Global Quantum Computing for Enterprise Market Expected to Reach Highest CAGR by 2025 Top Players: 1QB Information Technologies, Airbus, Anyon…

This research report on the Global Quantum Computing for Enterprise Market provides an in-depth analysis of the market share, industry size, and current and future market trends. The Quantum Computing for Enterprise market report majorly sheds light on the market scope, growth prospects, potential, and the historical data of the market. TheQuantum Computing for Enterprise market report offers a complete segmentation depending on the factors such as end-use, type, application, and geographical regions that offer the assessment of every aspect of the Quantum Computing for Enterprise market. Similarly, the Quantum Computing for Enterprise report contains the market share on the basis of current as well as forecasted Quantum Computing for Enterprise market growth.

This study covers following key players:1QB Information TechnologiesAirbusAnyon SystemsCambridge Quantum ComputingD-Wave SystemsGoogleMicrosoftIBMIntelQC WareQuantumRigetti ComputingStrangeworksZapata Computing

Request a sample of this report @ https://www.orbismarketreports.com/sample-request/66126?utm_source=Puja

Furthermore, the Quantum Computing for Enterprise market broadly analyzes accurate estimations of the Quantum Computing for Enterprise market. Thisglobal market report also examines the market segments, ascendant contenders,competitive analysis, industry environment, and modern trends of the global Quantum Computing for Enterprise market. Thus, such factors are majorly considered the progress assessment of the Quantum Computing for Enterprise market. In addition, the Quantum Computing for Enterprise market study delivers a deepestimate of the global industrydemand, market share, and sales, industry revenue, and market size of the target industry.

Access Complete Report @ https://www.orbismarketreports.com/global-quantum-computing-for-enterprise-market-size-status-and-forecast-2019-2025-2?utm_source=Puja

Market segment by Type, the product can be split into HardwareSoftware

Market segment by Application, split into BFSITelecommunications and ITRetail and E-CommerceGovernment and DefenseHealthcareManufacturingEnergy and UtilitiesConstruction and EngineeringOthers

Moreover, the retailers, exporters, and the leading service providers over the globe are also provided in the Quantum Computing for Enterprise market report along with their data such as price, product capacity, company profile, product portfolio, market revenue, and the cost of the product. Likewise, the graphical description and suitable figures of the Quantum Computing for Enterprise industry are also featured in this report. This research report also gives data like sales revenue, industry value & volume, upstream & downstream buyers, and industry chain formation. Likewise, the Quantum Computing for Enterprise market study offers an extensiveview of the changing market dynamics, market trends, restraints, driving factors, changing patterns, as well as restrictions of the market. The Quantum Computing for Enterprise market study is designed through quantitative and qualitative research techniques that majorly shed light on the industry growth and various challenges facing by the leading competitors along with the gap analysis and beneficial opportunities provided by the Quantum Computing for Enterprise market.

Some Major TOC Points:1 Report Overview2 Global Growth Trends3 Market Share by Key Players4 Breakdown Data by Type and ApplicationContinued

The Quantum Computing for Enterprise research study is a helpful analysis which emphasizing on geographical analysis, primary & secondary research methodologies, market drivers, and leading segmentation and sub-segments analysis. With the whole overview of the Quantum Computing for Enterprise market, the studyprovides the overall viability of future projects and delivers the Quantum Computing for Enterprise report conclusion. The Quantum Computing for Enterprise market report also delivers market evaluationalong with the PESTEL, SWOT, and other necessary data. In addition, the Quantum Computing for Enterprise market study categorizes the global market data by using numerous factors such as application, region, manufacturers, and type.

For Enquiry before buying report @ https://www.orbismarketreports.com/enquiry-before-buying/66126?utm_source=Puja

About Us : With unfailing market gauging skills, has been excelling in curating tailored business intelligence data across industry verticals. Constantly thriving to expand our skill development, our strength lies in dedicated intellectuals with dynamic problem solving intent, ever willing to mold boundaries to scale heights in market interpretation.

Contact Us : Hector CostelloSenior Manager Client Engagements4144N Central Expressway,Suite 600, Dallas,Texas 75204, U.S.A.Phone No.: USA: +1 (972)-362-8199 | IND: +91 895 659 5155

More:
Global Quantum Computing for Enterprise Market Expected to Reach Highest CAGR by 2025 Top Players: 1QB Information Technologies, Airbus, Anyon...

Quantum Computing Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 – Bulletin Line

New Jersey, United States,- This detailed market research covers the growth potential of the Quantum Computing Market, which can help stakeholders understand the key trends and prospects of the Quantum Computing market and identify growth opportunities and competitive scenarios. The report also focuses on data from other primary and secondary sources and is analyzed using a variety of tools. This will help investors better understand the growth potential of the market and help investors identify scope and opportunities. This analysis also provides details for each segment of the global Quantum Computing market.

The report was touted as the most recent event hitting the market due to the COVID-19 outbreak. This outbreak brought about a dynamic change in the industry and the overall economic scenario. This report covers the analysis of the impact of the COVID-19 pandemic on market growth and revenue. The report also provides an in-depth analysis of the current and future impacts of the pandemic and post-COVID-19 scenario analysis.

The report covers extensive analysis of the key market players in the market, along with their business overview, expansion plans, and strategies. The key players studied in the report include:

The market is further segmented on the basis of types and end-user applications. The report also provides an estimation of the segment expected to lead the market in the forecast years. Detailed segmentation of the market based on types and applications along with historical data and forecast estimation is offered in the report.

Furthermore, the report provides an extensive analysis of the regional segmentation of the market. The regional analysis covers product development, sales, consumption trends, regional market share, and size in each region. The market analysis segment covers forecast estimation of the market share and size in the key geographical regions.

The report further studies the segmentation of the market based on product types offered in the market and their end-use/applications.

Quantum Computing Market, By Offering

Consulting solutions Systems

Quantum Computing Market, By Application

Machine Learning Optimization Material Simulation

Quantum Computing Market, By End-User

Automotive Healthcare Space and Defense Banking and Finance Others

On the basis of regional segmentation, the market is bifurcated into major regions ofNorth America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa.The regional analysis further covers country-wise bifurcation of the market and key players.

The research report offered by Verified Market Research provides an updated insight into the global Quantum Computing market. The report covers an in-depth analysis of the key trends and emerging drivers of the market likely to influence industry growth. Additionally, the report covers market characteristics, competitive landscape, market size and growth, regional breakdown, and strategies for this market.

Highlights of the TOC of the Quantum Computing Report:

Overview of the Global Quantum Computing Market

Market competition by Players and Manufacturers

Competitive landscape

Production, revenue estimation by types and applications

Regional analysis

Industry chain analysis

Global Quantum Computing market forecast estimation

This Quantum Computing report umbrellas vital elements such as market trends, share, size, and aspects that facilitate the growth of the companies operating in the market to help readers implement profitable strategies to boost the growth of their business. This report also analyses the expansion, market size, key segments, market share, application, key drivers, and restraints.

Key Questions Addressed in the Report:

What are the key driving and restraining factors of the global Quantum Computing market?

What is the concentration of the market, and is it fragmented or highly concentrated?

What are the major challenges and risks the companies will have to face in the market?

Which segment and region are expected to dominate the market in the forecast period?

What are the latest and emerging trends of the Quantum Computing market?

What is the expected growth rate of the Quantum Computing market in the forecast period?

What are the strategic business plans and steps were taken by key competitors?

Which product type or application segment is expected to grow at a significant rate during the forecast period?

What are the factors restraining the growth of the Quantum Computing market?

Thank you for reading our report. The report is available for customization based on chapters or regions. Please get in touch with us to know more about customization options, and our team will ensure you get the report tailored according to your requirements.

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768

Email: [emailprotected]

More:
Quantum Computing Market Size and Growth By Leading Vendors, By Types and Application, By End Users and Forecast to 2027 - Bulletin Line

Quantum computing, AI, China, and synthetics highlighted in 2020 Tech Trends report – VentureBeat

The worlds tech industry will be shaped by China, artificial intelligence, cancel culture, and a number of other trends, according to the Future Today Institutes 2020 Tech Trends Report.

Now in its 13th year, the document is put together by the Future Today Institute and director Amy Webb, who is also a professor at New York Universitys Stern School of Business. The report attempts to recognize connections between tech and future uncertainties like the outcome of the 2020 U.S. presidential election, as well as the spread of epidemics like coronavirus.

Among major trends in the report, 2020 will be the synthetic decade.

Soon, we will produce designer molecules in a range of host cells on demand and at scale, which will lead to transformational improvements in vaccine production, tissue production and medical treatments. Scientists will start to build entire human chromosomes, and they will design programmable proteins, the report reads.

Augmentation of senses like hearing and sight, social media scaremongering, new ways to measure trust, and Chinas role in the growth of AI are also listed among key takeaways.

Artificial intelligence is again the first item highlighted on the list, and the tech Webb says is sparking a third wave of computing comes with positives like the role AlphaFold can play in discovering cures to diseases, and negatives like its current impact on the criminal justice system.

Tech giants in the U.S. and China like Amazon, Facebook, Google, and Microsoft in the United States and Tencent and Baidu in China continue to deliver the greatest impact. Webb predicts how these companies will shape the world in her 2019 bookThe Big Nine.

Those nine companies drive the majority of research, funding, government involvement and consumer-grade applications of AI. University researchers and labs rely on these companies for data, tools and funding, the report reads. Big Nine A.I. companies also wield huge influence over A.I. mergers and acquisitions, funding A.I. startups and supporting the next generation of developers.

Synthetic data, a military-tech industrial complex, and systems made to recognize people were also listed among AI trends.

Visit the Future Today Institute website to read the full report, which states whether a trend requires immediate action. Trends by industry are also highlighted.

Webb urges readers not to digest report urges readers to digest the 366-page report in multiple sittings rather than trying to read it all at once. Webb typically debuts the report with a presentation to thousands at the SXSW conference in Austin, Texas but the conference was cancelled due to coronavirus.

Read this article:
Quantum computing, AI, China, and synthetics highlighted in 2020 Tech Trends report - VentureBeat

Global Quantum Computing for Enterprise Market 2020 Report With Segmentation, Analysis On Trends, Growth, Opportunities and Forecast Till 2024 – News…

The Global Quantum Computing for Enterprise Market study report presents an in-depth study about the market on the basis of key segments such as product type, application, key companies and key regions, end users and others. The research report presents assessment of the growth and other characteristics of the Global Quantum Computing for Enterprise Market on the basis of key geographical regions and countries. The major regions which have good market in this industry are North America, Latin America, Europe, Asia-Pacific and Middle East Africa.

The end users of the Global Quantum Computing for Enterprise Market can be categorized on the basis of size of the enterprise. Report presents the opportunities for the players. It also offers business models and market forecasts for the participants. This market analysis allows industry manufacturers with future market trends. Also Report offers an in depth analysis on the basis of market size, revenue, sales analysis and key drivers. Study reports provides the information about the technological advancement, new product launches, new players and recent developments in the Global Quantum Computing for Enterprise Market.

Global Market By Type:

HardwareSoftware

Global Market By Application:

BFSITelecommunications and ITRetail and E-CommerceGovernment and DefenseHealthcareManufacturingEnergy and UtilitiesConstruction and EngineeringOthers

The research report of Global Quantum Computing for Enterprise Market offers the comprehensive data about the top most manufacturers and vendors which are presently functioning in this industry and which have good market region and country wise. Furthermore, study report presents a comprehensive study about the market on the basis of various segments such as product type, application, key companies and key regions, top end users and others. Furthermore, the study report provides the analysis about the major reasons or drivers that are responsible for the growth the Global Quantum Computing for Enterprise Market.

Make an enquirer of this report @ https://www.orbisresearch.com/contacts/enquiry-before-buying/4458782

About Us :

Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.

Contact Us :

Hector CostelloSenior Manager Client Engagements4144N Central Expressway,Suite 600, Dallas,Texas 75204, U.S.A.Phone No.: USA: +1 (972)-362-8199 | IND: +91 895 659 5155

The rest is here:
Global Quantum Computing for Enterprise Market 2020 Report With Segmentation, Analysis On Trends, Growth, Opportunities and Forecast Till 2024 - News...

Researchers Gain Control Over Transparency With Tuning Optical Resonators – SciTechDaily

In the quantum realm, under some circumstances and with the right interference patterns, light can pass through opaque media.

