Quantum Computing to host two webinars showing users the ropes on its Mukai quantum software – Proactive Investors USA & Canada

The presenters planto review a recent study highlighting how Mukais performance compares to other solvers in terms of time-to-solution and diversity of solutions running quantum computing software tools

Quantum Computing Inc () is launching a series of free webinars featuring its Mukai quantum computing software execution platform designed to show how it can solve real-world optimization problems at breakthrough speed.

The programs will be hosted by Steve Reinhardt, the companys VP of business development and an expert in quantum software. He has built software and hardware that has delivered new levels of speed and performance, the company said, including Research T3E distributed-memory systems, Star-P parallel-MATLAB software, YarcData/Cray Urika graph-analytic systems and others.

The first session, titled, The Value of QuOIR Running on the Mukai Platform; Use Cases and Examples will be held at noon ET on July 14. It will focus on the ways Mukai can solve complex, real-world optimization problems faced by major companies and government agencies worldwide, such as logistics routing, drug design and manufacturing scheduling.

The presenters planto review a recent study highlighting how Mukais performance compares to other solvers in terms of time-to-solution and diversity of solutions running quantum computing software tools on classical computers.

Participants will learn about how the QuOIR constrained-optimization layer of the Mukai platform makes it easier to achieve superior performance by automatically creating a machine learning pattern-matching technique called QUBO, the company said.

Registration for the first session can be done here.

The second session, titled, The Mukai How To Webinar, is scheduled for noon ET on July 21. This program will explore the functions of the Mukai quantum computing software execution platform with a focus on how developers and organizations can migrate existing applications to quantum-ready solutions, even on classical computers.

Participants will learn how they can start a free trial of Mukai, which the company launched last week. The webinar will teach how to use the Mukai API for calling a set of quantum-ready solvers that can execute on a cloud-based classical computer infrastructure and deliver differentiated performance for quantum-ready algorithms.

Registration for the second session can be done here.

Contact Andrew Kessel at [emailprotected]

Follow him on Twitter @andrew_kessel

More here:
Quantum Computing to host two webinars showing users the ropes on its Mukai quantum software - Proactive Investors USA & Canada

PsiQuantum: $450 Million In Funding And $3.15 Billion Valuation – Pulse 2.0

PsiQuantum recently announced it raised $450 million in Series D funding at a $3.15 billion valuation. The funding was raised to build the worlds first commercially viable quantum computer.

The funding round was led by funds and accounts managed by BlackRock along with participation from insiders including Baillie Gifford and M12 (Microsofts venture fund) and new investors including Blackbird Ventures and Temasek. PsiQuantum has raised a total of $665 million in funding to date.

Founded in 2016, PsiQuantumw was created by some of the worlds foremost quantum computing experts who understood that a useful quantum computer required fault-tolerance and error correction, and therefore at least 1 million physical qubits.

PsiQuantum includes a growing team of world-class engineers and scientists who are working on the entire quantum computing stack from the photonic and electronic chips, through packaging and control electronics, cryogenic systems, quantum architecture, and fault tolerance, to quantum applications. In May 2020, the company had started manufacturing the silicon photonic and electronic chips that form the foundation of the Q1 system, a significant system milestone in PsiQuantums roadmap to deliver a fault-tolerant quantum computer.

Unlike other quantum computing efforts, PsiQuantum is focused on building a fault-tolerant quantumcomputer supported by a scalable and proven manufacturing process. And the company has developed a unique technology in which single photons (particles of light) are manipulated using photonic circuits which are patterned onto a silicon chip using standard semiconductor manufacturing processes.

PsiQuantum is building quantum photonic chips as well as the cryogenic electronic chips to control the qubits, using the advanced semiconductor tools in the production line of PsiQuantums manufacturing partnerGlobalFoundries.

When fault-tolerant quantum computers become available, humankind can use them to solve otherwise impossible problems. And PsiQuantum is currently working with global leaders in the healthcare, materials, electronics, financial, security, transportation, and energy sectors to identify and optimize algorithms and applications to support business readiness for the broad adoption of quantum computing.

KEY QUOTES:

Quantum computing is the most profoundly world-changing technology uncovered to date. It is my conviction that the way to bring this technology into reality is by using photonics. Our company was founded on the understanding that leveraging semiconductor manufacturing is the only way to deliver the million qubits that are known to be required for error correction, a prerequisite for commercially valuable quantum computing applications. This funding round is a major vote of confidence for that approach.

Jeremy OBrien, CEO and co-founder of PsiQuantum

A commercially viable, general-purpose quantum computer has the potential to create entirely new industries ready to address some the most urgent challenges we face, especially in climate, healthcare, and energy. To see this promising technology deployed within a reasonable time frame requires it to be built using a scalable manufacturing process. Silicon photonics combined with an advanced quantum architecture is the most promising approach weve seen to date.

Tony Kim, managing director at BlackRock

Investing is about backing companies with the potential to deliver transformational growth. With its uniquely scalable approach, PsiQuantum is on track to deliver the worlds first useful quantum computer and unlock a powerful new era of innovation in the process. Whether its developing better battery materials, improving carbon capture techniques, or designing life-saving drugs in a fraction of the time, quantum computing is key to solving many of the worlds most demanding challenges.

Luke Ward, investment manager at Baillie Gifford

We invested in PsiQuantum based on the strength of the companys bold vision matched by a robust, disciplined, stepwise engineering plan to achieve that goal. We are impressed by the technical progress we have seen in hardware development along with refinement of a novel quantum architecture ideally suited for photonics. PsiQuantum and Microsoft have a shared perspective on the need for a good number of logical qubits enabled by fault tolerance and error correction on 1 million-plus physical qubits when it comes to building a truly useful quantum computer.

Samir Kumar, managing director at Microsofts venture fund M12

Link:
PsiQuantum: $450 Million In Funding And $3.15 Billion Valuation - Pulse 2.0

Research by University of Chicago PhD Student and EPiQC Wins IBM Q Best Paper – HPCwire

March 23, 2020 A new approach for using a quantum computer to realize a near-term killer app for the technology received first prize in the 2019 IBM Q Best Paper Awardcompetition, the company announced. The paper, Minimizing State Preparations in Variational Quantum Eigensolver (VQE) by Partitioning into Commuting Families, was authored by UChicago CS graduate studentPranav Gokhaleand fellow researchers from theEnabling Practical-Scale Quantum Computing (EPiQC)team.

The interdisciplinary team of researchers from UChicago, University of California, Berkeley, Princeton University and Argonne National Laboratory won the $2,500 first-place award for Best Paper. Their research examined how the VQE quantum algorithm could improve the ability of current and near-term quantum computers to solve highly complex problems, such as finding the ground state energy of a molecule, an important and computationally difficult chemical calculation the authors refer to as a killer app for quantum computing.

Quantum computers are expected to perform complex calculations in chemistry, cryptography and other fields that are prohibitively slow or even impossible for classical computers. A significant gap remains, however, between the capabilities of todays quantum computers and the algorithms proposed by computational theorists.

VQE can perform some pretty complicated chemical simulations in just 1,000 or even 10,000 operations, which is good, Gokhale says. The downside is that VQE requires millions, even tens of millions, of measurements, which is what our research seeks to correct by exploring the possibility of doing multiple measurements simultaneously.

Gokhale explains the research inthis video.

With their approach, the authors reduced the computational cost of running the VQE algorithm by 7-12 times. When they validated the approach on one of IBMs cloud-service 20-qubit quantum computers, they also found lower error as compared to traditional methods of solving the problem. The authors have shared theirPython and Qiskit codefor generating circuits for simultaneous measurement, and have already received numerous citations in the months since the paper was published.

For more on the research and the IBM Q Best Paper Award, see theIBM Research Blog. Additional authors on the paper include ProfessorFred Chongand PhD studentYongshan Dingof UChicago CS, Kaiwen Gui and Martin Suchara of the Pritzker School of Molecular Engineering at UChicago, Olivia Angiuli of University of California, Berkeley, and Teague Tomesh and Margaret Martonosi of Princeton University.

About The University of Chicago

The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment tofree and open inquirydraws inspired scholars to ourglobal campuses, where ideas are born that challenge and change the world. We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in theCollegedevelop critical, analytic, and writing skills in ourrigorous, interdisciplinary core curriculum. Throughgraduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

Source: The University of Chicago

Read more:
Research by University of Chicago PhD Student and EPiQC Wins IBM Q Best Paper - HPCwire

Topological Quantum Computing Market Outlook From 2020 to 2028 With Impact of COVID-19, Technology, Top Companies, Demand Forecast, Revenue Analysis …

The total information and communication technology goods (including computers, peripheral devices, communication and consumer electronic components among other IT goods) exports registered a growth rate of 11.5% in 2017 as against 10.5% in 2012.

