Will quantum computing overwhelm existing security tech in the near future? – Help Net Security

More than half (54%) of cybersecurity professionals have expressed concerns that quantum computing will outpace the development of other security tech, according to a research from Neustar.

Keeping a watchful eye on developments, 74% of organizations admitted to paying close attention to the technologys evolution, with 21% already experimenting with their own quantum computing strategies.

A further 35% of experts claimed to be in the process of developing a quantum strategy, while just 16% said they were not yet thinking about it. This shift in focus comes as the vast majority (73%) of cyber security professionals expect advances in quantum computing to overcome legacy technologies, such as encryption, within the next five years.

Almost all respondents (93%) believe the next-generation computers will overwhelm existing security technology, with just 7% under the impression that true quantum supremacy will never happen.

Despite expressing concerns that other technologies will be overshadowed, 87% of CISOs, CSOs, CTOs and security directors are excited about the potential positive impact of quantum computing. The remaining 13% were more cautious and under the impression that the technology would create more harm than good.

At the moment, we rely on encryption, which is possible to crack in theory, but impossible to crack in practice, precisely because it would take so long to do so, over timescales of trillions or even quadrillions of years, said Rodney Joffe, Chairman of NISC and Security CTO at Neustar.

Without the protective shield of encryption, a quantum computer in the hands of a malicious actor could launch a cyberattack unlike anything weve ever seen.

For both todays major attacks, and also the small-scale, targeted threats that we are seeing more frequently, it is vital that IT professionals begin responding to quantum immediately.

The security community has already launched a research effort into quantum-proof cryptography, but information professionals at every organization holding sensitive data should have quantum on their radar.

Quantum computings ability to solve our great scientific and technological challenges will also be its ability to disrupt everything we know about computer security. Ultimately, IT experts of every stripe will need to work to rebuild the algorithms, strategies, and systems that form our approach to cybersecurity, added Joffe.

The report also highlighted a steep two-year increase on the International Cyber Benchmarks Index. Calculated based on changes in the cybersecurity landscape including the impact of cyberattacks and changing level of threat November 2019 saw the highest score yet at 28.2. In November 2017, the benchmark sat at just 10.1, demonstrating an 18-point increase over the last couple of years.

During September October 2019, security professionals ranked system compromise as the greatest threat to their organizations (22%), with DDoS attacks and ransomware following very closely behind (21%).

Go here to read the rest:

Will quantum computing overwhelm existing security tech in the near future? - Help Net Security

Reaching the Singularity May be Humanity’s Greatest and Last Accomplishment – Air & Space Magazine

In a new paper published in The International Journal of Astrobiology, Joseph Gale from The Hebrew University of Jerusalem and co-authors make the point that recent advances in artificial intelligence (AI)particularly in pattern recognition and self-learningwill likely result in a paradigm shift in the search for extraterrestrial intelligent life.

While futurist Ray Kurzweil predicted 15 years ago that the singularitythe time when the abilities of a computer overtake the abilities of the human brainwill occur in about 2045, Gale and his co-authors believe this event may be much more imminent, especially with the advent of quantum computing. Its already been four years since the program AlphaGO, fortified with neural networks and learning modes, defeated Lee Sedol, the Go world champion. The strategy game StarCraft II may be the next to have a machine as reigning champion.

If we look at the calculating capacity of computers and compare it to the number of neurons in the human brain, the singularity could be reached as soon as the early 2020s. However, a human brain is wired differently than a computer, and that may be the reason why certain tasks that are simple for us are still quite challenging for todays AI. Also, the size of the brain or the number of neurons dont equate to intelligence. For example, whales and elephants have more than double the number of neurons in their brain, but are not more intelligent than humans.

The authors dont know when the singularity will come, but come it will. When this occurs, the end of the human race might very well be upon us, they say, citing a 2014 prediction by the late Stephen Hawking. According to Kurzweil, humans may then be fully replaced by AI, or by some hybrid of humans and machines.

What will this mean for astrobiology? Not much, if were searching only for microbial extraterrestrial life. But it might have a drastic impact on the search for extraterrestrial intelligent life (SETI). If other civilizations are similar to ours but older, we would expect that they already moved beyond the singularity. So they wouldnt necessarily be located on a planet in the so-called habitable zone. As the authors point out, such civilizations might prefer locations with little electronic noise in a dry and cold environment, perhaps in space, where they could use superconductivity for computing and quantum entanglement as a means of communication.

We are just beginning to understand quantum entanglement, and it is not yet clear whether it can be used to transfer information. If it can, however, that might explain the apparent lack of evidence for extraterrestrial intelligent civilizations. Why would they use primitive radio waves to send messages?

I think it also is still unclear whether there is something special enough about the human brains ability to process information that casts doubt on whether AI can surpass our abilities in all relevant areas, especially in achieving consciousness. Might there be something unique to biological brains after millions and millions of years of evolution that computers cannot achieve? If not, the authors are correct that reaching the singularity could be humanitys greatest and last advance.