This feature of light is more than a mathematical trick; optical quantum memory, optical storage and other systems that depend on interactions of just a few photons at a time rely on the process, called electromagnetically induced transparency, also known as EIT.

Because of its usefulness in existing and emerging quantum and optical technologies, researchers are interested in the ability to manipulate EIT without the introduction of an outside influence, such as additional photons that could perturb the already delicate system. Now, researchers at the McKelvey School of Engineering at Washington University in St. Louis have devised a fully contained optical resonator system that can be used to turn transparency on and off, allowing for a measure of control that has implications across a wide variety of applications.

The group published the results of the research, conducted in the lab of Lan Yang, the Edwin H. & Florence G. Skinner Professor in the Preston M. Green Department of Electrical & Systems Engineering, in a paper titled Electromagnetically Induced Transparency at a Chiral Exceptional Point in the January 13, 2020, issue of Nature Physics.

An optical resonator system is analogous to an electronic resonant circuit but uses photons instead of electrons. Resonators come in different shapes, but they all involve reflective material that captures light for a period of time as it bounces back and forth between or around its surface. These components are found in anything from lasers to high precision measuring devices.

For their research, Yangs team used a type of resonator known as a whispering gallery mode resonator (WGMR). It operates in a manner similar to the whispering gallery at St. Pauls Cathedral, where a person on one side of the room can hear a person whispering on the other side. What the cathedral does with sound, however, WGMRs do with light trapping light as it reflects and bounces along the curved perimeter.

In an idealized system, a fiber optic line intersects with a resonator, a ring made of silica, at a tangent. When a photon in the line meets the resonator, it swoops in, reflecting and propagating along the ring, exiting into the fiber in the same direction it was initially headed.

Reality, however, is rarely so neat.

Fabrication in high quality resonators is not perfect, Yang said. There is always some defect, or dust, that scatters the light. What actually happens is some of the scattered light changes direction, leaving the resonator and traveling back in the direction whence it came. The scattering effects disperse the light, and it doesnt exit the system.

Imagine a box around the system: If the light entered the box from the left, then exited out the right side, the box would appear transparent. But if the light that entered was scattered and didnt make it out, the box would seem opaque.

Because manufacturing imperfections in resonators are inconsistent and unpredictable, so too was transparency. Light that enters such systems scatters and ultimately loses its strength; it is absorbed into the resonator, rendering the system opaque.

In the system devised by co-first authors Changqing Wang, a PhD candidate, and Xuefeng Jiang, a researcher in Yangs lab, there are two WGMRs indirectly coupled by a fiber optic line. The first resonator is higher in quality, having just one imperfection. Wang added a tiny pointed material that acts like a nanoparticle to the high-quality resonator. By moving the makeshift particle, Wang was able to tune it, controlling the way the light inside scatters.

Importantly, he was also able to tune the resonator to whats known as an exceptional point, a point at which one and only one state can exist. In this case, the state is the direction of light in the resonator: clockwise or counterclockwise.

For the experiment, researchers directed light toward a pair of indirectly coupled resonators from the left (see illustration). The lightwave entered the first resonator, which was tuned to ensure light traveled clockwise. The light bounced around the perimeter, then exited, continuing along the fiber to the second, lower-quality resonator.

There, the light was scattered by the resonators imperfections and some of it began traveling counter-clockwise along the perimeter. The light wave then returned to the fiber, but headed back toward the first resonator.

Critically, researchers not only used the nanoparticle in the first resonator to make the lightwaves move clockwise, they also tuned it in a way that, as the light waves propagated back and forth between resonators, a special interference pattern would form. As a result of that pattern, the light in the resonators was canceled out, so to speak, allowing the light traveling along the fiber to eek by, rendering the system transparent.

It would be as if someone shined a light on a brick wall no light would get through. But then another person with another flashlight shined it in the same spot and, all of a sudden, that spot in the wall became transparent.

One of the more important and interesting functions of EIT is its ability to create slow light. The speed of light is always constant, but the actual value of that speed can change based on the properties of the medium through which it moves. In a vacuum, light always travels at 300,000,000 meters per second.

With EIT, people have slowed light down to eight meters per second, Wang said. That can have significant influence on the storage of light information. If light is slowed down, we have enough time to use the encoded information for optical quantum computing or optical communication. If engineers can better control EIT, they can more reliably depend on slow light for these applications.

Manipulating EIT could also be used in the development of long distance communication. A tuning resonator can be indirectly coupled to another resonator kilometers away along the same fiber optic cable. You could change the transmitted light down the line, Yang said.

This could be critical for, among other things, quantum encryption.

Reference: Electromagnetically induced transparency at a chiral exceptional point by Changqing Wang, Xuefeng Jiang, Guangming Zhao, Mengzhen Zhang, Chia Wei Hsu, Bo Peng, A. Douglas Stone, Liang Jiang and Lan Yang, 13 January 2020, Nature Physics.DOI: 10.1038/s41567-019-0746-7

The research team also included collaborators at Yale University, University of Chicago and the University of Southern California.

See the original post here:
Researchers Gain Control Over Transparency With Tuning Optical Resonators - SciTechDaily

Honeywell Claims to Have Built the "Most Powerful" Quantum Computer – Interesting Engineering

The race to build the best and the fastest quantum computer continues, but now it's not just Google AI and IBM who are running Honeywell has joined in too.

Entering in style, Honeywell made the bold statement that "By the middle of 2020, we're releasing the most powerful quantum computer yet."

SEE ALSO: IBM'S 53 QUBIT QUANTUM COMPUTER WILL BE AVAILABLE BY OCTOBER

Google AI and IBM have been in the race for a while now. Just last October Google claimed to have made it to "quantum supremacy" by creating a quantum computer that could solve a problem that would have taken the world's most powerful supercomputer 10,000 years to figure out.

Immediately after, IBM refuted Google's statement.

Perhaps it's now time for both Google and IBM to move aside and let a third contender join in on the fun. North Carolina-based multinational conglomerate, Honeywell, has claimed that their quantum computer has twice the power as the best quantum computer that currently exists.

It's an interesting statement to make given there isn't yet a universally accepted standard for the power of a quantum computer.

Honeywell's quantum computer is supposedly extremely stable, and instead of depending on faster superconducting chips like Google AI and IBM use, Honeywell's computer uses ion traps instead. This technology enables individual ions to be held in place using electromagnetic fields and moves around thanks to laser pulses.

It's these ion traps that Honeywell claims will make its quantum computer far more scaleable.

We're yet to see a commercially available quantum computer, however, these technologies hold the real potential to revolutionize computing by being able to solve unbelievably long and complicated numerical problems simultaneously by using qubits instead of bits.

After Honeywell's rather large claim, the company has yet to reveal the computer but as they stated, we'll just have to wait until the middle of 2020.

More here:
Honeywell Claims to Have Built the "Most Powerful" Quantum Computer - Interesting Engineering

Can All Of Bitcoin Be Hacked? – Forbes

$280 billion rides on the proposition that cryptocurrency is impregnable. Maybe it isnt.

Machinery in an IBM quantum computing lab (photo by Seth Wenig)

Call it the singularity. One day, maybe a decade from now, a message flashes across the internet: Elliptic curves cracked!

Elliptic curve cryptography, or ECC, is the foundation beneath bitcoin. Wouldnt the discovery of a hole in this code destroy the currencyand take down any coin exchange?

I posed the question to Brian Armstrong, who co-founded and runs Coinbase, the largest U.S. crypto exchange. He cant prove that there wont be some mathematical shortcut compromising bitcoin keys. But he considers the risk low.

Ten years in, there's a ton of people who have looked at this code, he answered, in an interview at the Coinbase headquarters in San Francisco. It's a hundred-billion-dollar bounty. So I think that scenario is very unlikely.

Bitcoin plus the lesser currencies that compete with it amount to a $280 billion asset pile, a tempting target for bad guys. From bitcoins earliest days, hacks, cracks, hijacks, phishes, vishes, and social engineering have threatened it. So far the successful assaults on this industry have been around the edges; even the big heist at Mt. Gox did not kill cryptocurrency.

But what if thieves discover a fundamental vulnerability? It might be in the way the encryption works. It might be in the global network of computer nodes that track ownership of bitcoin. It might be in some aspect of crypto that no one is thinking much about.

Crypto players offer two answers to the question about cosmic risks. One is that the system might see an asteroid coming and take defensive measures. If bitcoins 11-year-old encryption proves to have a weak spot, the nodes could move en masse to a different protocol. They might be able to do this before any coins have been stolen. Alternatively, they could hark back to an earlier version of the blockchain that was in place before a theft; this is how the Ethereum chain partly undid some skulduggery involving the DAO venture capital fund.

The other answer, not entirely reassuring, is that a lot more than bitcoin is at stake. Says Philip Martin, head of security for Coinbase: A core math problem? Were talking the collapse of the internet. Trillions of dollars course through electronic networks protected with encryption. So, for what its worth, in the digital apocalypse an implosion of bitcoin would be the least of our concerns.

Lets now consider some of the weaknesses that envelop digital currency.

Bad implementation

Once upon a time Sony used elliptic curves to protect its PlayStation. In order to run, a game would have to provide a digital signature constructed from Sonys secret key, the same kind of key that protects your bitcoin. The signature routine uses, as one of its inputs, a different randomly chosen number for each validating signature.

Sony goofed, recycling the same number. It turns out that this enabled anyone possessing two legitimate games and a knowledge of high-school algebra to compute the secret key and run pirated games. Andrea Corbellini, a cryptographer who has explained the flaw, speculates that Sony might have been inspired by this Dilbert cartoon.

You might think that all such potholes were found long ago and repaired. But no. Recently the National Security Agency reported on a flaw in a Microsoft browser that made a mistake in delivering the digital signatures that verify websites as legitimate. ECC calls for using a specific starting point. The flaw enabled a website to slip in a different point. With just the right substitute, a malicious site could have forged a signature and stolen the password for your bank account.

Microsoft quickly patched the hole. But it makes you wonder. Could there be other holes in some or all of the software used to hold and transfer virtual currencies?

Crypto managers are on guard. Says Martin, the Coinbase security guy: I am much more scared of an implementation flaw in a library than I am of a flaw in the underlying math.

Some bitcoin owners, trying to manage their own coin wallets, have made the same mistake Sony did with its game console. Writes one security expert: A lot of Russian bitcoin hackers have coded bots to automatically grab coins from vulnerable addresses. Presumably you have nothing to worry about if you hire experts to manage your wallet.

Social engineering

A crook doesnt have to know algebra to steal bitcoin. Good acting might do it.

Jamie Armistead is a vice president at Early Warning, the bank consortium that runs the Zelle payments network. Is there a risk that someone will crack the encryption that protects the money coursing through Zelle? Answers Armistead: Its not hacking that keeps him awake at night. Its phishing, like the false email to the corporate treasurer.

Vishing, a variant of phishing involving voice commands, is a security risk. So is device hijacking, in which the thief gets control of your smartphone account. So are all manner of man-in-the-middle attacks, the electronic version of a football pass interception. Cybersecurity engineers constantly update communication protocols to prevent that. They can barely keep up.

Could a hoax on a grand scale cause a majority of bitcoin nodes to simultaneously make a fatal mistake? It would have to be rather byzantine. Its conceivable.

Mathematical hacks

Encryption methods in common use look secure, because they have been studied for many years by many people. But they are not provably secure. Someone might discover a way to tunnel into them.

Encryption works by scrambling numbers. One way to do that, in the scheme named RSA (after inventors Rivest, Shamir and Adleman) that is still widely used to secure sensitive data, involves exponentiation and modular arithmetic. When you multiply 4 by itself 3 times, 3 is the exponent and you get 64. In modulo 11, you divide this by 11 and consider only the remainder 9.

With small numbers like these, this is a meaningless exercise. But cryptography uses gigantic numbers, and those numbers get shuffled into a giant mess. To get a sense of this, try out the exponentiation/modular game on our small numbers: 2 turns into 8, 3 into 5, 4 into 9 and so on. The only way to unshuffle is to know a certain secret about the modulo. This secret relates to some mathematical formulas that go back a long ways. A 17th century Frenchman named Fermat played an important role.

The other big shuffling scheme is ECC. This involves the modular multiplying of not single numbers but pairs of them. Think of the pair as the coordinates on a map. The multiplying is weird: To double a pair, you dont just move it twice as far from the corner; you bounce it off an elliptic curve. This scrambles all the points on the map. In cryptography, the starting point is not merely doubled; it is multiplied by a gigantic number. This really scrambles the map. That giant number, kept secret, is the key that unlocks a bitcoin.