CRIFAX added a report onGlobal Topological Quantum Computing Market, 2020-2028to its database of market research collaterals consisting of overall market scenario with prevalent and future growth prospects, among other growth strategies used by key players to stay ahead of the game. Additionally, recent trends, mergers and acquisitions, region-wise growth analysis along with challenges that are affecting the growth of the market are also stated in the report.

Get Final Sample This Strategic Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market)@https://www.crifax.com/sample-request-1010075

The emergence of new technological innovations including recent technologies such as DDI (AI) and Internet of Things (IoT) finding their usage across both industrial and residential applications and rapid pace of Public Field Service Management Software taking place across various industries is estimated to drive the growth of the global Public Field Service Management Software Market over the forecast period (2019-2027). The manufacturing industries are predicted to invest about USD 340 billion on Public Field Service Management Software in 2019. Investments in robotics, autonomous and freight operations are estimated to generate revenues of USD 128 billion in the same year. With transformation of business models happening on account of emergence of AI, IoT and Robotics, the global Public Field Service Management Software Market is estimated to observe significant growth over the next 6-7 years.

The introduction of 5G network is anticipated to provide various business opportunities as well as tap additional sources of revenue for the telecom industries, on account of increase in speed and responsiveness of the wireless networks.

Get Final Sample This Strategic Report will cover the impact analysis of COVID-19 on this industry (Global and Regional Market)@https://www.crifax.com/sample-request-1010075

With growing demand for mobile data along with increased video streaming services, the adoption of 5G services in North America is estimated to cross 45% by 2023. The rollout of 5G network combined with IoT connectivity which includesTopological Quantum Computing, connected homes or connected cities is predicted to change the way the telecom operators perform their tasks. United Nations Conference on Trade & Development (UNCTAD) in its report stated that the percentage of total information and communication technology goods (including computers, peripheral devices, communication and consumer electronic components among other IT goods) exports had grown from 10.5% in 2012 to 11.5% in 2017. As of 2017, Hong Kong held the largest share of 51.7% in ICT goods exports among four nations, which was followed by Philippines (35.9%), Singapore (32%) and Malaysia (31%).Moreover, growth of the global economy along with several efforts taken by countries such as China, Japan, United States of America, Germany, Netherlands, Korea and other ICT goods exporting nations is anticipated to aid the growth of the IT and Telecom sector. To provide better understanding of internal and external marketing factors, the multi-dimensional analytical tools such as SWOT and PESTEL analysis have been implemented in the globalTopological Quantum Computing Marketreport. Moreover, the report consists of market segmentation, CAGR (Compound Annual Growth Rate), BPS analysis, Y-o-Y growth (%), Porters five force model, absolute $ opportunity and anticipated cost structure of the market.

About CRIFAX

CRIFAX is driven by integrity and commitment to its clients and provides cutting-edge marketing research and consulting solutions with a step-by-step guide to accomplish their business prospects. With the help of our industry experts having hands on experience in their respective domains, we make sure that our industry enthusiasts understand all the business aspects relating to their projects, which further improves the consumer base and the size of their organization. We offer wide range of unique marketing research solutions ranging from customized and syndicated research reports to consulting services, out of which, we update our syndicated research reports annually to make sure that they are modified according to the latest and ever-changing technology and industry insights. This has helped us to carve a niche in delivering distinctive business services that enhanced our global clients trust in our insights and helped us to outpace our competitors as well.

For More Update Follow:-LinkedIn|Twitter

Contact Us:

CRIFAX

Email: [emailprotected]

U.K. Phone: +44 161 394 2021

U.S. Phone: +1 917 924 8284

More Related Reports:-

Digital Risk Protection (DRP) Tools MarketDrone Surveillance Platform MarketWarehousing Automation MarketDirect Store Delivery Software MarketAdvanced Threat Protection (ATP) MarketTransportation Management System Integrator MarketNetwork Management Solution MarketMedical Image Processing Software MarketAutomotive Wiper Component After MarketMembrane Water and Wastewater Treatment MarketIoT Connectivity MarketEnvironmental Hazard Monitoring Software MarketMicroscope Software MarketManaged Infrastructure Service MarketWireless Asset Management MarketSemiconductor (Silicon) Intellectual Property MarketMobile Content Delivery Network MarketBitcoin Technology MarketData Integration and Integrity Software MarketHealthcare Architecture Service MarketScalable Software Defined Networking MarketCarbon Management System Market

Originally posted here:
Topological Quantum Computing Market Outlook From 2020 to 2028 With Impact of COVID-19, Technology, Top Companies, Demand Forecast, Revenue Analysis ...

Quantum Computing | Intel Newsroom

Quantum computing is an exciting new computing paradigm with unique problems to be solved and new physics to be discovered. Quantum computing, in essence, is the ultimate in parallel computing, with the potential to tackle problems conventional computers cant handle. For example, quantum computers may simulate nature to advance research in chemistry, materials science and molecular modeling. In 2015, Intel established a collaborative relationship with QuTech to accelerate advancements in quantum computing. The collaboration spans the entire quantum system or stack from qubit devices to the hardware and software architecture required to control these devices as well as quantum applications. All of these elements are essential to advancing quantum computing from research to reality.

Jim Clarke, Intel Corporations director of quantum hardware, holds an Intel 49-qubit quantum test chip, called Tangle Lake, in front of a dilution refrigerator at QuTechs quantum computing lab inside Delft University of Technology in July 2018. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

Florian Unseld (left) and Kian van der Enden, research assistants at QuTech, work on a readout tool for an Intel quantum test chip at Delft University in July 2018. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

Dr. Leonardo DiCarlo, professor of superconducting quantum circuits, works on a dilution refrigerator for quantum computing at Delft University of Technology in July 2018. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

Brian Tarasimski, (left) post-doctoral researcher, and Dr. Leonardo DiCarlo, professor of superconducting quantum circuits, both of QuTech, work on a dilution refrigerator for quantum computing at Delft University of Technology in July 2018. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

A July 2018 photo shows a dilution refrigerator at QuTechs quantum computing lab. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

A July 2018 photo shows a dilution refrigerator at QuTechs quantum computing lab. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

A July 2018 photo shows a dilution refrigerator at QuTechs quantum computing lab. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

A July 2018 photo shows a dilution refrigerator at QuTechs quantum computing lab. QuTech at Delft University of Technology is Intel Corporations quantum computing research partner in the Netherlands. (Credit: Tim Herman/Intel Corporation)

A July 2018 photos shows an Intel Corporation-manufactured wafer that contains working spin qubits. (Credit: Tim Herman/Intel Corporation)

A July 2018 photos shows an Intel Corporation-manufactured wafer that contains working spin qubits. (Credit: Tim Herman/Intel Corporation)

Changing the World with Quantum Computing | Intel

Intel & Qutech Advance Quantum Computing Research (B-roll)

Download A Quantum Computing Primer

Intel Corporation has invented a spin qubit fabrication flow on its 300 mm process technology using isotopically pure wafers like this one. (Credit: Walden Kirsch/Intel Corporation)

Intel Corporation has invented a spin qubit fabrication flow on its 300 mm process technology using isotopically pure wafers like this one. (Credit: Walden Kirsch/Intel Corporation)

Intels director of quantum hardware, Jim Clarke, holds the new 17-qubit superconducting test chip. (Credit: Intel Corporation)

Intels 17-qubit superconducting test chip for quantum computing has unique features for improved connectivity and better electrical and thermo-mechanical performance. (Credit: Intel Corporation)

Researchers work in the quantum computing lab at QuTech, Intels quantum research partner in the Netherlands. Intel in October 2017 provided QuTech a 17-qubit superconducting test chip for quantum computing. (Credit: QuTech)

Professor Leo DiCarlo poses in the quantum computing lab at QuTech, Intels quantum research partner in the Netherlands. Intel in October 2017 provided QuTech a 17-qubit superconducting test chip for quantum computing. (Credit: QuTech)

Intel is collaborating with QuTech in the Netherlands to advance quantum computing research. Intel in October 2017 provided QuTech a 17-qubit superconducting test chip for quantum computing. (Credit: Intel Corporation)

Intels new 17-qubit superconducting test chip packaged for delivery to research partners at QuTech, Intels quantum research partner in the Netherlands. Intel in October 2017 provided QuTech with the 17-qubit superconducting test chip for quantum computing. (Credit: Intel Corporation)

A 2018 photo shows Intels new quantum computing chip balanced on a pencil eraser. Researchers started testing this spin qubit chip at the extremely low temperatures necessary for quantum computing: about 460 degrees below zero Fahrenheit. Intel projects that qubit-based quantum computers, which operate based on the behaviors of single electrons, could someday be more powerful than todays supercomputers. (Credit: Walden Kirsch/Intel Corporation)

Intel Corporation is making fast progress scaling superconducting quantum computing test chips to higher qubit counts -- from 7, to 17 and now 49 qubits (left to right). Multiple gold connectors are required to control and operate each qubit. (Credit: Walden Kirsch/Intel Corporation)

Intel Corporations 49-qubit quantum computing test chip, code-named Tangle Lake, is unveiled at 2018 CES in Las Vegas. (Credit: Walden Kirsch/Intel Corporation)

Intel Corporations self-learning neuromorphic research chip, code-named Loihi. (Credit: Intel Corporation)

Follow this link:
Quantum Computing | Intel Newsroom

Global Quantum Computing for Enterprise Market is said to have a potential scope for growth in the years by 2025- 1QB Information Technologies,…

Global Quantum Computing for Enterprise Market 2020-2025

The report covers complete analysis of the Global Quantum Computing for Enterprise Market on the basis of regional and global level. The report comprises several drivers and restraints of the Global Quantum Computing for Enterprise Market. Likewise, it covers the complete segmentation analysis such as type, application, and region. This report provides Quantum Computing for Enterprise Market key Manufactures, industry chain analysis, competitive insights, and macroeconomic analysis. Global Quantum Computing for Enterprise Market reportprovides the latest forecast market data, industry trends, and technological innovations. The in-depth view of Global Quantum Computing for Enterprise Market industry on the basis of market size, market growth, opportunities, and development plans offered by the report analysis. The forecast information, SWOT analysis, and feasibility study are the energetic aspects studied in this report. Along with that PESTEL analysis is also considered to be another major aspect in the market study.

