quantum Computing – Business Wire

DUBAI, United Arab of Emirates--(BUSINESS WIRE)--Breakthroughs in quantum computing will enable humans to cure diseases like cancer, Alzheimers, and Parkinsons as easily as we treat the common cold.

That was one of the major insights to emerge from the Dubai Future Forum, with renowned theoretical physicist Dr. Michio Kaku telling the worlds largest gathering of futurists that humanity should brace itself for major transformations in healthcare.

The forum concluded with a call for governments to institutionalize foresight and engrain it within decision making.

Taking place in Dubai, UAE at the Museum of the Future, Amy Webb, CEO of Future Today Institute, criticized nations for being too pre-occupied with the present and too focused on creating white papers, reports and policy recommendations instead of action.

Nowism is a virus. Corporations and governments are infected, she said.

One panel session heard how humans could be ready to test life on the Moon in just 15 years and be ready for life on Mars in another decade. Sharing his predictions for the future, Dr. Kaku also said there is a very good chance humans will pick up a signal from another intelligent life form this century.

Dr. Jamie Metzl, Founder and Chair, OneShared.World, urged people to eat more lab-grown meat to combat global warming and food insecurity.

If we are treating them like a means to an end of our nutrition, wouldnt it be better instead of growing the animal, to grow the meat? he said.

Among the 70 speakers participating in sessions were several UAE ministers. HE Mohammad Al Gergawi, UAE Minister of Cabinet Affairs, Vice Chairman, Board of Trustees and Managing Director of the Dubai Future Foundation, said ministers around the world should think of themselves as designers of the future. Our stakeholders are 7.98 billion people around the world, he noted.

Dubais approach to foresight was lauded by delegates, including HE Omar Sultan Al Olama, UAE Minister of State for Artificial Intelligence, Digital Economy, and Remote Work Applications, who said: What makes our city and nation successful is not natural resources, but a unique ability to embrace all ideas and individuals.

More than 30 sessions covered topics including immortality, AI sentience, climate change, terraforming, genome sequencing, legislation, and the energy transition.

*Source: AETOSWire

Originally posted here:
Cancer to Be Treated as Easily as Common Cold When Humans Crack Quantum Computing - Business Wire

PsiQuantum Has A Goal For Its Million Qubit Photonic Quantum Computer To Outperform Every Supercomputer On The Planet – Forbes

PsiQuantum

In 2009, Jeremy O'Brien, a professor at the University of Bristol, published a research paper describing how to repurpose on-chip optical components originally developed by the telecom industry to manipulate single particles of light and perform quantum operations.

By 2016, based on the earlier photonic research, OBrien and three of his academic colleagues, Terry Rudolph, Mark Thompson, and Pete Shadbolt, created PsiQuantum.

The founders all believed that the traditional method of building a quantum computer of a useful size would take too long. At the companys inception, the PsiQuantum team established its goal to build a million qubit, fault-tolerant photonic quantum computer. They also believed the only way to create such a machine was to manufacture it in a semiconductor foundry.

Early alerts

PsiQuantum first popped up on my quantum radar about two years ago when it received $150 million in Series C funding which upped total investments in the company to $215 million.

That level of funding meant there was serious interest in the potential of whatever quantum device PsiQuantum was building. At that time, PsiQuantum was operating in a stealth mode, so there was little information available about its research.

Finally, after receiving another $450 million in Series D funding last year, PsiQuantum disclosed additional information about its technology. As recently as few weeks ago, a small $25 million US government grant was awarded jointly to PsiQuantum and its fabrication partner, GlobalFoundries, for tooling and further development of its photonic quantum computer. Having GlobalFoundries as a partner was a definite quality signal. GF is a high-quality, premiere fab and only one of the three tier one foundries worldwide.

With a current valuation of $3.15 Billion, PsiQuantum is following a quantum roadmap mainly paved with stepping stones of its own design with unique technology, components, and processes needed to build a million-qubit general-purpose silicon photonic quantum computer.