RSA and ECC both have this feature: Someone who possesses the secret can prove that he possesses it without revealing it.

These two protection schemes rely on the apparent difficulty of certain arithmetic tasks. In the case of RSA, its finding the two numbers that were multiplied together to arrive at the modulo; in the case of ECC, its dividing the end point by the starting point to determine the multiplier. Difficult means taking trillions of years of guesswork on a laptop.

Unless shortcuts are found. For RSA, a well-known shortcut to factoring numbers involves a number sieve. For ECC, theres a big step, little step algorithm that dramatically reduces the computation time. At this point, these tricks go only so far. The difficulty, for a key of a given size, might be measured in billions rather than trillions of years.

For reassurance about the safety of the crypto market and of internet commerce we go back to what Brian Armstrong said: There is a large incentive to find a killer shortcut, and evidently no one has found one. But there is no way to know that no vastly better tricks are about to be discovered.

Fermat, the French mathematician, conjectured a simple fact about exponents of numbers that looked true but couldnt be proved. For three centuries people labored to prove it and failed. And then one day not too long ago a proof was discovered. It relied, in part, on elliptic curves.

Quantum computers

Computers using quantum effects could, in theory, shrink the time for decoding an encrypted message from billions of years to hours. One such theory, for cracking RSA, dates to 1994.

In October Google sent a shiver through the cryptography world by announcing quantum supremacy. An experimental quantum device, the company said, did in 200 seconds what would have taken a conventional computer 10,000 years. Thats debatable; some researchers at IBM claimed that Google overstated the time difference by six orders of magnitude. Still, quantum computing is a threat.

Not an immediate one. The task in the Google experiment was designed specifically for the limited skills of quantum computing elements. These skills are a long way from those needed to crack codes. The 1994 algorithm is not in use because the hardware for it exists only on paper.

But ten years from now? We dont know where quantum computing will be.

Back door

For an encryption routine the anonymous creator(s) of bitcoin plucked an elliptic curve off the shelf. This curve was designed by the federal government. Were the parameters devilishly selected in a way to create mathematical vulnerabilities? Does the National Security Agency have a back door to your coins? Probably not. But you cannot be sure. Governments are not in sympathy with the anarchist philosophy underlying cryptocurrency.

Since cryptos creation, thousands of coins have been pilfered in hacks, scams and Ponzi schemes. These will continue. As for the big knockover, in which the whole system is taken down, we can say that the probability is low. But it is not zero.

Related story: Guide To Cryptocurrency Tax Rules

Corbellinis primer

More:
Can All Of Bitcoin Be Hacked? - Forbes

MITs Top 5 tech breakthroughs for 2020 – Big Think

MIT is no stranger to technology. It's one of the world's most productive and forward-facing tech research organizations. So when MIT gets excited looking forward, it only makes sense to sneak a peak at what they're seeing. MIT recently just published their top 10 technological breakthroughs for 2020 and just beyond. Below are the first five on their list. Each one is an advance that MIT sees as genuinely changing our lives.

Image source: Umberto/unsplash

MIT says: Later this year, Dutch researchers will complete a quantum internet between Delft and the Hague.

Think of a coin. Lay it flat on a table, and it's either heads and tails. This is more or less how things work in the world at larger scales. To see what things are like at a much smaller, quantum size, spin the coin on the table and observe it from above. From our perspective, the coin's state could then be described as being both head and tails at the same time since it's neither one exactly. Being in this rapidly changing condition is like being in "superposition" in quantum physics.

To see, or measure, the coin's head/tails state at any given moment, you'd have to stop it spinning, perhaps flattening it down to the table, where it would be stopped as either head or tails. Thus measured, the coin would be taken it out of superposition. Just like entangled quantum particles.

In classical computing system, data objects are represented by bits, strings of data comprised of zeros and ones, AKA heads or tails. In the quantum world, however, what needs to be represented is that "spinning coin"of superposition in its as-yet-unresolved state. So quantum computing uses "qubits" instead of bits.

Obviously, being able to represent data with qubits objects that collapse out of superposition if they're intercepted or tampered with is an attractive prospect for an increasingly security-conscious world, a natural foundation on which to build a super-secure quantum internet.

Still, qubits are far more complex than bits, and thus harder to process and exchange. Even worse, as our spinning coin will eventually stop spinning and resolve as heads or tails (Inception aside), qubits lose their superimposition after a while, making retaining and exchanging them in a superimposed a serious challenge. While there are various combinations of classical and quantum internets and encryption keys under consideration and construction, they all share a need for the robust, accurate transmission of qubits over long distances.

Now scientists of the Quantum Internet Alliance initiative have announced that they're in the process of building the world's first purely quantum network. It incorporates new quantum repeaters that allow qubits to be passed along long distances without being corrupted or losing their superposition. The group published a paper last October laying out their vision for an Arpanet-type quantum prototype stretching between Delft and the Hague by the end of this decade. (Here's a great explainer.)

Stephanie Wehner of QuTech, a quantum computing and internet center at Delft University of Technology, is coordinator of the project:

"With this very extensive simulation platform we've recently built, which is now running on a supercomputer, we can explore different quantum network configurations and gain an understanding of properties which are very difficult to predict analytically. This way we hope to find a scalable design that can enable quantum communication across all of Europe."

Image source: National Cancer Institute/unsplash

MIT says: Novel drugs are being designed to treat unique genetic mutations.

Developing treatments for any condition can be difficult and expensive, and it behooves researchers to get the most bang for their buck by concentrating on formulating solutions for diseases that afflict large groups of people. Hand in hand with this is a need for generalized remedies that address characteristics the whole group shares.

This is changing, says MIT, with gene editing offering the potential for transforming medicine from the traditional "one size fits all" approach to a more effective, personalized, or "n-of-1," approach. This new form of medicine involves targeting and manipulation of an individual patient's genes, with the application of rapidly maturing technologies for gene replacement including gene editing, and antisensing that removes or corrects problem-causing genetic messages. "What the treatments have in common," says MIT, "is that they can be programmed, in digital fashion and with digital speed, to correct or compensate for inherited diseases, letter for DNA letter." Treatments may also individually be optimized to avoid contemporary medicine's often harsh side effects.

If gene editing lives up to its promise, medicine is about to become radically more successful and humane.

Image source: Artwell/Shutterstock

MIT says: The rise of digital currency has massive ramifications for financial privacy.

While Bitcoin is, as of this writing, collapsing, it's nonetheless clear that purely digital monetary systems have considerable appeal: No more germ-encrusted metal and paper money, and, perhaps more importantly, an opportunity for governments and their central banks to more closely control currency and to instantly execute monetary policy changes.

The truth is we've been halfway there for a long time, currencies such as Bitcoin and Libra notwithstanding. The money in our bank accounts is virtual we personally possess no plies of physical cash at our local bank. Electronic purchasing with credit and debit cards is the norm for most of us, and when large movements of cash occur between banks, they do so in the digital domain. It's all been mostly bytes and bits for some time. What we currently have is a mish-mash of physical and digital money, and MIT predicts the imminent arrival of purely digital monetary systems. (Buh-bye, folding money and pocket change.)

In 2014, China began quietly exploring and building their Digital Currency/Electronic Payments system, or DC/EP. According to OZY, they've already applied for 84 patents for various innovations their new system requires.

One of China's goals is to construct an on-ramp making it easy for citizens to switch to an all-digital system. "Virtually all of these patent applications," Marc Kaufman of Rimon Law, tells OZY, "relate to integrating a system of digital currency into the existing banking infrastructure." The country's developing systems that allow people to swap traditional money for digital currency, as well chip card and digital wallets from which the currency may be spent.

Clearly, an all-digital monetary system presents privacy issues, since all of one's money would presumably be visible to governmental agencies unless adequate privacy protections are implemented. Developing that protection is going to require a deeper exploration of privacy itself, a discussion that has been overdue since the dawn of the internet.

Image source: Halfpoint/Shutterstock

MIT says: Drugs that try to treat ailments by targeting a natural aging process in the body have shown promise.

Strides are being made toward the production of new drugs for conditions that commonly accompany getting older. They don't stop the aging process, but the hope is that in the next five years, scientists may be able to delay some of aging's effects.

Senolytics are a new form of drugs under development that are designed to clean out unwanted stuff that often accumulates in us as we age. These senescent cells can wind up as plaque on brain cells, and as deposits that cause inflammation inhibiting healthy cell maintenance, and leaving toxins in our bodies.

While trials by San Franciscobased Unity Biotechnology are now underway for a senolytic medication targeting osteoarthritis of the knee, MIT notes that other aging-related ailments are getting a promising fresh look as well. For example, one company, Alkahest, specializing in Parkinson's and dementia, is investigating the extraction of certain components of young people's blood for injection into Alzheimer's patients in the hopes of arresting cognitive and functional decline (Oh, hi, Keith Richards.). And researchers at Drexel University College of Medicine are investigating the use of an existing drug, rapamycin, as an anti-aging skin creme.

Image source: Sharon Pittaway/unsplash

MIT says: Scientists have used AI to discover promising drug-like compounds.

Drugs are built from compounds, combinations of molecules that together produce some sort of medically useful effect. Scientists often find that known compounds can have surprising medical value recent research found that 50 non-cancer drugs can fight cancer in addition to their previously known uses.

But what about new compounds? MIT notes there may be as many as 1060 molecule combinations yet to be discovered, "more than all the atoms in the solar system."

AI can help. It can sift through molecule properties recorded in existing databases to identify combinations that may have promise as drugs. Operating much more quickly and inexpensive than humans can, machine learning techniques may revolutionize the search for new medicines.

Researchers at Hong Kongbased Insilico Medicine and the University of Toronto announced last September that AI algorithms had picked out about 30,000 unexplored molecule combinations, eventually winnowing that list down to six especially promising new medical compounds. Synthesis and subsequent animal testing revealed one of them to be especially interesting as a drug. One out of six out of 30,000 may not seem that impressive, but AI and machine learning are quickly evolving.

MIT predicts that in 3-5 years, such investigations will be regularly bearing fruit.

The other five items on MIT's list are:

6. Satellite mega-constellations7. Quantum supremacy8. Tiny AI9. Differential privacy10. Climate change attribution

Related Articles Around the Web

Read the original:
MITs Top 5 tech breakthroughs for 2020 - Big Think

Healthcare venture investment in 2020: Quantum computing gets a closer look – Healthcare IT News

Among the healthcare technologies venture firms be looking at most closely at in 2020, various artificial intelligence and machine learning applications are atop this list, of course. But so are more nuts-and-bolts tools like administrative process automation and patient engagement platforms, VCs say.

Other, more leading-edge technologies genomics-focused data and analytics, and even quantum computing are among the areas attracting investor interest this year.

"We expect 2020 to mark the first year where health IT venture firms will start to look at quantum computing technology for upcoming solutions," Dr. Anis Uzzaman, CEO and general partner of Pegasus Tech Ventures, told Healthcare IT News.

"With the breakthrough supremacy announcement from Google validating the technology and the subsequent launch of the service Amazon Braket in 2019, there is sure to be a new wave of entrepreneurial activity starting in 2020."

He said quantum computing technology holds a lot of promise for the healthcare industry with potential breakthroughs possible throughout the health IT stack from operations and administration to security.

Among the promising companies, Uzzaman pointed to Palo Alto-based QC Ware, a startup pioneering a software solution that enables companies to use a variety of quantum hardware platforms such as Rigetti and IBM to solve a variety of enterprise problems, including those specifically related to healthcare.

He also predicted artificial intelligence would continue to be at the forefront for health IT venture firms in 2020 as it becomes more clear which startups may be winners in their initial target sectors.

"There has been consistent growth of investment activity over the past few years into healthcare startups using artificial intelligence to target a range of areas from imaging to diagnostics," he said.

However, Uzzaman also noted regulation and long enterprise sales cycles have largely slowed the ability for these companies to significantly scale their revenues.

"Therefore, we anticipate 2020 will be the year where it will become clearer to health IT venture firms who will be winners in applying artificial intelligence to imaging, pathology, genomics, operations, diagnostics, transcription, and more," he said. "We will also continue to see moderate growth in the overall investment amount in machine learning and AI companies, but will see a notable decrease in the number of companies receiving an investment.