Top Players Included In This Report:1QB Information TechnologiesAirbusAnyon SystemsCambridge Quantum ComputingD-Wave SystemsGoogleMicrosoftIBMIntelQC WareQuantumRigetti ComputingStrangeworksZapata Computing

Get A PDF Sample Of This Report @ https://www.orbismarketreports.com/sample-request/66126?utm_source=Puja

For the study of the Quantum Computing for Enterprise Market is very important the past statistics. So, the Global Quantum Computing for Enterprise Market gives the in-depth analysis of the past records along with the predicted future data. One of the most important aspects focused in this study is the regional analysis. Regional breakdown of markets helps in thorough analysis of the market in terms of future predictions, business opportunities and revenue generation potential of the market. For Quantum Computing for Enterprise Market report, the important regions highlighted are Middle East, South America, Asia, North America and Europe. Another important aspect of every market research report is the study of the key players or manufacturers driving the market forward. This study can benefit investors and business owners in many ways. In order to make business predictions and fetch good results, business models, strategies, growth, innovations and every information about manufacturers that can help are studied by it. Making right business decisions is an undeniable measure that needs to be taken for market growth. There are manufacturers, vendors and consumers in every that defines that market. These marketers become the subject to study for every stakeholder and market researcher.

Access The Complete Report @ https://www.orbismarketreports.com/global-quantum-computing-for-enterprise-market-size-status-and-forecast-2019-2025-2?utm_source=Puja

Types Covered In This Report:HardwareSoftware

Applications Covered In This Report:BFSITelecommunications and ITRetail and E-CommerceGovernment and DefenseHealthcareManufacturingEnergy and UtilitiesConstruction and EngineeringOthers

This report on Quantum Computing for Enterprise Market also has the market analyzed on the basis of end user applications and type. End user application analysis can also help understand consumer behavior. Its important to study product application to predict a products life cycle. Segment type is also an important aspect of any market research study. Reports are product based, they also includes information on sales channel, distributors, traders and dealers. This helps in efficient planning and execution of supply chain management as it drastically affects the overall operations of any business. Thus, a market research report can be called a comprehensive guide that helps in better marketing and management of businesses.

For Inquiry Before Buying This Report @ https://www.orbismarketreports.com/enquiry-before-buying/66126?utm_source=Puja

Few Points From TOC:1 Scope of the Report2 Executive Summary3 Global Quantum Computing for Enterprise by Players4 Quantum Computing for Enterprise by RegionsContinued

About Us:With unfailing market gauging skills, Orbis Market Reports has been excelling in curating tailored business intelligence data across industry verticals. Constantly thriving to expand our skill development, our strength lies in dedicated intellectuals with dynamic problem solving intent, ever willing to mold boundaries to scale heights in market interpretation.

Contact Us:Hector CostelloSenior Manager Client Engagements4144N Central Expressway,Suite 600, Dallas,Texas 75204, U.S.A.Phone No.: USA: +1 (972)-362-8199 | IND: +91 895 659 5155

Read the original here:
Global Quantum Computing for Enterprise Market is said to have a potential scope for growth in the years by 2025- 1QB Information Technologies,...

This Week’s Awesome Tech Stories From Around the Web (Through February 29) – Singularity Hub

COMPUTING

Inside the Race to Build the Best Quantum Computer on EarthGideon Lichfield | MIT Technology ReviewRegardless of whether you agree with Googles position [on quantum supremacy] or IBMs, the next goal is clear, Oliver says: to build a quantum computer that can do something useful. The trouble is that its nearly impossible to predict what the first useful task will be, or how big a computer will be needed to perform it.

Were Not Prepared for the End of Moores LawDavid Rotman | MIT Technology ReviewQuantum computing, carbon nanotube transistors, even spintronics, are enticing possibilitiesbut none are obvious replacements for the promise that Gordon Moore first saw in a simple integrated circuit. We need the research investments now to find out, though. Because one prediction is pretty much certain to come true: were always going to want more computing power.

Flippy the Burger-Flipping Robot Is Changing the Face of Fast Food as We Know ItLuke Dormehl | Digital TrendsFlippy is the result of the Miso teams robotics expertise, coupled with that industry-specific knowledge. Its a burger-flipping robot arm thats equipped with both thermal and regular vision, which grills burgers to order while also advising human collaborators in the kitchen when they need to add cheese or prep buns for serving.

The Next Generation of Batteries Could Be Built by VirusesDaniel Oberhaus | Wired[MIT bioengineering professor Angela Belcher has] made viruses that can work with over 150 different materials and demonstrated that her technique can be used to manufacture other materials like solar cells. Belchers dream of zipping around in a virus-powered car still hasnt come true, but after years of work she and her colleagues at MIT are on the cusp of taking the technology out of the lab and into the real world.

Biggest Cosmic Explosion Ever Detected Left Huge Dent in SpaceHannah Devlin | The GuardianThe biggest cosmic explosion on record has been detectedan event so powerful that it punched a dent the size of 15 Milky Ways in the surrounding space. The eruption is thought to have originated at a supermassive black hole in the Ophiuchus galaxy cluster, which is about 390 million light years from Earth.

Star Treks Warp Speed Would Have Tragic ConsequencesCassidy Ward | SyFyThe various crews ofTreks slate of television shows and movies can get from here to there without much fanfare. Seeking out new worlds and new civilizations is no more difficult than gassing up the car and packing a cooler full of junk food. And they dont even need to do that! The replicators will crank out a bologna sandwich just like mom used to make. All thats left is to go, but what happens then?

Image Credit: sergio souza /Pexels

Read the original here:
This Week's Awesome Tech Stories From Around the Web (Through February 29) - Singularity Hub

Quantum Computing Market With Four Main Geographies And Their Countries – Instant Tech News

This research study on Quantum Computing market reports offers the comparative assessment of Quantum Computing market and consist of Historical data, Significance, statistical data, size & share, Market Price & Demand, Business overview, Market Analysis By Product and Market Trends by Key Players. This Quantum Computing Market is Segmented in two type on the basis of type of materials and end-users. It has global market covered in all the regions, ranging to that fundamental market, key trends and segmentation analysis are coated throughout Quantum Computing market report.

Sales volume, Price (USD/Unit), revenue (Million USD) and market share coated by Key Players such Top Players are:

Wave Systems Corp, 1QB Information Technologies Inc, QC Ware, Corp, Google Inc, QxBranch LLC, Microsoft Corporation, International Business Machines Corporation, Huawei Technologies Co., Ltd, ID Quantique SA, and Atos SE.

Download sample copy of this report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/571

The analysts forecast the CAGR overall rate percentages of Global Quantum Computing Market to grow over the period 2020-2030. So this Quantum Computing Market report gives you Pre-planned Compound Annual rate of growth (CAGR) with different amount, During the Forecast Period, Market on Quantum Computing Report is estimated to register a CAGR of Definite value. Definitions, classifications, applications & Business overview, product specifications, manufacturing processes, cost structures, raw materials and requirement as per your choice also given by this Quantum Computing market Report.

Segmentation:

Download PDF copy @ https://www.prophecymarketinsights.com/market_insight/Insight/request-pdf/571

This report additionally represents product specification, method and product cost structure. Production is separated by regions, technology and applications. Table, figure, charts, TOCs, chapters etc provided by Silicon-germanium Semiconductors industry. Crystal clear data to the client giving a brief details on Silicon-germanium Semiconductors markets and its trends. Silicon-germanium Semiconductors new project SWOT analysis, investment practicable business analysis, investment come analysis and development trend analysis. The rising opportunities of the fastest growing Silicon-germanium Semiconductors markets segments are covered throughout this report.