Technology

Classical computers encode information using digital bits to represent a zero or a one. Quantum computers use quantum bits (qubits), which can also represent a one or a zero, or be in a quantum superposition of some number between zero and one at the same time. There are a variety of qubit technologies. IBM, Google, and Rigetti use qubits made with small loops of wire that become superconductors when subjected to very cold temperatures. Quantinuum and IonQ use qubits formed by removing an outer valence electron from an atom of Ytterbium to create an ion. Atom Computing makes neutral atom spin qubits using an isotope of Strontium.

Light is used for various operations in superconductors and atomic quantum computers. PsiQuantum also uses light and turns infinitesimally small photons of light into qubits. Of the two types of photonic qubits - squeezed light and single photons - PsiQuantums technology of choice is single-photon qubits.

Using photons as qubits is a complex process. It is complicated to determine the quantum state of a single photon among trillions of photons with a range of varied frequencies and energies.

Dr. Pete Shadbolt is the Co-founder and Chief Science Officer of PsiQuantum. His responsibilities include overseeing the application and implementation of technology and scientific-related policies and procedures that are vital to the success of PsiQuantum. After earning his PhD in experimental photonic quantum computing from the University of Bristol in 2014, he was a postdoc at Imperial College researching the theory of photonic quantum computing. While at Bristol, he demonstrated the first-ever Variational Quantum Eigensolver and the first-ever public API to a quantum processor. He has been awarded the 2014 EPSRC "Rising Star" by the British Research Council; the EPSRC Recognizing Inspirational Scientists and Engineers Award; and the European Physics Society Thesis Prize.

Dr. Shadbolt explained that detecting a single photon from a light beam is analogous to collecting a single specified drop of water from the Amazon river's volume at its widest point.

That process is occurring on a chip the size of a quarter, Dr. Shadbolt said. Extraordinary engineering and physics are happening inside PsiQuantum chips. We are constantly improving the chips fidelity and single photon source performance.

Just any photon isnt good enough. There are stringent requirements for photons used as qubits. Consistency and fidelity are critical to the performance of photonic quantum computers. Therefore, each photon source must have high purity, proper brightness, and generate consistently identical photons.

The right partner

GlobalFoundries facility in Essex, Vermont

When PsiQuantum announced its Series D funding a year ago, the company revealed it had formed a previously undisclosed partnership with GlobalFoundries. Out of public view, the partnership had been able to build a first-of-its-kind manufacturing process for photonic quantum chips. This manufacturing process produces 300-millimeter wafers containing thousands of single photon sources, and a corresponding number of single photon detectors. The wafer also contains interferometers, splitters, and phase shifters. In order to control the photonic chip, advanced electronic CMOS control chips with around 750 million transistors were also built at the GlobalFoundries facility in Dresden, Germany.

Photon advantages

Every quantum qubit technology has its own set of advantages and disadvantages. PsiQuantum chose to use photons to build its quantum computer for several reasons:

Another major advantage of photon qubits worth highlighting is the ability to maintain quantum states for a relatively long time. As an example of lights coherence, despite traveling for billions of years, light emitted by distant stars and galaxies reaches earth with its original polarization intact. The longer a qubit can maintain its polarized quantum state, the more quantum operations it can perform, which makes the quantum computer more powerful.

Why start with a million qubits?

We believed we had cracked the code for building a million-qubit quantum computer, Dr. Shadbolt said. Even though that's a huge number, the secret seemed simple. All we had to do was use the same process as the one being used to put billions of transistors into cell phones. We felt a large quantum computer wouldnt exist in our lifetime unless we figured out how to build it in a semiconductor foundry. That idea has been turned into reality. We are now building quantum chips next to laptops and cell phone chips on the GlobalFoundries 300-millimeter platform.

According to Dr. Shadbolt, PsiQuantums custom fabrication line has made much progress. Surprisingly, building a million-qubit quantum machine in a foundry has many of the same non-quantum issues as assembling a classical supercomputer, including chip yields, reliability, high-throughput testing, packaging, and cooling albeit to cryogenic temperatures.