Uzzaman explained there were already some signs in late 2019 that there could be late in a short-term innovation cycle for artificial intelligence with many companies, particularly those applying machine learning and AI to robotics, shutting down.

"However, we anticipate many companies will reach greater scale with their solutions and separate themselves from the competition, which will translate into more mega funding rounds," he said.

Ezra Mehlman, managing partner with Health Enterprise Partners, explained that at the beginning of each year, the firm conducts a market mapping exercise to determine which healthcare IT categories are rising to the top of the prioritization queue of our network of hospital and health plan limited partners.

"In the past year, we have seen budgets meaningfully open for automation solutions in administrative processing, genomics-focused data and analytics offerings, aging-in-place technologies and, in particular, patient engagement platforms rooted in proven clinical use cases," he said. "We are actively looking at all of these spaces."

He pointed out that in 2018, more than $2 billion was invested into artificial intelligence and machine learning healthcare IT companies, which represented a quarter of the total dollars invested into digital health companies that year.

"We view this as a recognition of two things: the meteoric aspirations that the market has assigned to AI and machine learning's potential, and a general sense that the underlying healthcare data infrastructure has reached the point of maturity, where it is possible to realize ROI from AI/machine learning initiatives," he said.

However, he said Health Enterprise Partners is still waiting for the "breakout" to occur in adoption.

"We believe we have now reached the point where category leaders will emerge in each major healthcare AI subsector and the usage will become more widespread we have made one such investment in the clinical AI space in the last year," Mehlman said.

Heading into 2020, Mehlman said companies that cannot deliver high-six-figure, year-one ROI in the form of increased revenue or reduced cost will struggle, and companies that cannot crisply answer the question, "Who is the buyer and what is the budget?" will be challenged.

"If one applies these tests to some of the areas that have attracted the most healthcare VC investment--social determinants of health, blockchain and digital therapeutics to name a few the number of viable companies sharply drops off," he said.

Mehlman noted that while these sound like simple principles, the current environment of rapidly consolidating, budget-constrained hospitals, vertically integrating health plans, and big tech companies making inroads into healthcare has raised the bar on what is required for a healthcare startup to gain meaningful market traction.

View original post here:
Healthcare venture investment in 2020: Quantum computing gets a closer look - Healthcare IT News

Rochester scientists receive NSF CAREER awards – University of Rochester

February 11, 2020

The National Science Foundation (NSF) has granted its most prestigious award in support of junior faculty, theFaculty Early Career Development (CAREER) award, to several University of Rochester researchers this year.

The NSF CAREER award is given to promising scientists early in their careers and recognizes outstanding research, excellent education, and the integration of education and research. The award also comes with a federal grant toward their research and education activities.

Pierre Gourdain, an assistant professor of physics, will study the formation and evolution of plasma jets found around black holes, by conducting scaled-down experiments in the laboratory. Although scientists cannot see black holes directly, they can observe from Earth the plasma jets that black holes produce, which span thousands of light years. Better understanding the mechanisms behind jet formation and acceleration will allow scientists to use the data of the jets dynamics and chemical composition to determine a black holes mass and the type of matter it interacts with. Gourdains award will support his research in studying these mechanisms in the laboratory using scaled-down versions of astrophysical jets generated by the High Amperage Driver for Extreme States (HADES) at the Universitys Laboratory for Laser Energetics (LLE). HADES will form inch-long plasma jets traveling at 50 miles per seconds and will measure plasma properties that will then be used in plasma models. This research will allow astrophysicists to more precisely determine the mass of a black hole, giving them a better grasp of the distribution of dark matter throughout the Universe. Read more about Gourdains project here.

John Nichol, an assistant professor of physics, will study non-equilibrium quantum physics. His research project will focus on phenomena in objects that do not reach thermal equilibrium with their surroundings, such as an imaginary coffee cup that stays hot forever. This research has applications in fields such as high-temperature superconductivity and quantum computing. Another component of Nichols award is developing interactive, week-long courses in experimental physics for middle- and high-school students during the summer and workshops during the school year. These programs will include outreach efforts to involve more women and underrepresented minorities in physics. Nichol will also develop a quantum technology course for undergraduates and is mentoring undergraduate and graduate students in state-of-the-art quantum nanotechnology. Read more about Nichols project here.

William Renninger, an assistant professor of optics, studies the interaction between photonsthe elementary particles of lasers and other forms of lightand phonons, the basic units of acoustic waves caused by vibrating materials. Renningers CAREER award will support his research in coupling light waves and acoustic waves for optomechanical applicationssuch as improving the performance of radio-frequency signal processors in the near term, opening up new possibilities for controlling quantum information in the future, and perhaps even enabling the detection of dark matter. One goal of his project is to explore how acoustic waves could improve the filters used for controlling radio-frequency information carried in optical fibers, increasing the resolution of the information transmitted, and the speed and efficiency of doing so. The award also includes funding to create open source access to information for designing and creating advanced lasers sources generating femtosecond pulses, which are essential tools for time-resolved measurements, biomedical imaging, optogenetics, spectroscopy, distance measurements and more. Read more about Renningers project here.

Stephen Wu, an assistant professor of electrical and computer engineering, will study two-dimensional (2D) materialsas thin as a single layer of atoms. These materials can undergo remarkable transformations when they are stretched and pulled, such as being superconducting one moment to nonconducting the next. Wu will explore these changes when they occur in transistor-scale device platforms, in ways that could transform electronics, optics, computing, and a host of other technologies. For example, researchers are reaching the limits at which the electronic transistors used in computing can be scaled down in size to achieve ever faster, more enhanced performance. Last year, Wus lab demonstrated how using a thin film of two-dimensional molybdenum ditelluride in a device platform performed the same functions as a traditional transistor with far less power consumption, less leakage of current, yet is configured to easily adapt for current electronics. One goal of Wus project is to expand this straintronic concept to higher-endurance, higher-yield operations as well as adding new phases to control. Wus award also includes reaching out to students traditionally underrepresented in STEM fields by connecting with the Eastman School of Music. Examples of activities include running summer educational courses in music and electronics where local 7th to 12th grade students could create unconventional instruments that could be played in live performances. Read more about Wus project here.

NSF CAREER awards provide researchers with five years of funding to help lay the foundation for their future research. But innovative ways to integrate research with the education of students is also a key part of the CAREER program, which recognizes junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations.

Tags: announcement, Arts and Sciences, award, Department of Electrical and Computer Engineering, Department of Physics and Astronomy, Hajim School of Engineering and Applied Sciences, Institute of Optics, John Nichol, Laboratory for Laser Energetics, National Science Foundation, Pierre Gourdain, research funding, Stephen Wu, William Renninger

Category: University News

Go here to see the original:
Rochester scientists receive NSF CAREER awards - University of Rochester

Quantum Computing and Israel’s Growing Tech Role | Sam Bocetta – The Times of Israel

Its time to adjust to a world that is changing from the digital landscape that we have grown accustomed to. Traditional computing is evolving as quantum computing takes center stage.

Traditional computing uses the binary system, a digital language made up of strings of 1s and 0s. Quantum computing is a nonbinary system that uses the qubit which has the ability to exist as both 1 and 0 simultaneously, giving it a near-infinite number of positions and combinations. This computational ability far exceeds any other similar technology on the market today.

This new technology threatens to outpace our efforts in cyber defense and poses an interesting challenge to VPN companies, web hosts, and other similar industries that rely on traditional methods of standard encryption.

While leading tech giants all over the globe continue to implement funding that pours hundreds of billions of dollars into their R&D programs for quantum computing, Israel is quick to recognize the importance of the emerging industry. The Startup Nations engineers can be found toiling away in the fight to be at the frontier of the worlds next big technological innovations.

Quantum computing provides unmatched efficiency at analyzing data. To understand the scope of it, consider the aforementioned classical computing style that encodes information in binary. Picture a string of 1s and 0s about 30 digits long. This string alone has almost one billion different combinations. A classical computer can only analyze each possibility one at a time. However, a quantum computer, thanks to a phenomenon known as superposition, can exist in each one of those billion states simultaneously. To match this unparalleled computing power, our classical computer would need 1 billion processors.

Consider how much time we spend using applications on the internet. Our data is constantly being stored, usually in large data centers far from us thanks to the ability of cloud computing, which allows information to be stored at data centers and analyzed at a great distance from the user.

Tech ventures, such as Microsoft Azure and Amazon AWS, compete for the newest developments in this technology knowing the positive effects it has on the web users experience, such as access to the fastest response times, speedy data transfer, and the most powerful processing capabilities for AI.

Quantum computing has future applications in almost every facet of civilian life imaginable, including pharmaceuticals, energy, space, and more. Quantum computers could offer scientists the ability to work up close with virtual models unlike any theyve had before, with the ability to analyze anything from complex chemical reactions to quantum systems. AI, the technology claiming to rival electricity in importance and implementation, is the ideal candidate for quantum computing due to it often requiring complex software too challenging for current systems.

Really, the world is quantum computings oyster.

The next Silicon Valley happens to be on the other side of the world from California. Israel has gained the attention of major players in the tech sector, including giants such as Intel, Amazon, Google, and Nvidia. The Startup Nation got its nickname due to a large number of startups compared to the population, with approximately 1 startup for every 1,400 residents. In a list of the top 50 global cities for the growing tech industry, Tel Aviv, Israel comes in at #15. Israel is wrapping up the year of 2019 with an astonishing 102% jump in the number of tech mergers and acquisitions as compared to the previous year, with no signs of slowing down.

Habana Labs and Annapurna Labs, both created by entrepreneur Avigdor Willenz, were recently acquired by Intel and Amazon respectively to further their development in the realm of quantum computing and more powerful processors. Google, Nvidia, Marvell, Huawei, Broadcom, and Cisco have also invested billions of capital into Israeli prospects.

One of Googles R&D centers located in Tel Aviv is actively heading the research on quantum computing. Just this year Google announced a major breakthrough that made other tech giants pick up the pace. They hinted at a computer chip that, with the power of quantum computing, was able to manage and analyze in one second the amount of data that would take a full day for any supercomputer.

While Israel is reaping the benefits of its current exposure thanks to big tech firms, an anonymous source is skeptical about the long-term success of Israels foray into the tech world without the increased education and government support to keep up with the demand. Similar to other parts of the world, Israel has a shortage of the necessary engineers to drive development.

Recognizing the need to act fast, in 2017 Professor Uri Sivan of the Technicon Israel Institute of Technology led a committee dedicated to documenting the strengths and weaknesses of the current state of Israels investment in quantum technology research and development. What the committee found was a lag in educational efforts and a need for more funding to keep pace with the fast growth of the industry.

In response to this need for funding, in 2018 Israels Defense Ministry and the Israel Science Foundation announced a multi-year fund that would dedicate in total $100 million to the research of quantum technologies in hopes that this secures Israels global position as a top contributor to new technologies.

Classic cryptography relies on the symbiotic relationship between a public-key, a private key, and a classical computers inability to reverse-engineer the private key to decrypt sensitive data. While the algorithms used thus far have proved too complex for classical computing, they are no match for the quantum computer.

Organizations are recognizing this potential crisis and jumping to find a solution. The National Institute for the Standards of Technology requested potential postquantum algorithms in 2016. IBM recently announced its own system for handling quantum encryption methods, known as CRYSTALS.

Current encryption methods are the walls in place that guard our personal information, from bank records and personal documents stored online to any data sent via the web, such as emails.

Just about any user with access to the web on a regular basis can benefit from the security that a VPN offers. A VPN not only protects the identity of your IP address but also secures sensitive data that we are wont to throw into the world wide web. To understand how this works, consider the concept of a tunnel. Your data is shifted through this VPN virtual tunnel that acts as a barrier to unwanted attacks and hackers. Now, this tunnel exists using standard encryption to hide your data. Quantum computing abilities, as they become more accessible and widespread, is going to essentially destroy any effectiveness provided by industries that rely on standard encryption.

Outside of the usual surfing and data-exposing that we do on the web, lots of us are also taking advantage of opportunities to create our own websites. However, even the best web hosts leave us high and dry with the new age of quantum computing abilities and the influx of spyware and malware. WordPress, one of the more popular web hosts, can easily fall vulnerable to SQL injections, cross-site scripting attacks, and cookie hijacking. The encryptions that can be used to prevent such attacks are, you guessed it, hopeless in the face of quantum technologies.