Contact Us:

Mr. Alex (Sales Manager)

Prophecy Market Insights

Phone: +1 860 531 2701

Email: [emailprotected]

Continue reading here:
Quantum Computing Market With Four Main Geographies And Their Countries - Instant Tech News

DOE Workshop Begins Mapping the Future of Quantum Communications – insideHPC

Paul Dabbar Quantum Internet WorkshopPaul Dabbar, Under Secretary of Energy for the DOEs Office of Science, gives the welcoming remarks at the Quantum Internet Blueprint Workshop, held Feb. 5-6 in New York City.

The U.S. Department of Energys Office of Science, under the leadership of Under Secretary of Energy Paul Dabbar, sponsored around 70 representatives from multiple government agencies and universities at the firstQuantum Internet Blueprint Workshop, held in New York City Feb. 5-6. The primary goal of the workshop was to begin laying the groundwork for a nationwide entangled quantum Internet.

Building on the efforts of theChicago Quantum Exchangeat the University of Chicago, Argonne and Fermi National Laboratories, andLiQuIDNet(Long Island Quantum Distribution Network) at Brookhaven National Laboratory and Stony Brook University, the event was organized by Brookhaven. The technical program committee was co-chaired by Kerstin Kleese Van Dam, director of the Computational Science Initiative at Brookhaven, and Inder Monga, director of ESnet at Lawrence Berkeley National Lab.

The dollars we have put into quantum information science have increased by about fivefold over the last three years, Dabbar told the New York Timeson February 10 after the Trump Administration announced a new budget proposal that includes significant funding for quantum information science, including the quantum Internet.

In parallel with the growing interest and investment in creating viable quantum computing technologies, researchers believe that a quantum Internet could have a profound impact on a number of application areas critical to science, national security, and industry. Application areas include upscaling of quantum computing by helping connect distributed quantum computers, quantum sensing through a network of quantum telescopes, quantum metrology, and secure communications.

Toward this end, the workshop explored the specific research and engineering advances needed to build a quantum Internet in the near term, along with what is needed to move from todays limited local network experiments to a viable, secure quantum Internet.

This meeting was a great first step in identifying what will be needed to create a quantum Internet, said Monga, noting that ESnet engineers have been helping Brookhaven and Stony Brook researchers build the fiber infrastructure to test some of the initial devices and techniques that are expected to play a key role in enabling long-distance quantum communications. The group was very engaged and is looking to define a blueprint. They identified a clear research roadmap with many grand challenges and are cautiously optimistic on the timeframe to accomplish that vision.

Berkeley Labs Thomas Schenkel was the Labs point of contact for the workshop, a co-organizer, and co-chair of the quantum networking control hardware breakout session. ESnets Michael Blodgett also attended the workshop.

Sign up for our insideHPC Newsletter

See the rest here:
DOE Workshop Begins Mapping the Future of Quantum Communications - insideHPC

New Quantum Switch Turns Metals Into Insulators by Altering the Quantum Nature of the Material – SciTechDaily

This is an artists impression of the dissolving of the electronic traffic jam. The red atoms are different in their quantum nature and allow transport of electrons in their surroundings. Credit: SBQMI

Most modern electronic devices rely on tiny, finely-tuned electrical currents to process and store information. These currents dictate how fast our computers run, how regularly our pacemakers tick and how securely our money is stored in the bank.

In a study published in Nature Physics on January 27, 2020, researchers at the University of British Columbia have demonstrated an entirely new way to precisely control such electrical currents by leveraging the interaction between an electrons spin (which is the quantum magnetic field it inherently carries) and its orbital rotation around the nucleus.

We have found a new way to switch the electrical conduction in materials from on to off, said lead author Berend Zwartsenberg, a Ph.D. student at UBCs Stewart Blusson Quantum Matter Institute (SBQMI). Not only does this exciting result extend our understanding of how electrical conduction works, it will help us further explore known properties such as conductivity, magnetism, and superconductivity, and discover new ones that could be important for quantum computing, data storage, and energy applications.

Broadly, all materials can be categorized as metals or insulators, depending on the ability of electrons to move through the material and conduct electricity.

However, not all insulators are created equally. In simple materials, the difference between metallic and insulating behavior stems from the number of electrons present: an odd number for metals, and an even number for insulators. In more complex materials, like so-called Mott insulators, the electrons interact with each other in different ways, with a delicate balance determining their electrical conduction.

Measurement of a material where modification of the spin-orbit coupling has been used to make it electronically conductive. The dark colors represent electrons that are free to move through the material, and are an indicator of the conductive behavior. Credit: Berend Zwartsenberg/SBQMI

In a Mott insulator, electrostatic repulsion prevents the electrons from getting too close to one another, which creates a traffic jam and limits the free flow of electrons. Until now, there were two known ways to free up the traffic jam: by reducing the strength of the repulsive interaction between electrons, or by changing the number of electrons.

The SBQMI team explored a third possibility: was there a way to alter the very quantum nature of the material to enable a metal-insulator transition to occur?

Using a technique called angle-resolved photoemission spectroscopy, the team examined the Mott insulator Sr2IrO4, monitoring the number of electrons, their electrostatic repulsion, and finally the interaction between the electron spin and its orbital rotation.

We found that coupling the spin to the orbital angular momentum slows the electrons down to such an extent that they become sensitive to one anothers presence, solidifying the traffic jam. said Zwartsenberg. Reducing spin-orbit coupling in turn eases the traffic jam and we were able to demonstrate a transition from an insulator to a metal for the first time using this strategy.

This is a really exciting result at the fundamental physics level, and expands the potential of modern electronics, said co-author Andrea Damascelli, principal investigator and scientific director of SBQMI. If we can develop a microscopic understanding of these phases of quantum matter and their emergent electronic phenomena, we can exploit them by engineering quantum materials atom-by-atom for new electronic, magnetic and sensing applications.

Reference: Spin-orbit-controlled metalinsulator transition in Sr2IrO4 by B. Zwartsenberg, R. P. Day, E. Razzoli, M. Michiardi, N. Xu, M. Shi, J. D. Denlinger, G. Cao, S. Calder, K. Ueda, J. Bertinshaw, H. Takagi, B. J. Kim, I. S. Elfimov and A. Damascelli, 27 January 2020, Nature Physics.DOI: 10.1038/s41567-019-0750-y

Read the rest here:
New Quantum Switch Turns Metals Into Insulators by Altering the Quantum Nature of the Material - SciTechDaily

Quantum Computing Market 2019 Analysis by Key Players, Share, Trend, Segmentation and Forecast to 2026 – Instant Tech News

Verified Market Research recently added a research report titled, Quantum Computing Market Size and Forecast to 2026. The research report represents the potential growth opportunities that prevail within the global market. The report is analyzed on the idea of secondary research methodologies acquired from historic and forecast data. The Quantum Computing market is expected to grow substantially and thrive in terms of volume and value during the forecast period. The report will provide an insight into the growth opportunities and restraints that construct the market. Readers can gain meaningful comprehension about the future of the market.

Global Quantum Computing Market was valued at USD 89.35 million in 2016 and is projected to reach USD 948.82 million by 2025, growing at a CAGR of 30.02% from 2017 to 2025.

Request a Sample of this report @ https://www.verifiedmarketresearch.com/download-sample/?rid=24845&utm_source=OMR&utm_medium=005

Top 10 Companies in the Quantum Computing Market Research Report:

QC Ware Corp., D-Wave Systems, Cambridge Quantum Computing, IBM Corporation, Magiq Technologies, Qxbranch, Research at Google Google, Rigetti Computing, Station Q Microsoft Corporation, 1qb Information Technologies

Competitive Landscape

The insightful research report on the Quantum Computing market includes Porters five forces analysis and SWOT analysis to understand the factors impacting consumer and supplier behavior. It helps the reader understand the strategies and collaborations that players are that specialize in combat competition within the market. The comprehensive report provides a big microscopic check out the market. The reader can identify the footprints of the manufacturers by knowing about the worldwide revenue of manufacturers, the worldwide price of manufacturers, and production by manufacturers during the forecast period of 2015 to 2019.

Global Quantum Computing Market: Drivers and Restraints

The report offers underlying drivers that compel the consumers to take a position within the products and services. The detailed information assists readers in understanding the requirements of consumer demands. The report provides drivers at the local and global levels to assist determine the economic process . This information will help readers decide potential strategies that can help them stay ahead in the competitive industry.

Restraints provided in this section of the report contrasts the drivers segment as it explains the factors that can hamper the growth of the Quantum Computing market during the forecast period. Restraints play a pivotal role in the global and regional market as it bends the prospective opportunities in the market. Readers can weigh and asses the drivers and restraints before making any investments or strategies.

Global Quantum Computing Market: Segment Analysis

The report includes major segments like product type and end-user that provide an array of components that determine the portfolio of the Quantum Computing industry. Each type furnishes information regarding the sales value during the forecast period. The understanding of the segment directs the readers in recognizing the importance of things that shape the market growth.