From the time that our first GlobalFoundries announcement was made until now, we've produced huge amounts of silicon, Dr. Shadbolt said. Weve done seven tapeouts in total and were now seeing hundreds and hundreds of wafers of silicon coming through our door. We are investing heavily in packaging, assembly systems, integration, and fiber attachment to ensure the highest efficiency of light flowing in and out of the chip.

PsiQuantum is performing a great deal of ongoing research as well as continually improving the performance of photonic components and processes. In addition to high-performance optical components, the technologies that enable the process are also very important. A few enablers include optical switches, fiber-to-chip interconnects, and bonding methods.

We have greatly improved the efficiency of our photon detectors over the last few tapeouts at GlobalFoundries, Dr. Shadbolt explained. Were constantly working to prevent fewer and fewer photons from being lost from the system. We also have driven waveguide losses to extremely low levels in our recent chips.

There is much innovation involved. Our light source for single photons is a good example. We shine laser light directly into the chip to run the single photon sources. The laser is about a trillion times more intense than the single photons we need to detect, so we must attenuate light on that chip by a factor of about a trillion.

Dr. Shadbolt attributes PsiQuantums manufacturing success to GlobalFoundries. From experience, he knows there is a significant difference between a second-tier foundry and a first-tier foundry like GlobalFoundries. Building chips needed by PsiQuantum can only be built with an extremely mature manufacturing process.

PsiQuantum has two demanding requirements. We need a huge number of components, and we need those components to consistently meet extremely demanding performance requirements. There are very few partners in the world who can reliably achieve something like this, and we always knew that partnering with a mature manufacturer like GlobalFoundries would be key to our strategy.

The partnership has also been beneficial for GlobalFoundries because it has gained additional experience with new technologies by adding PsiQuantums photonic processes to the foundry.

The end is in sight

According to Dr. Shadbolt, the original question of whether large numbers of quantum devices could be built in a foundry is no longer an issue as routinely demonstrated by its output of silicon. However, inserting new devices into the manufacturing flow has always been difficult. It is slow and it is very expensive. Nanowire single photon detectors are an example of a development that came directly from the university lab and was inserted into the manufacturing process.

PsiQuantums semiconductor roadmap only has a few remaining items to complete. Since a million qubits wont fit on a single chip, the quantum computer will require multiple quantum processor chips to be interconnected with optical fibers and facilitated by ultra-high-performance optical switches to allow teleportation and entanglement of single photon operations between chips.

What remains is the optical switch, Dr. Shadbolt said. You might ask why photonic quantum computing people have never built anything at scale? Or why they havent demonstrated very large entangled states? The reason is that a special optical switch is needed, but none exists. It must have very high performance, better than any existing state-of-the-art optical switch such as those used for telecom networking. Its a classical device, and its only function will be to route light between waveguides, but it must be done with extremely low loss and at very high speed. It must be a really, really good optical switch.

If it cant be bought, then it must be built

Implementing an optical switch with the right specs is a success-or-fail item for PsiQuantum. Since a commercial optical switch doesnt exist that fits the application needs, PsiQuantum was left with no choice but to build one. For the past few years, its management has been heavily investing in developing a very high-performance optical switch.

Dr. Shadbolt explained: I believe this is one of the most exciting things PsiQuantum is doing. Building an extremely high-performance optical switch is the next biggest thing on our roadmap. We believe it is the key to unlocking the huge promise of optical quantum computing.

Summary

PsiQuantum was founded on the belief that photonics was the right technology for building a fault tolerant quantum machine with a million qubits and that the proper approach was based on semiconductor manufacturing. In contrast to NISQ quantum computers, the founders wanted to avoid building incrementally larger and larger machines over time.

Considering the overall process needed to build a million-qubit quantum computer, its high degree of complexity, and the lack of proven tools and processes to do it with, PsiQuantum has made amazing progress since it first formed the company.

It established a true partnership with one of the best foundries in the world and produced seven tapeouts and funded a half dozen new tools to build a first-of-its-kind wafer manufacturing process, incorporating superconducting single photon detectors into a regular silicon-photonic chip.

And today, it is answering yet another challenge by building an optical switch to fill a void where the needed product doesnt exist.