The current state of modern technology is unsurprisingly complex and requires cybersecurity professionals with strong problem-solving skills and creativity to abate the potential threats well be facing within the next decade. In order to stay ahead of the game and guarantee an effective solution for web-users, top VPN companies and web-hosts need to invest in the research necessary to find alternatives for standard encryption. ExpressVPN has taken it a step further with a kill switch if the VPN disconnects unexpectedly and also offers VPN tunneling.

The ability for constant advancements in any field related to science and technology is what makes our world interesting. Decades ago, the abilities afforded by quantum computing would have sounded like an idea only contingent within an Isaac Asimov novel.

The reality of it is that quantum computing has arrived and science waits for no one. Professionals across digital industries need to shift their paradigms in order to account for this young technology that promises to remap the world as we know it.

Israel is full to the brim with potential and now is the time to invest resources and encourage education to bridge the gap and continue to be a major player in the global economy of quantum computing.

Read the rest here:
Quantum Computing and Israel's Growing Tech Role | Sam Bocetta - The Times of Israel

Xanadu Receives $4.4M Investment to Advance its Photonic Quantum Computing Technology – HPCwire

TORONTO,Jan. 16, 2020 Xanadu, a Canadian quantum hardware and technology company has received a$4.4 millioninvestment from Sustainable Development Technology Canada (SDTC). The investment will expedite the development of Xanadus photonic quantum computers and make them available over the cloud. This project will also further the companys overall progress towards the construction of energy-efficient universal quantum computers.

Canadian cleantech entrepreneurs are tackling problems acrossCanadaand in every sector. I have never been more positive about the future. The quantum hardware technology that Xanadu is building will develop quantum computers with the ability to solve extremely challenging computational problems, completing chemical calculations in minutes which would otherwise require a million CPUs in a data center, saidLeah Lawrence, President and CEO, Sustainable Development Technology Canada.

Despite efforts to improve the power efficiency of traditional computing methods, the rapid growth of data centres and cloud computing presents a major source of new electricity consumption. In comparison to classical computing, quantum computing systems have the benefit of performing certain tasks and algorithms at an unprecedented rate. This will ultimately reduce the requirements for electrical power and the accompanying air and water emissions associated with electricity production.

Xanadu is developing a unique type of quantum computer, based on photonic technology, which is inherently more power-efficient than electronics. Xanadus photonic approach uses laser light to carry information through optical chips, rather than the electrons or ions used by their competitors. By using photonic technology, Xanadus quantum computers will one day have the ability to perform calculations at room temperature, and eliminate the bulky and power-hungry cooling systems required by most other types of quantum computers.

The project will be undertaken by Xanadus team of in-house scientists, with collaboration from theUniversity of Torontoand Swiftride. The project will be carried out over three years and will encompass the development of Xanadus architecture, hardware, software and client interfaces with the overall goal of expediting the development of the companys technology, and demonstrating the practical benefits of quantum computing for users and customers by the end of 2022.

We are thrilled by the recognition and support that we are receiving from SDTC for the development of our technology. We firmly believe that our unique, photonic-based approach to quantum computing will deliver both valuable insights and tangible environmental benefits for our customers and partners, said Christian Weedbrook, CEO of Xanadu.

About Xanadu

Xanadu is a photonic quantum hardware company. We build integrated photonic chips that can be used in quantum computing, communication and sensing systems. The companys mission is to build quantum computers that are useful and available to people everywhere, visit http://www.xanadu.aior follow us on Twitter@XanaduAI.

About SDTC

Sustainable Development Technology Canada (SDTC) is a foundation created by the Government ofCanadato advance clean technology innovation inCanada by funding and supporting small and medium-sized enterprises developing and demonstrating clean technology solutions. Follow Sustainable Development Technology Canada on Twitter: @SDTC

Source: Xanadu

Read more here:
Xanadu Receives $4.4M Investment to Advance its Photonic Quantum Computing Technology - HPCwire

Quantum Computing Technologies Market to Witness Huge Growth by 2020-2025, Latest study reveals – ReportsPioneer

The Global Quantum Computing Technologies Market has witnessed continuous growth in the past few years and is projected to grow even further during the forecast period (2020-2025). The assessment provides a 360 view and insights, outlining the key outcomes of the industry. These insights help the business decision-makers to formulate better business plans and make informed decisions for improved profitability. In addition, the study helps venture capitalists in understanding the companies better and make informed decisions. Some of the key players in the Global Quantum Computing Technologies market are Airbus Group, Cambridge Quantum Computing, IBM, Google Quantum AI Lab, Microsoft Quantum Architectures, Nokia Bell Labs, Alibaba Group Holding Limited, Intel Corporation & Toshiba

Whats keeping Airbus Group, Cambridge Quantum Computing, IBM, Google Quantum AI Lab, Microsoft Quantum Architectures, Nokia Bell Labs, Alibaba Group Holding Limited, Intel Corporation & Toshiba Ahead in the Market? Benchmark yourself with the strategic moves and findings recently released by HTF MI

Get Sample Pdf with Latest Figures @:https://www.htfmarketreport.com/sample-report/1812333-global-quantum-computing-technologies-market-3

The Major Players Covered in this Report:Airbus Group, Cambridge Quantum Computing, IBM, Google Quantum AI Lab, Microsoft Quantum Architectures, Nokia Bell Labs, Alibaba Group Holding Limited, Intel Corporation & Toshiba

By the product type, the market is primarily split into:, Software & Hardware

By the end users/application, this report covers the following segments:Government, Business, High-Tech, Banking & Securities, Manufacturing & Logistics, Insurance & Other

Regional Analysis for Quantum Computing Technologies Market:United States, Europe, China, Japan, Southeast Asia, India & Central & South America

For Consumer Centric Market, below information can be provided as part of customization

Survey Analysis will be provided by Age, Gender, Occupation, Income Level or Education

Consumer Traits (If Applicable) Buying patterns (e.g. comfort & convenience, economical, pride) Buying behavior (e.g. seasonal, usage rate) Lifestyle (e.g. health conscious, family orientated, community active) Expectations (e.g. service, quality, risk, influence)

The Global Quantum Computing Technologies Market study also covers market status, share, future patterns, development rate, deals, SWOT examination, channels, merchants, and improvement gets ready for anticipated year between 2020-2025. It aims to strategically analyse the market with respect to individual growth trends, prospects, and their contribution to the market. The report attempts to forecast the market size for 5 major regions, namely, North America, Europe, Asia Pacific (APAC), Middle East and Africa (MEA), and Latin America.

If you need any specific requirement Ask to our Expert @https://www.htfmarketreport.com/enquiry-before-buy/1812333-global-quantum-computing-technologies-market-3

The Quantum Computing Technologies market factors described in this report are:-Key Strategic Developments in Global Quantum Computing Technologies Market:The research includes the key strategic developments of the market, comprising R&D, M&A, agreements, new product launch, collaborations, partnerships, joint ventures, and regional growth of the key competitors functioning in the market on a global and regional scale.

Key Market Features in Global Quantum Computing Technologies Market:The report assessed key market features, including revenue, capacity, price, capacity utilization rate, production rate, gross, production, consumption, import/export, supply/demand, cost, market share, CAGR, and gross margin. In addition to that, the study provides a comprehensive analysis of the key market factors and their latest trends, along with relevant market segments and sub-segments.

Analytical Market Highlights & ApproachThe Global Quantum Computing Technologies Market report provides the rigorously studied and evaluated data of the top industry players and their scope in the market by means of several analytical tools. The analytical tools such as Porters five forces analysis, feasibility study, SWOT analysis, and ROI analysis have been practiced reviewing the growth of the key players operating in the market.

Table of Contents :Global Quantum Computing Technologies Market Study Coverage:It includes key manufacturers covered, key market segments, the scope of products offered in the global Colposcopy market, years considered, and study objectives. Additionally, it touches the segmentation study provided in the report on the basis of the type of product and application.

Global Quantum Computing Technologies Market Executive SummaryIt gives a summary of key studies, market growth rate, competitive landscape, market drivers, trends, and issues, and macroscopic indicators.Global Quantum Computing Technologies Market Production by RegionHere, the report provides information related to import and export, production, revenue, and key players of all regional markets studied.Global Quantum Computing Technologies Market Profile of ManufacturersEach player profiled in this section is studied on the basis of SWOT analysis, their products, production, value, capacity, and other vital factors.

For Complete table of Contents please click here @https://www.htfmarketreport.com/reports/1812333-global-quantum-computing-technologies-market-3

Key Points Covered in Quantum Computing Technologies Market Report:Quantum Computing Technologies Overview, Definition and ClassificationMarket drivers and barriersQuantum Computing Technologies Market Competition by ManufacturersQuantum Computing Technologies Capacity, Production, Revenue (Value) by Region (2020-2025)Quantum Computing Technologies Supply (Production), Consumption, Export, Import by Region (2020-2025)Quantum Computing Technologies Production, Revenue (Value), Price Trend by Type {, Software & Hardware}Quantum Computing Technologies Market Analysis by Application {Government, Business, High-Tech, Banking & Securities, Manufacturing & Logistics, Insurance & Other}Quantum Computing Technologies Manufacturers Profiles/AnalysisQuantum Computing Technologies Manufacturing Cost AnalysisIndustrial/Supply Chain Analysis, Sourcing Strategy and Downstream BuyersMarketing Strategy by Key Manufacturers/Players, Connected Distributors/TradersStandardization, Regulatory and collaborative initiativesIndustry road map and value chainMarket Effect Factors Analysis

Buy the PDF Report @https://www.htfmarketreport.com/buy-now?format=1&report=1812333

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

About Author:HTF Market Report is a wholly owned brand of HTF market Intelligence Consulting Private Limited. HTF Market Report global research and market intelligence consulting organization is uniquely positioned to not only identify growth opportunities but to also empower and inspire you to create visionary growth strategies for futures, enabled by our extraordinary depth and breadth of thought leadership, research, tools, events and experience that assist you for making goals into a reality. Our understanding of the interplay between industry convergence, Mega Trends, technologies and market trends provides our clients with new business models and expansion opportunities. We are focused on identifying the Accurate Forecast in every industry we cover so our clients can reap the benefits of being early market entrants and can accomplish their Goals & Objectives.

Contact US :Craig Francis (PR & Marketing Manager)HTF Market Intelligence Consulting Private LimitedUnit No. 429, Parsonage Road Edison, NJNew Jersey USA 08837Phone: +1 (206) 317 1218[emailprotected]

Connect with us atLinkedIn|Facebook|Twitter

See the original post here:
Quantum Computing Technologies Market to Witness Huge Growth by 2020-2025, Latest study reveals - ReportsPioneer

World High Performance Computing (HPC) Markets to 2025 – AI, IoT, and 5G will be Major Drivers for HPC Growth as they Facilitate the Need to Process…

DUBLIN, Jan. 9, 2020 /PRNewswire/ -- The "High Performance Computing (HPC) Market by Component, Infrastructure, Services, Price Band, HPC Applications, Deployment Types, Industry Verticals, and Regions 2020-2025" report has been added to ResearchAndMarkets.com's offering.

This report evaluates the HPC market including companies, solutions, use cases, and applications. Analysis includes HPC by organizational size, software and system type, server type, and price band, and industry verticals. The report also assesses the market for integration of various artificial intelligence technologies in HPC. It also evaluates the exascale-level HPC market including analysis by component, hardware type, service type, and industry vertical.

High Performance Computing (HPC) may be provided via a supercomputer or via parallel processing techniques such as leveraging clusters of computers to aggregate computing power. HPC is well-suited for applications that require high performance data computation such as certain financial services, simulations, and various R&D initiatives.

The market is currently dominated on the demand side by large corporations, universities, and government institutions by way of capabilities that are often used to solve very specific problems for large institutions. Examples include financial services organizations, government R&D facilities, universities research, etc.

However, the cloud-computing based as a Service model allows HPC market offerings to be extended via HPC-as-a-Service (HPCaaS) to a much wider range of industry verticals and companies, thereby providing computational services to solve a much broader array of problems. Industry use cases are increasingly emerging that benefit from HPC-level computing, many of which benefit from split processing between localized device/platform and HPCaaS.

In fact, HPCaaS is poised to become much more commonly available, partially due to new on-demand supercomputer service offerings, and in part as a result of emerging AI-based tools for engineers. Accordingly, up to 45% of revenue will be directly attributable to the cloud-based business model via HPCaaS, which makes High-Performance Computing solutions available to a much wider range of industry verticals and companies, thereby providing computational services to solve a much broader array of problems.