Global Quantum Computing Market: Regional Analysis

This section of the report provides detailed information about each region and how numerous factors of that particular region affect the growth of the Quantum Computing market. The government policies, weather, politics, and other factors determine the longer term of the market differently in each region. The major regions covered in the report include North America, Europe, Asia Pacific, the Middle East, and Africa, and others.

Ask for Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24845&utm_source=OMR&utm_medium=005

Table of Content

1 Introduction of Quantum Computing Market

1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions

2 Executive Summary

3 Research Methodology of Verified Market Research

3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources

4 Quantum Computing Market Outlook

4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis

5 Quantum Computing Market, By Deployment Model

5.1 Overview

6 Quantum Computing Market, By Solution

6.1 Overview

7 Quantum Computing Market, By Vertical

7.1 Overview

8 Quantum Computing Market, By Geography

8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East

9 Quantum Computing Market Competitive Landscape

9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies

10 Company Profiles

10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments

11 Appendix

11.1 Related Research

Get a Complete Market Report in your Inbox within 24 hours @ https://www.verifiedmarketresearch.com/product/Quantum-Computing-Market/?utm_source=OMR&utm_medium=005

About Us:

Verified market research partners with clients to provide insight into strategic and growth analytics; data that help achieve business goals and targets. Our core values include trust, integrity, and authenticity for our clients.

Analysts with high expertise in data gathering and governance utilize industry techniques to collate and examine data at all stages. Our analysts are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research reports.

Contact Us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email: [emailprotected]

TAGS: Quantum Computing Market Size, Quantum Computing Market Growth, Quantum Computing Market Forecast, Quantum Computing Market Analysis, Quantum Computing Market Trends, Quantum Computing Market

Continued here:
Quantum Computing Market 2019 Analysis by Key Players, Share, Trend, Segmentation and Forecast to 2026 - Instant Tech News

Google claims to have invented a quantum computer, but IBM begs to differ – The Conversation CA

On Oct. 23, 2019, Google published a paper in the journal Nature entitled Quantum supremacy using a programmable superconducting processor. The tech giant announced its achievement of a much vaunted goal: quantum supremacy.

This perhaps ill-chosen term (coined by physicist John Preskill) is meant to convey the huge speedup that processors based on quantum-mechanical systems are predicted to exhibit, relative to even the fastest classical computers.

Googles benchmark was achieved on a new type of quantum processor, code-named Sycamore, consisting of 54 independently addressable superconducting junction devices (of which only 53 were working for the demonstration).

Each of these devices allows the storage of one bit of quantum information. In contrast to the bits in a classical computer, which can only store one of two states (0 or 1 in the digital language of binary code), a quantum bit qbit can store information in a coherent superposition state which can be considered to contain fractional amounts of both 0 and 1.

Sycamore uses technology developed by the superconductivity research group of physicist John Martinis at the University of California, Santa Barbara. The entire Sycamore system must be kept cold at cryogenic temperatures using special helium dilution refrigeration technology. Because of the immense challenge involved in keeping such a large system near the absolute zero of temperature, it is a technological tour de force.

The Google researchers demonstrated that the performance of their quantum processor in sampling the output of a pseudo-random quantum circuit was vastly better than a classical computer chip like the kind in our laptops could achieve. Just how vastly became a point of contention, and the story was not without intrigue.

An inadvertent leak of the Google groups paper on the NASA Technical Reports Server (NTRS) occurred a month prior to publication, during the blackout period when Nature prohibits discussion by the authors regarding as-yet-unpublished papers. The lapse was momentary, but long enough that The Financial Times, The Verge and other outlets picked up the story.

A well-known quantum computing blog by computer scientist Scott Aaronson contained some oblique references to the leak. The reason for this obliqueness became clear when the paper was finally published online and Aaronson could at last reveal himself to be one of the reviewers.

The story had a further controversial twist when the Google groups claims were immediately countered by IBMs quantum computing group. IBM shared a preprint posted on the ArXiv (an online repository for academic papers that have yet to go through peer review) and a blog post dated Oct. 21, 2019 (note the date!).

While the Google group had claimed that a classical (super)computer would require 10,000 years to simulate the same 53-qbit random quantum circuit sampling task that their Sycamore processor could do in 200 seconds, the IBM researchers showed a method that could reduce the classical computation time to a mere matter of days.

However, the IBM classical computation would have to be carried out on the worlds fastest supercomputer the IBM-developed Summit OLCF-4 at Oak Ridge National Labs in Tennessee with clever use of secondary storage to achieve this benchmark.

While of great interest to researchers like myself working on hardware technologies related to quantum information, and important in terms of establishing academic bragging rights, the IBM-versus-Google aspect of the story is probably less relevant to the general public interested in all things quantum.

For the average citizen, the mere fact that a 53-qbit device could beat the worlds fastest supercomputer (containing more than 10,000 multi-core processors) is undoubtedly impressive. Now we must try to imagine what may come next.

The reality of quantum computing today is that very impressive strides have been made on the hardware front. A wide array of credible quantum computing hardware platforms now exist, including ion traps, superconducting device arrays similar to those in Googles Sycamore system and isolated electrons trapped in NV-centres in diamond.

These and other systems are all now in play, each with benefits and drawbacks. So far researchers and engineers have been making steady technological progress in developing these different hardware platforms for quantum computing.

What has lagged quite a bit behind are custom-designed algorithms (computer programs) designed to run on quantum computers and able to take full advantage of possible quantum speed-ups. While several notable quantum algorithms exist Shors algorithm for factorization, for example, which has applications in cryptography, and Grovers algorithm, which might prove useful in database search applications the total set of quantum algorithms remains rather small.

Much of the early interest (and funding) in quantum computing was spurred by the possibility of quantum-enabled advances in cryptography and code-breaking. A huge number of online interactions ranging from confidential communications to financial transactions require secure and encrypted messages, and modern cryptography relies on the difficulty of factoring large numbers to achieve this encryption.

Quantum computing could be very disruptive in this space, as Shors algorithm could make code-breaking much faster, while quantum-based encryption methods would allow detection of any eavesdroppers.

The interest various agencies have in unbreakable codes for secure military and financial communications has been a major driver of research in quantum computing. It is worth noting that all these code-making and code-breaking applications of quantum computing ignore to some extent the fact that no system is perfectly secure; there will always be a backdoor, because there will always be a non-quantum human element that can be compromised.

More appealing for the non-espionage and non-hacker communities in other words, the rest of us are the possible applications of quantum computation to solve very difficult problems that are effectively unsolvable using classical computers.

Ironically, many of these problems emerge when we try to use classical computers to solve quantum-mechanical problems, such as quantum chemistry problems that could be relevant for drug design and various challenges in condensed matter physics including a number related to high-temperature superconductivity.

So where are we in the wonderful and wild world of quantum computation?

In recent years, we have had many convincing demonstrations that qbits can be created, stored, manipulated and read using a number of futuristic-sounding quantum hardware platforms. But the algorithms lag. So while the prospect of quantum computing is fascinating, it will likely be a long time before we have quantum equivalents of the silicon chips that power our versatile modern computing devices.

[ Deep knowledge, daily. Sign up for The Conversations newsletter. ]

Visit link:
Google claims to have invented a quantum computer, but IBM begs to differ - The Conversation CA

The End Of The Digital Revolution Is Coming: Here’s What’s Next – Innovation Excellence

by Tom Koulopoulos

The next era of computing will stretch our minds into a spooky new world that were just starting to understand.

In 1946 the Electronic Numerical Integrator and Computer, or the ENIAC, was introduced. The worlds first commercial computer was intended to be used by the military to project the trajectory of missiles, doing in a few seconds what it would otherwise take a human mathematician about three days. Its 20,000 vacuum tubes (the glowing glass light bulb-like predecessors to the transistor) connected by 500,000 hand soldered wires were a marvel of human ingenuity and technology.

Imagine if it were possible to go back to the developers and users of that early marvel and make the case that in 70 years there would be ten billion computers worldwide and half of the worlds population would be walking around with computers 100,000,000 times as powerful as the ENIAC in their pants pockets.

Youd have been considered a lunatic!

I want you to keep that in mind as you resist the temptation to do the same to me because of what Im about to share.

Quantum Supremacy

Digital computers will soon reach the limits of demanding technologies such as AI. Consider just the impact of these two projection: by 2025 driverless cars alone may produce as much data as exists in the entire world today; fully digitizing every cell in the human body would exceed ten times all of the data stored globally today. In these and many more cases we need to find ways to deal with unprecedented amounts of data and complexity. Enter quantum computing.

Youve likely heard of quantum computing. Amazingly, its a concept as old as digital computers. However, you may have discounted it as a far off future thats about as relevant to your life as flying cars. Well, it may be time to reconsider. Quantum computing is progressing at a rate that is surprising even those who are building it.