Like this article?SIGN UP for our newsletter

Follow this link:
Reaching the Singularity May be Humanity's Greatest and Last Accomplishment - Air & Space Magazine

Devs: Alex Garland on Tech Company Cults, Quantum Computing, and Determinism – Den of Geek UK

Yet that difference between the common things a company can sell and the uncommon things they quietly develop is profoundly important. In Devs, the friendly exterior of Amaya with its enormous statue of a childa literal monument to Forests lost daughteris a public face to the actual profound work his Devs team is doing in a separate, highly secretive facility. Seemingly based in part on mysterious research and development wings of tech giantsthink Googles moonshot organizations at X Development and DeepMindDevs is using quantum computing to change the world, all while keeping Forests Zen ambition as its shield.

I think it helps, actually, Garland says about Forest not being a genius. Because I think what happens is that these [CEO] guys present as a kind of front between what the company is doing and the rest of the world, including the kind of inspection that the rest of the world might want on the company if they knew what the company was doing. So our belief and enthusiasm in the leader stops us from looking too hard at what the people behind-the-scenes are doing. And from my point of view thats quite common.

A lifelong man of words, Garland describes himself as a writer with a laymans interest in science. Yet its fair to say he studies almost obsessively whatever field of science hes writing about, which now pertains to quantum computing. A still largely unexplored frontier in the tech world, quantum computing is the use of technology to apply quantum-mechanical phenomena to data a traditional computer could never process. Its still so unknown that Google AI and NASA published a paper only six months ago in which they claimed to have achieved quantum supremacy (the creation of a quantum device that can actually solve problems a classical computer cannot).

Whereas binary computers work with gates that are either a one or a zero, a quantum qubit [a basic unit of measurement] can deal with a one and a zero concurrently, and all points in between, says Garland. So you get a staggering amount of exponential power as you start to run those qubits in tandem with each other. What the filmmaker is especially fascinated by is using a quantum system to model another quantum system. That is to say using a quantum computer with true supremacy to solve other theoretical problems in quantum physics. If we use a binary way of doing that, youre essentially using a filing system to model something that is emphatically not binary.

So in Devs, quantum computing is a gateway into a hell of a trippy concept: a quantum computer so powerful that it can analyze the theoretical data of everything that has or will occur. In essence, Forest and his team are creating a time machine that can project through a probabilistic system how events happened in the past, will happen in the future, and are happening right now. It thus acts as an omnipotent surveillance system far beyond any neocons dreams.

Read this article:
Devs: Alex Garland on Tech Company Cults, Quantum Computing, and Determinism - Den of Geek UK

An Invention To Change Quantum Computing Technology Has Been Realized – Somag News

Scientists from Australia managed to control the nucleus of a single atom using only electric fields. This theory, proposed by famous scientists Nobel Laureate and Nicolaas Bloembergen in 1961, has come true today.

Scientists from the University of New South Wales (UNSW) in Australia managed to control the nucleus of a single atom using electric fields. Scientists say their discovery can change the evolution of quantum computers.

Using the spins of an atom without the need for any oscillating magnetic field can offer very wide results in the application areas. Magnetic fields created with large coils and high currents have a wide range of applications today. However, this technology needs large areas. Electric fields can be produced at the ends of a single electrode. The use of these electric fields in the control of atomic nuclei will still make it much easier to control the atoms placed in nanoelectric devices.

Andrea Morello, a professor at UNSW, says his discoveries could replace nuclear magnetic resonance, which is widely used in different fields such as medicine, chemistry and mining. Morello gives an example of a pool table to explain the difference between controlling nuclear turns with magnetic and electric fields. Morello said, Magnetic resonance is like lifting the entire table and trying to move a ball on the pool table by shaking it. We aim to move the ball. But we move everything else with the ball. In electric resonance breakthrough, we will move the billiard stick to hit the ball we want.

Andrea Morello and his team unwittingly solved their problems in finding a way to control the nuclear turns introduced by Nobel Laureate and Nicolaas Bloembergen by electric fields in 1961.

Morello said, I have been working on spin resonance for 20 years of my life. But honestly, I have never heard of the nuclear resonance idea. We rediscovered this effect with an accident, he said. This theory was almost forgotten before Morello and his team made the discovery of nuclear electricity resonance.

The researchers wanted to perform nuclear magnetic resonance using antimony, which has a large nuclear return. By doing this, scientists wanted to explore the boundary between the quantum world and the classical world. However, after starting to experiment, something was noticed wrong. The core of the antimony did not respond at certain frequencies. It gave strong reactions at other frequencies. The researchers realized that this was electrical resonance rather than magnetic resonance.

They then produced a device consisting of an antimony atom and a special antenna optimized to create a high frequency magnetic field to control the nucleus of the atom. It was understood that the atomic nucleus moved when high power was applied to the antenna.

Scientists who managed to control the atomic nucleus by the electric field used a computer model to understand exactly how the electric field affects the rotation of the nucleus. In the computer model created, the electric field disrupted the atomic bonds around the nucleus, causing the nucleus to be redirected.

Scientists who managed to control the atomic nucleus with the nuclear electric field think that their discovery will open a huge horizon in the field of application. The discovery can then be used to create highly sensitive electromagnetic field sensors, with the development of quantum computers.