In a recent study, we conducted interviews with major players in the market as well as smaller, lesser known companies that are believed to be influential in terms of innovative solutions that are likely to drive adoption and usage of both cluster-based HPC and supercomputing.

In an effort to identify growth opportunities for the HPC market, we investigated market gaps including unserved and underserved markets and submarkets. The research and advisory firm uncovered a market situation in which HPC currently suffers from an accessibility problem as well as inefficiencies and supercomputer skill gaps.

Stated differently, the market for HPC as a Service (e.g. access to high-performance computing services) currently suffers from problems related to the utilization, scheduling, and set-up time to run jobs on a supercomputer. We identified start-ups and small companies working to solve these problems.

One of the challenge areas identified is low utilization but (ironically) also high wait times for most supercomputers. Scheduling can be a challenge in terms of workload time estimation. About 20% of jobs are computationally heavy 30% of jobs cannot be defined very well in terms of how long jobs will take (within 3-minute window at best). In many instances, users request substantive resources and don't actually use computing time.

In addition to the scheduling challenge, we also identified a company focused on solving additional problems such as computational planning and engineering. We spoke with the principal of a little-known company called Microsurgeonbot, Inc. (doing business as MSB.ai), which is developing a tool for setting up computing jobs for supercomputers.

The company is working to solve major obstacles in accessibility and usability for HPC resources. The company focuses on solving a very important problem in HPC: Supercomputer job set-up and skills gap. Their solution known as "Guru" is poised to make supercomputing much more accessible, especially to engineers in small to medium-sized businesses that do not have the same resources or expertise as large corporate entities.

Key Topics Covered

1 Executive Summary1.1 Companies in Report1.2 Target Audience1.3 Methodology

2 Introduction2.1 Next Generation Computing2.2 High Performance Computing2.2.1 HPC Technology2.2.1.1 Supercomputers2.2.1.2 Computer Clustering2.2.2 Exascale Computation2.2.2.1 United States2.2.2.2 China2.2.2.3 Europe2.2.2.4 Japan2.2.2.5 India2.2.2.6 Taiwan2.2.3 High Performance Technical Computing2.2.4 Market Segmentation Considerations2.2.4.1 Government, NGOs, and Universities2.2.4.2 Small Companies and Middle Market2.2.5 Use Cases and Application Areas2.2.5.1 Computer Aided Engineering2.2.5.2 Government2.2.5.3 Financial Services2.2.5.4 Education and Research2.2.5.5 Manufacturing2.2.5.6 Media and Entertainment2.2.5.7 Electronic Design Automation2.2.5.8 Bio-Sciences and Healthcare2.2.5.9 Energy Management and Utilities2.2.5.10 Earth Science2.2.6 Regulatory Framework2.2.7 Value Chain Analysis2.2.8 AI to Drive HPC Performance and Adoption

3 High Performance Computing Market Analysis and Forecast 2020-20253.1 Global High Performance Computing Market 2020-20253.1.1 Total High Performance Computing Market 2020-20253.1.2 High Performance Computing Market by Component 2020-20253.1.2.1 High Performance Computing Market by Hardware and Infrastructure Type 2020-20253.1.2.1.1 High Performance Computing Market by Server Type 2020-20253.1.2.2 High Performance Computing Market by Software and System Type 2020-20253.1.2.3 High Performance Computing Market by Professional Service Type 2020-20253.1.3 High Performance Computing Market by Deployment Type 2020-20253.1.4 High Performance Computing Market by Organization Size 2020-20253.1.5 High Performance Computing Market by Server Price Band 2020-20253.1.6 High Performance Computing Market by Application Type 2020-20253.1.6.1 High Performance Technical Computing Market by Industry Vertical 2020-20253.1.6.2 Critical High Performance Business Computing Market by Industry Vertical 2020-20253.1.1 High Performance Computing Deployment Options: Supercomputer vs. Clustering 2020-20253.1.2 High Performance Computing as a Service (HPCaaS) 2020-20253.1.3 AI Powered High Performance Computing Market3.1.3.1 AI Powered High Performance Computing Market by Component3.1.3.2 AI Powered High Performance Computing Market by AI Technology3.2 Regional High Performance Computing Market 2020-20253.3 Exascale Computing Market 2020-20253.3.1 Exascale Computing Driven HPC Market by Component 2020-20253.3.2 Exascale Computing Driven HPC Market by Hardware Type 2020-20253.3.3 Exascale Computing Driven HPC Market by Service Type 2020-20253.3.4 Exascale Computing Driven HPC Market by Industry Vertical 2020-20253.3.1 Exascale Computing as a Service 2020-2025

4 High Performance Computing Company Analysis4.1 HPC Vendor Ecosystem4.2 Leading HPC Companies4.2.1 Amazon Web Services Inc.4.2.2 Atos SE4.2.3 Adavnced Micro Devices Inc.4.2.4 Cisco Systems4.2.5 DELL Technologies Inc.4.2.6 Fujitsu Ltd.4.2.7 Hewlett Packard Enterprise (HPE)4.2.8 IBM Corporation4.2.9 Intel Corporation4.2.10 Microsoft Corporation4.2.11 NEC Corporation4.2.12 NVIDIA4.2.13 Rackspace Inc.4.1 Companies to Watch4.1.1 Braket Inc.4.1.1 MicroSurgeonBot Inc. (MSB.ai)

5 Conclusions and Recommendations5.1 AI to Support Adoption and Usage of HPC5.2 5G and 6G to Drive Increased Demand for HPC

6 Appendix: Future of Computing6.1 Quantum Computing6.1.1 Quantum Computing Technology6.1.2 Quantum Computing Considerations6.1.3 Market Challenges and Opportunities6.1.4 Recent Developments6.1.5 Quantum Computing Value Chain6.1.6 Quantum Computing Applications6.1.7 Competitive Landscape6.1.8 Government Investment in Quantum Computing6.1.9 Quantum Computing Stakeholders by Country6.1 Other Future Computing Technologies6.1.1 Swarm Computing6.1.2 Neuromorphic Computing6.1.3 Biocomputing6.2 Market Drivers for Future Computing Technologies6.2.1 Efficient Computation and High Speed Storage6.2.2 Government and Private Initiatives6.2.3 Flexible Computing6.2.4 AI-enabled, High Performance Embedded Devices, Chipsets, and ICs6.2.5 Cost Effective Computing powered by Pay-as-you-go Model6.3 Future Computing Market Challenges6.3.1 Data Security Concerns in Virtualized and Distributed Cloud6.3.2 Funding Constrains R&D Activities6.3.3 Lack of Skilled Professionals across the Sector6.3.4 Absence of Uniformity among NGC Branches including Data Format

For more information about this report visit https://www.researchandmarkets.com/r/xa4mit

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Link:
World High Performance Computing (HPC) Markets to 2025 - AI, IoT, and 5G will be Major Drivers for HPC Growth as they Facilitate the Need to Process...

Google and IBM square off in Schrodingers catfight over quantum supremacy – The Register

Column Just before Christmas, Google claimed quantum supremacy. The company had configured a quantum computer to produce results that would take conventional computers some 10,000 years to replicate - a landmark event.

Bollocks, said IBM - which also has big investments both in quantum computing and not letting Google get away with stuff. Using Summit, the world's largest conventional supercomputer at the Oak Ridge National Laboratories in Tennessee, IBM claimed it could do the same calculation in a smidge over two days.

As befits all things quantum, the truth is a bit of both. IBM's claim is fair enough - but it's right at the edge of Summit's capability and frankly a massive waste of its time. Google could, if it wished, tweak the quantum calculation to move it out of that range. And it might: the calculation was chosen precisely not because it was easy, but because it was hard. Harder is better.

Google's quantum CPU has 54 qubits, quantum bits that can stay in a state of being simultaneously one and zero. The active device itself is remarkably tiny, a silicon chip around a centimetre square, or four times the size of the Z80 die in your childhood ZX Spectrum. On top of the silicon, a nest of aluminium tickled by microwaves hosts the actual qubits. The aluminium becomes superconducting below around 100K, but the very coldest part of the circuit is just 15 millikelvins. At this temperature the qubits have low enough noise to survive long enough to be useful

By configuring the qubits in a circuit, setting up data and analysing the patterns that emerge when the superpositions are observed and thus collapse to either one or zero, Google can determine the probable correct outcome for the problem the circuit represents. 54 qubits, if represented in conventional computer terms, would need 254 bits of RAM to represent each step of the calculation, or two petabytes' worth. Manipulating this much data many times over gives the 10 millennia figure Google claims.

IBM, on the other hand, says that it has just enough disk space on Summit to store the complete calculation. However you do it, though, it's not very useful; the only application is in random number generation. That's a fun, important and curiously nuanced field, but you don't really need a refrigerator stuffed full of qubits to get there. You certainly don't need the 27,648 NVidia Tesla GPUs in Summit chewing through 16 megawatts of power.

What Google is actually doing is known in the trade as "pulling a Steve", from the marketing antics of the late Steve Jobs. In particular, his tour at NeXT Inc, the company he started in the late 1980s to annoy Apple and produce idiosyncratic workstations. Hugely expensive to make and even more so to buy, the NeXT systems were never in danger of achieving dominance - but you wouldn't know that from Jobs' pronouncements. He declared market supremacy at every opportunity, although in carefully crafted phrases that critics joked defined the market as "black cubic workstations running NeXTOS."

Much the same is true of Google's claim. The calculation is carefully crafted to do precisely the things that Google's quantum computer can do - the important thing isn't the result, but the journey. Perhaps the best analogy is with the Wright Brothers' first flight: of no practical use, but tremendous significance.

What happened to NeXT? It got out of hardware and concentrated on software, then Jobs sold it - and himself - to Apple, and folded in some of that software into MacOS development. Oh, and some cat called Berners-Lee built something called the World Wide Web on a Next Cube.

Nothing like this will happen with Google's technology. There's no new web waiting to be borne on the wings of supercooled qubits. Even some of the more plausible things, like quantum decryption of internet traffic, is a very long way from reality - and, once it happens, it's going to be relatively trivial to tweak conventional encryption to defeat it. But the raw demonstration, that a frozen lunchbox consuming virtually no power in its core can outperform a computer chewing through enough wattage to keep a small town going, is a powerful inducement for more work.

That's Google's big achievement. So many new and promising technologies have failed not because they could never live up to expectations but because they cant survive infancy. Existing, established technology has all the advantages: it generates money, it has distribution channels, it has an army of experts behind it, and it can adjust to close down challengers before they get going. To take just one company - Intel has tried for decades to break out of the x86 CPU prison. New wireless standards, new memory technologies, new chip architectures, new display systems, new storage and security ideas - year after year, the company casts about for something new that'll make money. It never gets there.

Google's "quantum supremacy" isn't there either, but it has done enough to protect its infant prince in its superconducting crib. That's worth a bit of hype.

Sponsored: Detecting cyber attacks as a small to medium business

Go here to see the original:
Google and IBM square off in Schrodingers catfight over quantum supremacy - The Register

Tech Pros Share Their Predictions For 2020’s Most Impactful Tech Trends – Forbes

Tech changes fasttrends can spring up almost without warning, quickly sweeping everyone up in a viral frenzy. Not every development has staying power, though. Businesses and consumers are always looking for inside information on whats to comeand what will have a lasting impactin the tech world.

Below, 14 experts from Forbes Technology Council outline their picks for tech trends that will emerge in 2020 and have along-termeffecton how we live and work.

1. 5G Applications

As the cloud gets further 5G and edge computing capabilities, 2020 will be the first year when the developer community will get meaningful access to 5G features within leading cloud platforms. Such access will enable the creation of new mobile applications that can benefit from low latencyas low as a few milliseconds. Areas worth mentioning include live gaming, digital payments and access control. - Ahmad (Al) Fares, Celitech Inc.