Understanding what quantum computers are and how they work challenges much of what we know of not just computing, but the basics of how the physical world appears to operate. Quantum mechanics, the basis for quantum computing, describes the odd and non-intuitive way the universe operates at a sub-atomic level. Its part science, part theory, and part philosophy.

Classical digital computers use what are called bits, something most all of us are familiar with. A bit can be a one or a zero. Quantum computers use what are called qubits (quantum bits). A quibit can also be a one or a zero but it can also be an infinite number of possibilities in between the two. The thing about qubits is that while a digital bit is always either on (1) or off (0), a qubit is always in whats called a superposition state, neither on nor off.

Although its a rough analogy, think of a qubit as a spinning coin thats just been flipped in the dark. While its spinning is it heads or tails? Its at the same time both and neither until it stops spinning and we then shine a light on it. However, a binary bit is like a coin that has a switch to make it glow in the dark. If I asked you Is it glowing? there would only be two answers, yes or no, and those would not change as it spins.

Thats what a qubit is like when compared to a classical digital bit. A quibit does not have a state until you effectively shine a light on it, while a binary bit maintains its state until that state is manually or mechanically changed.

Dont get too hung up on that analogy because as you get deeper into the quantum world trying to use what we know of the physical world is always a very rough and ultimately flawed way to describe the way things operate at the quantum level of matter.

However, the difficulty in understanding how quantum computers works hasnt stopped their progress. Google engineers recently talked about how the quantum computers they are building are progressing so fast that that they may achieve the elusive goal of whats called quantum supremacy (the point at which quantum computers can exceed the ability of classical binary computer) within months. While that may be a bit of stretch, even conservative projections put us on a 5-year timeline for quantum supremacy.

Quantum vs Classical Computing

Quantum computers, which are built using these qubits, will not replace all classical digital computers, but they will become an indispensable part of how we use computers to model the world and to integrate artificial intelligence into our lives.

Quantum computing will be one of the most radical shifts in the history of science, likely outpacing any advances weve seen to date with prior technological revolutions, such as the advent of semiconductors. They will enable us to take on problems that would take even the most powerful classical supercomputers millions or even billions of years to solve. Thats not just because quantum computers are faster but because they can approach problem solving with massive parallelism using the qualities of how quantum particles behave.

The irony is that the same thing that makes quantum computers so difficult to understand, their harnessing of natures smallest particles, also gives them the ability to precisely simulate the biological world at its most detailed. This means that we can model everything from chemical reactions, to biology, to pharmaceuticals, to the inner workings of the universe, to the spread of pandemics, in ways that were simply impossible with classical computers.

A Higher Power

The reason for the all of the hype behind the rate at which quantum computers are evolving has to do with whats called doubly exponential growth.

The exponential growth that most of us are familiar with, and which is being talked about lately, refers to the classical doubling phenomenon. For example, Moores law, which projects the doubling in the density of transistors on a silicon chip every 18 months. Its hard to wrap our linear brains around exponential growth, but its nearly impossible to wrap them around doubly exponential growth.

Doubly exponential growth simply has no analog in the physical world. Doubly exponential growth means that you are raising a number to a power and then raising that to another power. It looks like this 510^10.

What this means is that while a binary computer can store 256 states with 8 bits (28), a quantum computer with eight qubits (recall that a qubit is the conceptual equivalent of a digital bit in a classical computer) can store 1077 bits of data! Thats a number with 77 zeros, or, to put it into perspective, scientists estimate that there are 1078 atoms in the entire visible universe.

Even Einstein had difficulty with entanglement calling it, spooky action at a distance.

By the way, just to further illustrate the point, if you add one more qubit the number of bits (or more precisely, states) that can be stored just jumped to 10154 (one more bit in a classical computer would only raise the capacity to 1078).

Heres whats really mind blowing about quantum computing (as if what we just described isnt already mind-blowing enough.) A single caffeine molecule is made up of 24 atoms and it can have 1048 quantum states (there are only 1050 atoms that make up the Earth). Modeling caffeine precisely is simply not possible with classical computers. Using the worlds fastest super computer it would take 100,000,000,000,000 times the age of the universe to process the 1048 calculations that represent all of the possible states of a caffeine molecule!

So, the obvious question is, How could any computer, quantum or otherwise, take on something of that magnitude? Well, how does nature do it? That cup of coffee youre drinking has trillions of caffeine molecules and nature is doing just fine handling all of the quantum states they are in. Since nature is a quantum machine what better way to model it than a quantum computer?

Spooky Action

The other aspect of quantum computing that challenges our understanding of how the quantum world works is whats called entanglement. Entanglement describes a phenomenon in which two quantum particles are connected in such a way that no matter how great the distance between them they will both have the same state when they are measured.

At first blush that doesnt seem to be all that novel. After all, if I were to paint two balls red and then separate them by the distance of the universe, both would still be red. However, the state of a quantum object is always in whats called a superposition, meaning that it has no inherent state. Think of our coin flip example from earlier where the coin is in a superposition state until it stops spinning.

If instead of a color its two states were up or down it would always be in both states while also in neither state, that is until an observation or measurement forces it to pick a state. Again, think back to the spinning coin.

Now imagine two coins entangled and flipped simultaneously at different ends of the universe. Once you stop the spin of one coin and reveal that its heads the other coin would instantly stop spinning and also be heads.

If this makes your head hurt, youre in good company. Even Einstein had difficulty with entanglement calling it, spooky action at a distance. His concern was that the two objects couldnt communicate at a speed faster than the speed of light. Whats especially spooky about this phenomenon is that the two objects arent communicating at all in any classical sense of the term communication.

Entanglement creates the potential for all sorts of advances in computing, from how we create 100 percent secure communications against cyberthreats, to the ultimate possibility of teleportation.

Room For Possibility

So, should you run out a buy a quantum computer? Well, its not that easy. Qubits need to be super cooled and are exceptionally finicky particles that require an enormous room-sized apparatus and overhead. Not unlike the ENIAC once did.

You can however use a quantum computer for free or lease its use for more sophisticated applications For example, IBMs Q, is available both as an open source learning environment for anyone as well as a powerful tool for fintech users. However, Ill warn you that even if youre accustomed to programming computers, it will still feel as though youre teaching yourself to think in an entirely foreign language.

The truth is that we might as well be surrounded by 20,000 glowing vacuum tubes and 500,000 hand soldered wires. We can barely imagine what the impact of quantum computing will be in ten to twenty years. No more so than the early users of the ENIAC could have predicted the mind-boggling ways in which we use digital computers today.

Listen in to my two podcasts with scientists from IBM, MIT, and Harvard to find out more about quantum computing. Quantum Computing Part I, Quantum Computing Part II

This article was originally published on Inc.

Image credit: Pixabay

Choose how you want the latest innovation content delivered to you:

Tom Koulopoulos is the author of 10 books and founder of the Delphi Group, a 25-year-old Boston-based think tank and a past Inc. 500 company that focuses on innovation and the future of business. He tweets from @tkspeaks.

Link:
The End Of The Digital Revolution Is Coming: Here's What's Next - Innovation Excellence

New York University Partners with IBM to Explore Quantum Computing for Simulation of Quantum Systems and Advancing Quantum Education – Quantaneo, the…

The announcement of the agreement was made during CES 2020, the annual global technology conference and showcase in Las Vegas.

Together with the Air Force Research Lab (AFRL) and IBM, NYU will explore quantum computing research to study measurement-based quantum computing, materials discovery with variational quantum eigensolver, and emulating new phases on small quantum systems.

We are excited to join AFRL and IBM to transform quantum computing concepts into a powerful technology by educating a new quantum workforce, expanding our scientific partnership and engaging in cross disciplinary collaboration, said Javad Shabani, an assistant professor of physics at NYU.

Under the agreement to join the AFRL hub, NYU will be part of a community of Fortune 500 companies, startups, academic institutions, and research labs working to advance quantum computing and explore practical applications. NYU will leverage IBMs quantum expertise and resources, Qiskit software and developer tools, and will have cloud-based access to IBMs Quantum Computation Center. IBM offers, through the cloud, 15 of the most advanced universal quantum computing systems available, including a 53-qubit qubit systemthe largest commercially available system in the industry.

Read more here:
New York University Partners with IBM to Explore Quantum Computing for Simulation of Quantum Systems and Advancing Quantum Education - Quantaneo, the...

The dark side of IoT, AI and quantum computing: Hacking, data breaches and existential threat – ZDNet

Emerging technologies like the Internet of Things, artificial intelligence and quantum computing have the potential to transform human lives, but could also bring unintended consequences in the form of making society more vulnerable to cyberattacks, the World Economic Forum (WEF) has warned.

Now in it's 15th year, the WEFGlobal Risks Report 2020 produced in collaboration with insurance broking and risk management firm Marsh details the biggest threats facing the world over the course of the next year and beyond.