It is no surprise that an ultra- high-performance optical switch is a key part of PsiQuantums plans to build a scalable million qubit quantum computer. Other quantum companies are also planning to integrate similar optical switching technology to scale modular QPU architectures within the decade. The high-performance optical switch PsiQuantum is developing could someday connect tens of thousands of quantum processing units in a future multi-million qubit quantum data center. As a standalone product, it could also be a source of additional revenue should PsiQuantum choose to market it.

Once the optical switch has been built, it will then need to be enabled into GlobalFoundries manufacturing flow. That is the last step needed to complete PsiQuantums foundry assembly process and then it will be ready to produce photonic quantum computer chips.

But even with a complete end-to-end manufacturing process, significantly more time will be needed to construct a full-blown fault-tolerant quantum computer. It will remain for PsiQuantum to build complete quantum computers around chips produced by GlobalFoundries. For that, it will need a trained workforce and a location and infrastructure where large qubit photonic quantum computers can be assembled, integrated, tested, and distributed.

Based on the amount of post-foundry work, development of the optical switch, and assembly that remains, and assuming no major technology problems or delays occur, I believe it will be after mid-decade before a photonic quantum computer of any scale can be offered by PsiQuantum.

Ill wrap this up with comments made by Dr. Shadbolt during our discussion about the optical switch. I believe it demonstrates why PsiQuantum has been, and will continue to be successful:

Even though the optical switch will obviously be a very powerful generic technology of interest to others, we are not interested in its generic usefulness. We are only interested in the fact that it will allow us to build a quantum computer that outperforms every supercomputer on the planet. That is our singular goal.

Paul Smith-Goodson is Vice President and Principal Analyst for quantum computing, artificial intelligence and space at Moor Insights and Strategy. You can follow him on Twitter for more current information on quantum, AI, and space.

Note: Moor Insights & Strategy writers and editors may have contributed to this article.

Moor Insights & Strategy, like all research and tech industry analyst firms, provides or has provided paid services to technology companies. These services include research, analysis, advising, consulting, benchmarking, acquisition matchmaking, and speaking sponsorships. The company has had or currently has paid business relationships with 88, Accenture, A10 Networks, Advanced Micro Devices, Amazon, Amazon Web Services, Ambient Scientific, Anuta Networks, Applied Brain Research, Applied Micro, Apstra, Arm, Aruba Networks (now HPE), Atom Computing, AT&T, Aura, Automation Anywhere, AWS, A-10 Strategies, Bitfusion, Blaize, Box, Broadcom, C3.AI, Calix, Campfire, Cisco Systems, Clear Software, Cloudera, Clumio, Cognitive Systems, CompuCom, Cradlepoint, CyberArk, Dell, Dell EMC, Dell Technologies, Diablo Technologies, Dialogue Group, Digital Optics, Dreamium Labs, D-Wave, Echelon, Ericsson, Extreme Networks, Five9, Flex, Foundries.io, Foxconn, Frame (now VMware), Fujitsu, Gen Z Consortium, Glue Networks, GlobalFoundries, Revolve (now Google), Google Cloud, Graphcore, Groq, Hiregenics, Hotwire Global, HP Inc., Hewlett Packard Enterprise, Honeywell, Huawei Technologies, IBM, Infinidat, Infosys, Inseego, IonQ, IonVR, Inseego, Infosys, Infiot, Intel, Interdigital, Jabil Circuit, Keysight, Konica Minolta, Lattice Semiconductor, Lenovo, Linux Foundation, Lightbits Labs, LogicMonitor, Luminar, MapBox, Marvell Technology, Mavenir, Marseille Inc, Mayfair Equity, Meraki (Cisco), Merck KGaA, Mesophere, Micron Technology, Microsoft, MiTEL, Mojo Networks, MongoDB, MulteFire Alliance, National Instruments, Neat, NetApp, Nightwatch, NOKIA (Alcatel-Lucent), Nortek, Novumind, NVIDIA, Nutanix, Nuvia (now Qualcomm), onsemi, ONUG, OpenStack Foundation, Oracle, Palo Alto Networks, Panasas, Peraso, Pexip, Pixelworks, Plume Design, PlusAI, Poly (formerly Plantronics), Portworx, Pure Storage, Qualcomm, Quantinuum, Rackspace, Rambus, Rayvolt E-Bikes, Red Hat, Renesas, Residio, Samsung Electronics, Samsung Semi, SAP, SAS, Scale Computing, Schneider Electric, SiFive, Silver Peak (now Aruba-HPE), SkyWorks, SONY Optical Storage, Splunk, Springpath (now Cisco), Spirent, Splunk, Sprint (now T-Mobile), Stratus Technologies, Symantec, Synaptics, Syniverse, Synopsys, Tanium, Telesign,TE Connectivity, TensTorrent, Tobii Technology, Teradata,T-Mobile, Treasure Data, Twitter, Unity Technologies, UiPath, Verizon Communications, VAST Data, Ventana Micro Systems, Vidyo, VMware, Wave Computing, Wellsmith, Xilinx, Zayo, Zebra, Zededa, Zendesk, Zoho, Zoom, and Zscaler. Moor Insights & Strategy founder, CEO, and Chief Analyst Patrick Moorhead is an investor in dMY Technology Group Inc. VI, Dreamium Labs, Groq, Luminar Technologies, MemryX, and Movandi.