2. Quantum AI

The real-world impact of quantum computing will still be in its infancy, but we will start to see where it will be impactful. Real-world applications will not be seen, but companies at the tip of the spear will begin to discuss how this will impact their business. - Jos Morey, Liberty BioSecurity

3. Edge Computing

Traditional cloud computing architecture is centralized, which makes it more vulnerable to attacks. Edge computing distributes processing, storage and applications across devices, thus making a security breach more difficult. In more regulated regionssuch as Europe, with its General Data Protection Regulationbusinesses can meet regulatory requirements by securing personal data on the edge. - Christopher Yang, Corporate Travel Management

4. Threat Modeling

Threat modeling will become more necessary as organizations transition to a DevSecOps approach. Threat modeling enables organizations to identify security threats as far left as possiblee.g., during the systems development life cycle planning stages. Automated tools will introduce increased time-cost savings on threat modeling while enabling organizations to scale more efficiently. - Archie Agarwal, ThreatModeler Software, Inc.

5. Human Augmentation

Human augmentation refers to the use of technology to enhance a persons physical or mental capabilities. Were already beginning to see more human augmentation products on the market, and I can only imagine well see more of it in 2020 and beyond. For example, there are products like eSight, which is a wearable device like glasses that enables legally blind individuals to see their environment. - Thomas Griffin, OptinMonster

6. Facial Recognition Payment

I believe the most impactful tech trend coming in 2020 is the use of facial recognition payment. We already see it in China, and it is making its way here. It will absolutely diminish the need for cash and bank cards. - Elaine Montilla, CUNY Graduate Center

7. Identity As A New Perimeter In Cloud Security

In 2020, security professionals will realize that identity and access management (IAM) is an area they can quickly lose control of in the cloud due to the rapid rate of changeand the repercussions of doing so are substantial. Strategies from the data center world dont transfer well, and companies will need to invest in the proper supporting tools to stay ahead in that complex landscape. - Chris Deramus, DivvyCloud

8. Businesses Taking Data Privacy Seriously

One of the most powerful shifts well see in 2020 is businesses and organizations taking data privacy and entitlements seriously. With GDPR maturing, the California Consumer Privacy Act going into effect and regulators paying special attention, businesses ignore these at their own peril. Leveraging customer data across multiple systems is imperative for digital transformations, and this just added constraints. - Ganesh Padmanabhan, Molecula Corp.

9. AI-Driven Personalization

As consumers, we increasingly want and expect experiences that speak directly to us in our current situation. Well-applied AI can now enable the one-on-one mass personalization that we have been talking about for years in our digital experiences. We can now adjust, in real time, to the needs and behaviors of our prospects and customers to meet them where they are in their journey with us. - Guy Yalif, Intellimize

10. Blockchain Finding More Use Cases

I believe blockchain will continue to find new use cases in 2020 that will expand on trusted identity management, documents and business-to-government, business-to-consumer and business-to-business information exchange. Were seeing all the cloud providers standing up and maturing blockchain platform as a service to enable these solutions to be developed in this coming year and beyond. - David Torres, Feedme Inc.

11. Industrial Internet Of Things

IIoT is changing the ways in which maintenance professionals perform their work with more data-driven insights. Were seeing more people using technology to gather data on their assets and equipment, which allows technicians in the field to proactively predict or prevent errors before they happen, as opposed to firefighting problems as they occur in the facility. - Ryan Chan, UpKeep Maintenance Management

12. Rise Of Kubernetes

Okay, no one is actually going to run Kubernetes on their desktop, but this is going to be the cloud technology that makes as big a wave as Linux did for servers. Were right at the very beginning of this revolution, and 2020 is the year the biggest companies are going to adopt what has become a default technology for SMEs. - Kendall Miller, Fairwinds Ops, Inc.

13. Growing Importance Of Automotive Software

The automotive industry is about to be turned on its head. The days of exclusively buying for the size of a vehicle or efficiency are gone. Now its a question of Apple CarPlay, Android Auto or something unique and innovative that Tesla is doing. We now live in a connected world; the value, in addition to efficiency and size, is the lastability and enjoyability of a car. Thats software. - WaiJe Coler, InfoTracer

14. Psychographic Targeting

Psychographic targeting will have a profound impact on the outcomes of the 2020 presidential elections. Extracting peoples personality traits; learning their attitudes, interests and motivations; and blending them into appropriate messaging through streamlined ad serving pipelines will greatly change the way public discourse is being shaped and maintained. - Pawel Rzeszucinski, Codewise

Visit link:
Tech Pros Share Their Predictions For 2020's Most Impactful Tech Trends - Forbes

Podcast: The Overhype and Underestimation of Quantum Computing – insideHPC

https://radiofreehpc.com/audio/RF-HPC_Episodes/Episode260/RFHPC260_QuantumQuantum.mp3In this podcast, the Radio Free HPC team looks at how Quantum Computing is overhyped and underestimated at the same time.

The episode starts out with Henry being cranky. It also ends with Henry being cranky. But between those two events, we discuss quantum computing and Shahins trip to the Q2B quantum computing conference in San Jose.

Not surprisingly, there is a lot of activity in quantum, with nearly every country pushing the envelop outward. One of the big concerns is that existing cryptography is now vulnerable to quantum cracking. Shahin assures us that this isnt the case today and is probably a decade away, which is another way of saying nobody knows, so it could be next week, but probably not.

We also learn the term NISQ which is a descriptive acronym for the current state of quantum systems. NISQ stands for Noisy Intermediate Scale Quantum computing. The conversation touches on various ways quantum computing is used now and where its heading, plus the main reason why everyone seems to be kicking the tires on quantum: the fear of missing out. Its a very exciting area, but to Shahin, it seems like how AI was maybe 8-10 years ago, so still early days.

Other highlights:

Download the MP3 *Follow RFHPC on Twitter *Subscribe on Spotify *Subscribe on Google Play *Subscribe on iTunes

Sign up for the insideHPC Newsletter

More:
Podcast: The Overhype and Underestimation of Quantum Computing - insideHPC

The 20 technologies that defined the first 20 years of the 21st Century – The Independent

The early 2000s were not a good time for technology. After entering the new millennium amid the impotent panic of the Y2K bug, it wasnt long before the Dotcom Bubble was bursting all the hopes of a new internet-based era.

Fortunately the recovery was swift and within a few years brand new technologies were emerging that would transform culture, politicsand the economy.

They have brought with them new ways of connecting, consuming and getting around, while also raising fresh Doomsday concerns. As we enter a new decade of the 21st Century, weve rounded up the best and worst of the technologies that have taken us here, while offering some clue of where we might be going.

Sharing the full story, not just the headlines

There was nothing much really new about the iPhone: there had been phones before, there had been computers before, there had been phones combined into computers before. There was also a lot that wasnt good about it: it was slow, its internet connection barely functioned, and it would be two years before it could even take a video.

But as the foremost smartphone it heralded a revolution in the way people communicate, listen, watch and create. There has been no aspect of life that hasnt been changed by the technologies bundled up in the iPhone an ever-present and always-on internet connection, a camera that never leaves your side, a computer with mighty processing power that can be plucked out of your pocket.

Steve Jobs unveiled the first iPhone on 9 January, 2007 (Reuters)

The 2000s have, so far, been the era of mobile computers and social networking changing the shape of our cultural, political and social climate. All of those huge changes, for better or worse, are bound up in that tiny phone.AG

Though few people noticed, online social networks actually began at the end of the last century. The first was Six Degrees in 1997, which was named after the theory that everyone on the planet is separated by only six other people. It included features that became popular with subsequent iterations of the form, including profiles and friend lists, but it never really took off.

It wasnt until Friends Reunited and MySpace in the early 2000s that social networks achieved mainstream success, though even these seem insignificant when compared to Facebook.

Not only did Mark Zuckerbergs creation muscle its way to a monopoly in terms of social networks, it also swallowed up any nascent competitors in a space that came to be known as social media. First there was Instagram in 2012, for a modest $1 billion, and then came WhatsApp in 2014 for $19bn.

Between all of its apps, Facebook now reaches more than 2 billion people every day. It has come to define the way we communicate and heralded a new era of hyper-connectedness, while also profoundly shaping the internet as we know it. In doing so, Facebook has not only consigned the site Six Degrees to the history books, it has also re-written the theory itself cutting it down to just three-and-a-half degrees of separation. AC

At the start of this century, the complete reinvention of the entire economic system wasnt something many people were talking about. But then the 2007-08 financial crisis happened. As mortgages defaulted, companies collapsed, and governments bailed out the banks to the tune of trillions of dollars, people began to wonder if there might be a better way.

One person or group believed they had the answer. Satoshi Nakamotos true identity may still be a mystery, but their creation of a new electronic cash system called bitcoin in 2009 could have implications far beyond just currency. The underlying blockchain technology an immutable and unhackable online ledger could potentially transform everything from healthcare to real estate.

Bitcoin is yet to take off as a mainstream form of payment or transform the global economy like it might have promised, but we are barely a decade into the great cryptocurrency experiment. It has inspired thousands of imitators, including those currently being developed by Facebook and China, and it may be another 10 years before its true potential is finally realised. AC

Alright, so here we are, in front of the, er, elephants. And the cool thing about these guys is that they have really, really, really long trunks. And thats cool.

It may have been an inauspicious start, but these words would go on to fundamentally transform the way people consume media in the 21st century. It was 23 April, 2005, and Jawed Karim had just uploaded the first ever video to YouTube a video-sharing website he had helped create.

The YouTube channel homepage for Indian record label T-Series, which overtook controversial Swedish vlogger PewDiePie in 2019

AFP/Getty

PewDiePie has been the most popular YouTuber since 2013

PewDiePie / YouTube

5-Minute Crafts, which offers quick and quirky DIY tips to viewers, didn't even feature in the top 15 YouTube channels in July 2018

5-Minute Crafts

Brazilian music video producer and director KondZilla began his career after buying a camera with life insurance money left to him after his mother died when he was 18

Getty

Sony Entertainment Televesion (SET) launched in 1995 and has recently seen huge growth of its Hindi-language YouTube channel

AFP/Getty

Canadian musician Justin Bieber held the number-two spot in 2018 before T-Series took over

Getty

World Wrestling Entertainment has managed to gain a huge following on YouTube by sharing clips of fights and interviews with its stars

WWE

This YouTube channel specialises in 3D animation videos of nursery rhymes, as well as its own original songs. It is owned by the American firm Treasure Studio

Cocomelon

YouTube personalities Coby Cotton, Tyler Toney, Cody Jones, and Cory Cotton form Dude Perfect, a sports entertainment channel from the US

Getty

YouTube personality German Garmendia is a Chilean comedian and writer

HolaSoyGerman

One of several musicians that populate the top 15 most popular YouTube channels, Ed Sheeran joined the list in 2017

Getty

Music channel Badabun's subscriber count has not been publicly visible since 6 March 2019, at which point it had 37.2 million subscribers

Badabun / YouTube

US rapper Eminem first entered the list of the top 15 YouTube channels in 2013, the same year that PewDiePie took over

AFP/Getty

Brazilian Whindersson Nunes Batista joined YouTube in 2013 and became popular for his comedy videos

Whinderssonnunes / YouTube

US singer and actress Ariana Grande is the latest addition to the top 15 YouTube channels

AFP/Getty

The YouTube channel homepage for Indian record label T-Series, which overtook controversial Swedish vlogger PewDiePie in 2019

AFP/Getty

PewDiePie has been the most popular YouTuber since 2013

PewDiePie / YouTube

5-Minute Crafts, which offers quick and quirky DIY tips to viewers, didn't even feature in the top 15 YouTube channels in July 2018

5-Minute Crafts

Brazilian music video producer and director KondZilla began his career after buying a camera with life insurance money left to him after his mother died when he was 18

Getty

Sony Entertainment Televesion (SET) launched in 1995 and has recently seen huge growth of its Hindi-language YouTube channel

AFP/Getty

Canadian musician Justin Bieber held the number-two spot in 2018 before T-Series took over

Getty

World Wrestling Entertainment has managed to gain a huge following on YouTube by sharing clips of fights and interviews with its stars

WWE

This YouTube channel specialises in 3D animation videos of nursery rhymes, as well as its own original songs. It is owned by the American firm Treasure Studio

Cocomelon

YouTube personalities Coby Cotton, Tyler Toney, Cody Jones, and Cory Cotton form Dude Perfect, a sports entertainment channel from the US

Getty

YouTube personality German Garmendia is a Chilean comedian and writer

HolaSoyGerman

One of several musicians that populate the top 15 most popular YouTube channels, Ed Sheeran joined the list in 2017

Getty

Music channel Badabun's subscriber count has not been publicly visible since 6 March 2019, at which point it had 37.2 million subscribers

Badabun / YouTube

US rapper Eminem first entered the list of the top 15 YouTube channels in 2013, the same year that PewDiePie took over

AFP/Getty

Brazilian Whindersson Nunes Batista joined YouTube in 2013 and became popular for his comedy videos

Whinderssonnunes / YouTube

US singer and actress Ariana Grande is the latest addition to the top 15 YouTube channels

AFP/Getty

Just over a year later, Google bought the site for $1.65 billion and the fortunes of Karim, his co-founders, and countless future content creators were changed forever.