Data breaches and cyberattacks featured in the top five most likely global risks in both 2018 and 2019, but while both still pose significant risks, they're now ranked at sixth and seventh respectively.

"I wouldn't underestimate the importance of technology risk, even though this year's report has a centre piece on climate," said John Drzik, chairman of Marsh & McLennan Insights.

SEE: A winning strategy for cybersecurity(ZDNet special report) |Download the report as a PDF(TechRepublic)

The 2020 edition of the Global Risks Report puts the technological risks behind five different environmental challenges: extreme weather, climate change action failure, natural disasters, biodiversity loss, and human-made environmental disasters.

But that isn't to say cybersecurity threats don't pose risks; cyberattacks and data breaches are still in the top ten and have the potential to cause big problems for individuals, businesses and society as a whole, with threats ranging from data breaches and ransomwareto hackers tampering with industrial and cyber-physical systems.

"The digital nature of 4IR [fourth industrial revolution] technologies makes them intrinsically vulnerable to cyberattacks that can take a multitude of formsfrom data theft and ransomware to the overtaking of systems with potentially large-scale harmful consequences," warns the report.

"Operational technologies are at increased risk because cyberattacks could cause more traditional, kinetic impacts as technology is being extended into the physical world, creating a cyber-physical system."

The report warns that, for many technology vendors, "security-by-design" is still a secondary concern compared with getting products out to the market.

Large numbers of Internet of Things product manufacturers have long had a reputation for putting selling the products ahead of ensuring they're secure and the WEF warns that the IoT is "amplifying the potential cyberattack surface", as demonstrated by the rise in IoT-based attacks.

In many cases, IoT devices collect and share private data that's highly sensitive, like medical records, information about the insides of homes and workplaces, or data on day-to-day journeys.

Not only could this data be dangerous if it falls into the hands of cyber criminals if it isn't collected and stored appropriately, the WEF also warns about the potential of IoT data being abused by data brokers. In both cases, the report warns the misuse of this data could be to create physical and psychological harm.

Artificial intelligence is also detailed as a technology that could have benefits as well as causing problems, with the report describing AI as "the most impactful invention" and our "biggest existential threat". The WEF even goes so far as to claim we're still not able to comprehend AI's full potential or full risk.

The report notes that risks around issues such as generating disinformation and deepfakes are well known, but suggests that more investigation is needed into the risks AI poses in areas including brain-computer interfaces.

A warning is also issued about the unintended consequences of quantum computing, should it arrive at some point over the course of the next decade, as some suggest. While, like other innovations, it will bring benefits to society, it also creates a problem for encryption in its current state.

SEE:Cybersecurity in an IoT and Mobile World (ZDNet sepcial report)

By dramatically reducing the time required to solve the mathematical problems that today's encryption relies on to potentially just seconds, it will render cybersecurity as we know it obsolete. That could have grave consequences for re-securing almost every aspect of 21st century life, the report warns especially if cyber criminals or other malicious hackers gain access to quantum technology that they could use to commit attacks against personal data, critical infrastructure and power grids,

"These technologies are really reshaping industry, technology and society at large, but we don't have the protocols around these to make sure of a positive impact on society," said Mirek Dusek, deputy head of the centre for geopolitical and regional affairs at member of the executive committee at the World Economic Forum.

However, it isn't all doom and gloom; because despite the challenges offered when it comes to cyberattacks, the World Economic Forum notes that efforts to address the security challenges posed by new technologies is "maturing" even if they're still sometimes fragmented.

"Numerous initiatives bring together businesses and governments to build trust, promote security in cyberspace, assess the impact of cyberattacks and assist victims," the report says.

See the article here:
The dark side of IoT, AI and quantum computing: Hacking, data breaches and existential threat - ZDNet

AI, edge computing among Austin tech trends to watch in 2020 – KXAN.com

AUSTIN (KXAN) Technology companies in Austin will continue to integrate tech into the physical world in 2020, making the city smarter and more connected, analysts say.

The Austin Forum on Technology and Society will dive into the top tech trends for the coming year at its first event of 2020 Tuesday night at the Austin Central Library downtown.

Well talk about both technologies that will really become mainstream next year, even more so than now, and others that the buzz will continue, but maybe theyre not ready to become mainstream, said Jay Boisseau, the Forums founder and executive director.

Boisseau gave KXAN a preview of some of the trends to watch, including artificial intelligence, edge computing and quantum computing.

A lot of companies are already deeply involved with AI, but Boisseau believes it will move into more real-world applications this year.

Companies like SparkCognition and and Valkyrie Intelligence are already experimenting in the AI space in Austin.

KXAN profiled Valkyrie last year. The company developed a way to identify and track cars on Austin roads and hoped the technology would have an application with Army Futures Command.

Austin is also primed to capitalize on advances in edge computing, Boisseau said.

Not all computing will be in data centers and clouds, but much of it will start to move out to the real world where the data actually occurs, where things happen, he explained.

More of the physical world will be equipped with sensors and data processors that can act on data in real time as they get it.

This is especially important for self-driving cars, he said, allowing vehicles to communicate with their environment to keep people safe inside and outside the car.

Ford announced last year Austin will serve as a test market for its self-driving vehicles. The car company plans to map out the citys roads this year.

Standard computing uses binary code 0s and 1s to process data, imposing limits on the amount of processing power traditional computers can generate.

Quantum computing exploits characteristics of atoms and other tiny particles to vastly expand the abilities of processors, allowing researchers to tackle problems in fields like medicine that computers currently cant.

Well hear a lot of buzz about that, Boisseau said, even though its probably going to be three to five years before we see a lot of business adoption of quantum computing.

The Austin Forum on Technology and Society will dig into those topics and others more deeply at Tuesdays event, Top Tech Trends for 2020 (And Beyond). It starts at 6:15 p.m. at Austins Central Library.

See the original post here:
AI, edge computing among Austin tech trends to watch in 2020 - KXAN.com

Perspective: End Of An Era | WNIJ and WNIU – WNIJ and WNIU

David Gunkel's "Perspective" (January 8, 2020).

The holiday shopping is over and everyone is busy playing with their new toys. But what was remarkable about Christmas 2019 might have been the conspicuous absence of such toys.

Previous holiday seasons saw the introduction of impressive technological wonders -- tablet computers, the iPhone, Nintendo Wii and the X-box. But this year, there was no stand-out, got-to-have technological object.

On the one hand, this may actually be a good thing. The amount of waste generated by discarded consumer electronics is a massive global problem that we are not even close to managing responsibly. On the other hand however, this may be an indication of the beginning of the end of an era -- the era of Moores Law.

In 1965, Gordon Moore, then CEO of Intel, predicted that the number of transistors on a microchip doubles every two years, meaning that computer chip performance would develop at an almost exponential rate. But even Moore knew there was a physical limit to this dramatic escalation in computer power, and we are beginning to see it top out. That may be one reason why there were no new, got-to-have technological gizmos and gadgets this holiday season.

Sure, quantum computing is already being positioned as the next big thing. But it will be years, if not decades, before it finds its way into consumer products. So for now, do not ask Santa to fill your stocking with a brand-new quantum device. It will, for now at least, continue to be lumps of increasingly disappointing silicon.

Im David Gunkel, and thats my perspective.

See the original post:
Perspective: End Of An Era | WNIJ and WNIU - WNIJ and WNIU

CES 2020: IBM and Daimler teamed up to make a quantum leap in battery tech – Roadshow – CNET

Sure, it looks like a very fancy chandelier, but it's actually a quantum computer and it's helping Daimler develop new EV battery chemistries.

Right now, we're living in a time where electric cars are really, genuinely good. They have long range capability, can charge in reasonable amounts of time, and are being marketed by automakers as serious vehicles, not novelties or something to sell only to stay in compliance with government regulations.

Still, genuinely good isn't good enough. Thus, people are looking for ways to improve the EV experience. Motors are already superpowerful and relatively efficient, so the next meaningful jump forward will likely come on the energy storage side of things, and many companies are banking on that jump being in the form of solid-state batteries.

Why solid-state batteries? Because, in theory, they will be lighter and more compact, more energy-dense and faster charging. Oh, and they'll likely be safer too with less of a possibility of a dangerous thermal runaway like lithium-ion. Only, here's the thing: they don't really exist yet.

Enter IBM (yes, that IBM), which at the CES 2020 show in Las Vegas on Tuesday announced that it had partnered with Daimler to leverage its considerable resources and research into quantum computing to help lick this solid-state battery problem once and for all.

How exactly are quantum computers helping to solve the complex problems that will lead to solid-state battery technology? Well, as the patron saint of grumpy people who swear a lot (Samuel L. Jackson) said in Jurassic Park, "Hold onto your butts."

In the most basic sense, the quantum computers from IBM have modeled the behavior of three different lithium-containing molecules. This, in turn, allows researchers to better understand how they will affect the energy storage and discharge properties that manufacturers are looking for in batteries. Specifically, simulating these molecules will enable scientists to find their "ground state" or most stable configuration.