Moor Insights & Strategy founder, CEO, and Chief Analyst Patrick Moorhead is an investor in dMY Technology Group Inc. VI, Dreamium Labs, Groq, Luminar Technologies, MemryX, and Movand

Read more from the original source:
PsiQuantum Has A Goal For Its Million Qubit Photonic Quantum Computer To Outperform Every Supercomputer On The Planet - Forbes

STL launches Multiverse – India’s first Multicore fibre and cable; aims to revolutionize the optical landscape – PR Newswire

-Most advanced optical technology in India

-A game changer for 5G, Quantum Computing and Data Centre connectivity

NEW DELHI, Oct. 2, 2022 /PRNewswire/ -- STL (NSE: STLTECH), one of the industry's leading integrators of digital networks, today launched India's first Multicore fibre and cable. This breakthrough innovation will change the optical connectivity landscape of India.

This has been conceptualised and developed indigenously at STL's Centre of Excellence in Maharashtra with top interdisciplinary R&D experts. STL's Multiverse leverages Space Division Multiplexing to gain 4X transmission capacity per fibre, within the same diameter.

Speaking at the launch, Randeep Sekhon, CTO, Bharti Airtel, said: "I am excited to see this optical fibre innovation from a homegrown company. STL's Multiverse fibre and cable will enable 4X capacity and play a vital role in 5G scale-up. I wish STL all the very best for their efforts towards supporting network build outs."

STL Multiverse offers features that can revolutionise connectivity for network builders:

Commenting on the launch, Dr Badri Gomatam, CTO, STL, said, "We have been doing deep research on optical fibre for over 15 years. In the last three years, we have been able to excel in Multicore technology and indigenously developed this product. We are proud to be the first in India to launch this. STL's Multiverse will revolutionise 5G and data center connectivity, actualise quantum computing at scale and make the internet greener."

About STL - Sterlite Technologies Ltd:

STL is an industry-leading integrator of digital networks that helps telcos, cloud companies, citizen networks and large enterprises deliver enhanced experiences to their customers. Read more, Contact us.

stl.tech|Twitter| LinkedIn|YouTube

Photo - https://mma.prnewswire.com/media/1912473/STL.jpg

SOURCE STL

Read more:
STL launches Multiverse - India's first Multicore fibre and cable; aims to revolutionize the optical landscape - PR Newswire

Why IBM is no longer interested in breaking patent recordsand how it plans to measure innovation in the age of open source and quantum computing -…

Why IBM is no longer interested in breaking patent recordsand how it plans to measure innovation in the age of open source and quantum computing  Fortune

Read this article:
Why IBM is no longer interested in breaking patent recordsand how it plans to measure innovation in the age of open source and quantum computing -...