There are now hundreds of hours of video published to YouTube every minute and it all started with that 18-second clip at the zoo. AC

Arthur C Clarke famously quipped that any sufficiently advanced technology is indistinguishable from magic. But there is surely nothing more like magic and no magic more powerful than the fact that the 21st century has brought the ability to instantly connect to information and people at the other side of the world.

First, at the beginning of the century, came 3G, and then 10 years or so later came 4G. Every decade of this century has been marked by new advances in the speed and reliability of mobile data connections.

And those mobile data connections have helped re-write the world that relies on them. Just about every other major breakthrough in technology that came through the 2000s social media, instant photo sharing, citizen journalism and everything else relied on having data connections everywhere.

5G which has ostensibly already rolled out, but is yet to make its full impact is likely to be similarly transformative through the decade to come, if its evangelists are to be believed.

Debates have raged about whether this constant connectivity and the distractions and dangers it has brought has really driven us apart. But that too is surely testament to its power. AG

Many of technologys biggest developments in the 2000s havent really been about technology at all: piracy and then streaming changed how we make and consume culture entirely, social media has turned politics on his head. Nowhere is that more clear than in the gig economy and the apps and websites like Uber, Deliveroo and Airbnb that power it, which claim to be tech businesses but are really new ways of buying and selling labour.

The real revolution of the gig economy was not the technology that powers these apps: there is little difference between calling for a cab and summoning an Uber, really. Nor was it what the companies like to suggest, that they have opened up a new and inspiring way of working that allows anyone to clock on whenever they log on.

Instead, it was the beginning of a process of changing the way that people work and relate to those who fulfil services for them. It is likely that we have not seen the end of the kinds of profound changes that these companies have made to working conditions or the ways that those workers have fought back. AG

Virtual reality has been the future before: ever since the first stereoscopes, people have been excited about the possibility of disappearing into other worlds that appear before their eyes. But it has never quite arrived.

But in the more recent years of the 2000s it started to look a bit more meaningful. Virtual reality headsets have been pushed out by many of the worlds biggest companies, and consumer computers are finally powerful enough to generate believable worlds that people are happy to spend their time in.

In recent years, much of the focus has turned to augmented reality rather than virtual reality. That technology allows information to be overlaid on top of the real world, rather than putting people into an entirely virtual world. If it comes off if it is not confined to failed experiments like Google Glass then it could change the way we interact with the world, potentially giving us information all of the time and could even do away with things like smartphones as our primary way of connecting with technology. AG

Quantum computing has not really happened yet. A few months ago, researchers announced that they had achieved quantum supremacy by doing an operation that would not be possible on a traditional computer but it was a largely useless, very specific, operation, which didnt really change anything in itself.

Already, however, the promise and the threat of quantum computing is changing the world. It looks set to upend all of our assumptions about computers, allowing them to be unimaginably fast and do work never thought possible. It could unlock new kinds of health research and scientific understanding; it could also literally unlock encryption, which currently relies on impossible calculations that could quickly become very possible with quantum computers.

A new era of computing could bring about a 'quantum apocalypse' (iStock)

It isnt clear when it will arrive, of course; like other potentially revolutionary technologies, it could take a very long time or never arrive at all. But it is sitting there in the future, ready to turn everything on its head and, as researchers rush to understand it, it is already changing the world. AG

No vision of the future would be complete without the ability to speak to and control your home. And now it seems like we are finally living in it.

Through the 2000s, just about everything came to be hooked up to the internet: you could buy smart kettles, internet-enabled doorbells, and a video camera for every room in your house. And to control them came microphones and speakers that you put in your house and could talk to.

But as the smart home and the voice assistants that power it have soared in popularity, they have been beset by concerns, too. Is giving over control of your home to internet-enabled devices safe, when those devices can break down or be seized by hackers? Should we be allowing internet giants like Amazon and Google to put microphones in our home? As we enter the new decade, it looks like our homes are set to be defined not by the capabilities the technology in our homes give us but who we want to have power over them. AG

Before there was Spotify, there was Napster, and before people were watching movies on Netflix, they were downloading them through PirateBay. Piracy has been one step ahead of legal ways to consume media but in doing so it has led the way for new platforms that now dominate our online lives.

Streaming has not only changed the way we listen to music and watch films, it has also given rise to new ways to create content. Live streaming video games on Twitch is one of the fastest growing mediums, while live video broadcasts through Facebook, Twitter and YouTube give people instant access to everything from street protests to rocket launches.

The Pirate Bay's latest venture into streaming comes despite battling takedown attempts by authorities for more than a decade (Reuters)

See original here:

The 20 technologies that defined the first 20 years of the 21st Century - The Independent

2020 Will be a Banner Year for AI Custom Chipsets and Heterogenous Computing; Quantum Computing Remains on the Far Horizon – Business Wire

OYSTER BAY, N.Y.--(BUSINESS WIRE)--The year 2020 will be an exciting one for the Artificial Intelligence (AI) chipset market. In 2020 alone, more than 1.4 million cloud AI chipsets and 330 million edge AI chipsets are forecasted to be shipped, generating a total revenue of US$9 billion, states global tech market advisory firm, ABI Research.

In its new whitepaper, 54 Technology Trends to Watch in 2020, ABI Researchs analysts have identified 35 trends that will shape the technology landscape and 19 others that, although attracting huge amounts of speculation and commentary, look less likely to move the needle over the next twelve months. After a tumultuous 2019 that was beset by many challenges, both integral to technology markets and derived from global market dynamics, 2020 looks set to be equally challenging, says Stuart Carlaw, Chief Research Officer at ABI Research.

What will happen in 2020:

More custom AI chipsets will be launched:Weve already seen the launch of new custom AI chipsets by both major vendors and new startups alike. From Cerebras Systems worlds largest chipset to Alibabas custom cloud AI inference chipset, the AI chipset industry has been hugely impacted by the desire to reduce energy consumption, achieve higher performance, and, in the case of China, minimize the influence of Western suppliers in their supply chain, says Lian Jye Su, AI & Machine Learning Principal Analyst at ABI Research. 2020 will be an exciting year for AI chipsets. Several stealth startups are likely to launch programmable chipsets for data centers, while the emergence of new AI applications in edge devices will give rise to more Application Specific Integrated Circuits (ASICs) dedicated for edge AI inference workloads.

Heterogeneous computing will emerge as the key to supporting future AI Networks:Existing Artificial Intelligence (AI) applications and networks are currently serviced by different processing architectures, either that be Field Programmable Gate Array (FPGA), Graphical Processing Units (GPUs), CPUs, Digital Signal Processors (DSPs), or hardware accelerators, each used to its strength depending on the use case addressed. However, the next generation and AI and Machine Learning (ML) frameworks will be multimodal by their nature and may require heterogeneous computing resources for their operations. The leading players, including Intel, NVIDIA, Xilinx, and Qualcomm will introduce new chipset types topped by hardware accelerators to address the new use cases, says Su. Vendors of these chips will move away from offering proprietary software stacks and will start to adopt open Software Development Kits (SDKs) and Application Programming Interface (API) approaches to their tools in order to simplify the technology complexity for their developers and help them focus on building efficient algorithms for the new AI and ML applications.

What wont happen in 2020:

Quantum computing:Despite claims from Google in achieving quantum supremacy, the tech industry is still far away from the democratization of quantum computing technology, Su says. Existing vendors, such as IBM and D-Wave, will continue to enhance its existing quantum computing systems, but the developer community remains small and the benefits brought by these systems will still be limited to selected industries, such as military, national laboratories, and aerospace agencies. Like other nascent processing technologies, such as photonic and neuromorphic chipset, quantum computing systems in their current form still require very stringent operating environment, a lot of maintenance, and custom adjustment, and are definitely not even remotely ready for large-scale commercial deployments, Su concludes.

For more trends that wont happen in 2020, and the 35 trends that will, download the 54 Technology Trends to Watch in 2020 whitepaper.

About ABI Research

ABI Research provides strategic guidance to visionaries, delivering actionable intelligence on the transformative technologies that are dramatically reshaping industries, economies, and workforces across the world. ABI Researchs global team of analysts publish groundbreaking studies often years ahead of other technology advisory firms, empowering our clients to stay ahead of their markets and their competitors.

For more information about ABI Researchs services, contact us at +1.516.624.2500 in the Americas, +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or visit http://www.abiresearch.com.

Go here to read the rest:

2020 Will be a Banner Year for AI Custom Chipsets and Heterogenous Computing; Quantum Computing Remains on the Far Horizon - Business Wire

Tucson Morning Blend Top 5 Tech Trends you’ll love this year. Heather Rowe 1:27 – KGUN

NEW TECH STUFF TO MAKE OUR LIVES BETTER IN 2020 In the decade now drawing to a close, every part of our lives our personal lives, our businesses and careers became fully digital. And with the 2020s now upon us, were going to see even more massive changes as the tech we use gets further refined and as technology that was dreamed up only recently becomes part of our daily routines! Here are five of the top technologies that IBM says will revolutionize the year and decade ahead:

1. Artificial Intelligence will turbo-charge productivity both personally, and professionally.

While artificial intelligence probably wont take your job, it will change how you work. In the coming decade, expect to see AI making its way into all sorts of workplaces around the world automating routine tasks that will free up your time to concentrate on parts of your job that are more satisfying and meaningful. And there will be lots of new jobs and career possibilities for those who gain the skills to work in technology fields.

2. Blockchain will help to make the food you eat safer than ever.

Food recalls keep consumers constantly on their toes affecting their shopping habits, and calling produce and pantry items into question. But blockchain networks like IBM Food Trust (which is used by a growing number of retailers including Walmart, Albertsons and Carrefour as well as major food suppliers like Dole) are helping to trace foods from the farm to your fork. What is blockchain? Its a digital ledger that means means consumers now have unprecedented insight into exactly where their food has come from and it doesnt stop with food blockchain now tracks global shipments, marriages and more. Right now were able to track food shipments on the blockchain via apps and in the next decade, well see this cutting edge technology become a part of everyday life.

3. Edge Computing will have a big impact on retail, and on the tech you use on your cell phone.

Today's consumer electronics, cars and electric vehicles, and all sorts of other digital devices are equipped with sensors that collectively generate tons of data. Today theres an estimated 15 billion intelligent devices operating on the outer edges of the network, and by 2022, that number is expected to reach 55 billion. In order to make sense of all of the information from these devices, well see massive growth in whats called edge computing: the use of compact, efficient computer servers located at the networks edges/near these smart devices that can process data locally, instead of sending it all back to a data center via the cloud.. The next decade will see a surge in edge computing, aided by the rollout of 5G technology and while consumers wont see edge computing it will transform the way retailers stock the latest goods you buy, and it will affect how cellphone carriers support mobile gaming and augmented reality and more.

4. From cloud computing to the Hybrid Cloud: what you need to know.

You know how when youre getting ready to pack for a big trip, you need to gather stuff from all over the place to make your vacation work? You might have clothes and shoes spread out between multiple closets, your suitcase is in the basement, your passport (which needs to stay super secure) is in a safe. Well, businesses with lots of data are the same way: they might have some info in one type of cloud, some info in another, and more stuff on three servers in two different states. Thats why more and more businesses are turning to hybrid cloud: its a technology infrastructure that makes it easy for companies to quickly access data wherever its stored to make it usable and easy to analyze. For consumers, this means theyre being helped by retailers and companies more quickly all with their data being safer than ever.5. Quantum computing moves from the realm of the theoretical (and from being a sci-fi movie plotline!) into the world of practical experiments and applications.

Its not necessary to be a quantum physicist to grasp the main point of quantum computing: it seeks to solve complex problems that have been considered unsolvable using classical computers alone. IBM is a leader on making quantum technology available to industry, academia and anyone else inspired by quantum computings potential. As the next decade unspools well see quantum computing moving from the lab to the mainstream and it will start to solve problems in chemistry, medicine and more.

Original post:
Tucson Morning Blend Top 5 Tech Trends you'll love this year. Heather Rowe 1:27 - KGUN