This simulation of simple molecules is possible on traditional supercomputers, but it takes vast amounts of computing power and time, and as the molecules being simulated get more complex, the likelihood of errors gets bigger. Quantum computing gets around this by using the ideas of superposition (think Schrodinger's cat) and entanglement (aka Einstein's "spooky action at a distance") to much more efficiently evaluate much, much more data than a traditional computer.

Right now, the most promising of these new quantum computer-assisted potential battery chemistries -- according to IBM and Daimler, of course -- is lithium-sulfur. According to the research, lithium-sulfur batteries would be more powerful, longer-lasting and cheaper (the battery holy trinity) than today's lithium-ion cells.

So does this mean that we'll be seeing electric Benzes rolling around with sweet new lithium-sulfur batteries in the next year or two? Not really -- currently, neither company has offered an ETA on the tech -- but what it does mean is that researchers now have a leg up on developing the future of energy storage, and that's pretty damned cool.

Now playing: Watch this: Quantum computing is the new super supercomputer

4:11

See original here:
CES 2020: IBM and Daimler teamed up to make a quantum leap in battery tech - Roadshow - CNET

Science stories that shaped 2019 – Telegraph India

This was the year of quantum physics, which redefined the kilogram and the computer. It was also the year of teamwork. Hundreds of scientists across the globe worked together to do the seemingly impossible capture an image of a black hole. A global collaboration of scientists journeyed into the heart of the Arctic to measure how the climate is changing in this crucial spot. This was also the year we lost a portion of the Amazon rainforest to a fire fuelled by greed.

First image of a black hole

After more than a decade at work, the Event Horizon Telescope, a large telescope array consisting of a global network of radio telescopes, stunned the world by capturing the first direct image of a black hole, which is situated at the centre of the Messier 87 galaxy, 54 million light years away. The image shows a circular silhouette outlined by emission from hot gas swirling around it, lending credibility to Einsteins theory of general relativity near all black holes.

Evidence of black holes from which nothing, not even light, can escape has existed for aeons. And astronomers have long observed the effects of these mysterious phenomena on their surroundings. Because of the lack of light, it was believed that you could not snap an image of these caverns in space.

Polarstern breaks ice

The German icebreaker ship, RV Polarstern, is right now stuck in the midst of the frozen Arctic sea at the North Pole. Its on a mission known as the Multidisciplinary drifting Observatory for the Study of Arctic Climate (Mosaic) the largest climate-change research expedition to the central Arctic. This region, one of the most inaccessible places on our planet, is critical to Earths climate and its essential to study it thoroughly.

During the year-long expedition (September 2019 to September 2020) that has taken 20 years to organise, over 600 researchers will rotate on and off the ship, supported by many more in research institutes across the world. The data harvested should give us an accurate picture of ice or its absence near the North Pole and is expected to silence climate change sceptics forever.

Googles quantum claim

Google claims to have reached a long-sought breakthrough called quantum supremacy that allows computers to calculate at inconceivable speeds. While some scientists are cautious about the implications, major tech companies in the US and China are investing heavily in quantum computing. IBM, a Google competitor, described the term quantum supremacy as misleading and proposed another metric, quantum volume .

Denisovan discoveries

A jawbone of a 1,60,000-year-old Denisovan hominids who existed alongside Neanderthals and disappeared 50,000 years ago was recently discovered in the Tibetan Plateau. This is the first time a fossil of this species has been found outside the Denisova Cave in Siberia, confirming the theory that these relatives of modern humans once lived across much of central and eastern Asia. The find also suggests Denisovans may have evolved genetic adaptations to high altitudes, which Tibetans inherited thanks to interbreeding between Denisovans and modern humans.

Crispr in clinical trials

Crispr/Cas9, a gene editing technique akin to molecular scissors that can snip, repair or insert genes into DNA, went into a spate of clinical trials. The technique holds the promise of curing nearly 6,000 known genetic diseases. There is already clinical evidence that it has cured two patients in the US, one suffering from beta thalassaemia and the other from sickle cell disease.

Crash course on the moon

The race to land on the moon is back in vogue. While Chinas Change-4 lander touched down smoothly on the moons far side in January, probes sent by the Israeli agency, SpaceIL, and the Indian Space Research Organisation crash-landed. China plans to launch another lunar lander next year. The European Space Agency, Russia and Nasa hope to follow in its footsteps.

Kilogram, redefined

In the biggest overhaul of the International System of Units, four units kilogram, kelvin, ampere and mole were redefined in terms of constants of nature. The new definition anchors the value of the kilogram to the Planck constant, an unvarying and infinitesimal number at the heart of quantum physics. Previously, the kilogram was defined as the mass of a specific object (stored in a Paris vault) that represented the mass of one litre of pure water at its freezing point.

Amazon ablaze

The Amazon rainforest, the worlds largest carbon sink, was irreversibly damaged after settlers allegedly set fire to it, with tacit support from the Brazilian government. Data released by Brazils National Institute for Space Research shows that from January to July, fires consumed 4.6 million acres of the Brazilian part of the Amazon rainforest. The nations right-wing President, Jair Bolsonaro, wants to facilitate the interests of industries in the forest, uncaring of the worldwide environmental concern.

Link:

Science stories that shaped 2019 - Telegraph India

The World Keeps Growing Smaller: The Reinvention Of Finance – Seeking Alpha

In the prominent headlines we keep reading about the attempts to keep the world fragmented by imposing tariffs and constraining the exchange of ideas in many ways, but information keeps spreading and with the continued spread of information the world progresses. John Thornhill writes in the Financial Times about how China is completely redesigning finance

Yes, the United States is working through the FinTech era where efforts are being made to use evolving finance and technology to deliver familiar services more efficiently, but the Chinese effort writes Mr. Thornhill, is trying to do something entirely different.

China wants to change the platform.

In the past, I have written about how the United States banking industry has lagged behind the rest of the world is moving toward a more electronic and integrated finance platform. Even in some less developed countries, payment systems have been evolving at a faster pace than in the United States because of the need to reduce the impact of geographical distances.

Only in the past year or two have some of the larger US banks moved forward, trying to develop a more advanced system.

Commercial banks in the United States have been the biggest and most important banks in the world and have concentrated upon the more sophisticated areas of finance, rather than the basic payments systems that are the foundation of the whole financial system. And, although there have been efforts to advance the financial platforms of the American banks, it is somewhat ironic that several of the largest banks have moved toward quantum computers to revolutionize activities like risk management and trading.

Richard Waters writes about how JPMorgan, Chase & Co. and Goldman Sachs and Citigroup have entered this space in the last couple of years.

For example, Mr. Waters quotes Paul Burchard, as a senior researcher at Goldman Sachs: We think theres a possibility this becomes a critical technology.

And, Despite the challenges, advances in quantum hardware have persuaded the banks the time has come to leap.

One can smile at this leap, but what about the basics of banking?

Here Mr. Thornhill writes that The speed at which China has moved from a cash to a digital-payments economy is staggering: some $17 trillion of transactions were conducted online in 2017. Chinas mobile payment volumes are more than 50 times those in the US.

The growth has come from two corporate sources, Alibaba and Tencent. The number of users is staggering.

However, the biggest potential lies ahead. As Mr. Thornhill states, the most enticing opportunities lie abroad. About 1.7 billion people in the world remain unbanked. When they come online they will be looking for cheap, convenient, integrated digital financial services, such as China has pioneered.

China has the chance to rewire 21st-century finance.

The implication here is that United States banks will have to adjust to this payment system that China is spreading to the rest of the world.

In other words, information spreads and even though the spread of information may be constrained in certain parts of the world, it will expand in the areas where there are fewer constraints. This is the way it has always worked throughout history. Quantum computing is currently not the answer for the US banking system.

Oh, yes, it will be fun to design new types of algorithms for quantum computers as Mr. Waters writes, and the first of these involves a class of optimization problems that take advantage of the probabilistic nature of quantum computing to analyze a large number of possible outcomes and pick the most desirable.

But, who is going to own the payments platform?

Mr. Thornhill believes that the trend in finance over the next decade will be led by the Chinese and the payments system that is being developed within China.

This has all sorts of implications for the US banking system, the US economy, and the US political system. A question coming from this conclusion concerns whether or not the US dollar can maintain its position within the world financial system.

When we start trying to insulate ourselves from the world and try and control little pieces of it for ourselves, we tend to lose our place in the bigger picture. This is just another one of the unintended consequences we find in the field of economics.

But, it has huge implications for American banks and the United States banking system. Consequently, this has huge implications for investors in the commercial banking industry. And, it should be put within the context of what is just happening in the United States.

I guess that banking in 2030 will not look at all like what is going on right now.

Disclosure: I/we have no positions in any stocks mentioned, and no plans to initiate any positions within the next 72 hours. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Visit link:
The World Keeps Growing Smaller: The Reinvention Of Finance - Seeking Alpha