Link:
An Invention To Change Quantum Computing Technology Has Been Realized - Somag News

No, AI won’t steal your job. Here’s why. – ITWeb

If you dont believe our world of work is changing, you must either have your head stuck in the ground or had one too many conferences cancelled due to the coronavirus.

The platform economy is alive and well and has shaped our personal and business lives for at least the last decade. Up until recently platforms have been built on the foundation of SMAC technologies - Social, Mobile, Analytics and Cloud - and with great effect. One only has to look at the worlds most valuable companies including Apple, Amazon, Alphabet, and Alibaba. These companies have fully embraced the SMAC stack and have created levels of economic value, the like of which has seldom been seen in history.

However, change has arrived and for companies to remain competitive, SMAC no longer fits the bill.

Today, organisations are pivoting their businesses around ABEQ: artificial intelligence, blockchain (or distributed ledgers), enhanced reality and quantum computing. Of course, the most divisive of these technologies is artificial intelligence (AI).Business leaders, politicians and modern day soothsayers are all weighing in on the impact of this technology, with many believing AI will replace vast swathes of the modern workforce leaving us with a ruling elite.

One just has to look at the media to realise the state of paranoia. The percentage of jobs feared to be lost in the face of AI range from 25% to 47%. Even at the lower end, these estimates would cripple global economies and would lead to mass unemployment and potentially global unrest. However, how accurate are they?

We at Cognizants Center for the Future of Work (CFoW) believe that many of these studies fail to realise one key element that has defined all three of the last industrial revolutions. New technologies lead to new job creation. Our findings indicate that digital technologies will result in 13% new job creation, mitigating the 12% of job replacement these technologies will cause. In addition, 75% of jobs will remain but be drastically enhanced by man-machine collaboration. Yes, the disruption of these jobs will cause short- to medium-term impacts to many workers, but it is far from the doomsday scenario painted by many futurists.

The next question is: what will these new jobs be? Cognizants CFoW sought to understand exactly that and studied the latest macro, micro and socio economic trends, resulting in two report: 21 Jobs of the Future and 21 More Jobs of the Future.

These two reports name the exact jobs that will likely emerge in the future, and provide a timescale and tech centricity of when and how these jobs will occur. Spoiler: not all jobs of the future will require massive technical expertise. Instead, jobs will pivot around three core pillars that are currently shaping modern society: coaching, caring and connecting.

Heres why:

Ultimately, it is very easy to be caught up in the dystopian fear of the unknown future. However, instead we need to have a fascination with the unknown.

About the authorMicheal Cook is senior manager responsible for developing thought leadership in Cognizants EMEA Center for the Future of Work - a fulltime think tank of Cognizant Technical Services. Now based in London, Michael was born in Johannesburg and earned his Bachelors of Economics and Econometrics and Post Graduate qualification of International Trade and Development from the University of Johannesburg.

See the original post:
No, AI won't steal your job. Here's why. - ITWeb

Tech incubator Fountech.Ventures launches in US and UK – UKTN

Fountech.Ventures, a next generation incubator for deep tech startups, has launched in the US and UK.

The subsidiary company ofFountech.ai, a four-year-old international AI think tank and parent company to a number of specialist AI and deep tech firms, is based in Austin, Texas, US and originated in London, UK.

Fountech.Ventures goes above and beyond a standard incubator it provides broader services over a longer timeframe so founders of deep tech startups can fast-track their businesses from ideation to commercial success.

Fountech.Ventures develops tailored programmes for members, sharing technical and commercial knowledge, along with the provision of interim CEOs, funding, business advice, office space and international networking opportunities.

Headed by Salvatore Minetti, a team of experienced tech experts will work with deep tech startups spanning artificial intelligence (AI), robotics, quantum computing and blockchain.

Based on progress and continuous assessments, Fountech.Ventures will invest its own funds into its portfolio companies, from pre-seed level right through to Series B.

Banking alternative fintech company Lanistar launches

Salvatore Minetti, CEO of Fountech.Ventures, said: The US and UK are home to a vast number of deep tech startups that have immense growth potential. However, reaching that potential is difficult tech experts and PhD graduates have incredible ideas for how to use new and advanced technologies but often lack the skills and experience to transform them into successful businesses.

Fountech.Ventures will change all this by delivering the commercial expertise and infrastructure that is sorely needed. Whats more, the fact that our members can also access vital funding and our international hubs means we have a unique ability to bring products and services grounded in leading edge technologies to huge markets.

It is this end-to-end offering that makes us more than a typical incubator Fountech.Ventures is a next generation incubator.

Fountech.Ventures already has six portfolio companies. These include Soffos, an AI TutorBot; Prospex, an AI-powered lead generation tool; and Dinabite, a restaurant app built on an AI platform.

Advanced acquires Tikit from BT Group

Rebecca Taylor and Joseph McCall have joined the Fountech.Ventures board as directors. The board is to be bolstered further with additional appointments in the coming weeks.

Nikolas Kairinos, CEO and founder of the parent company Fountech.ai, commented: We are delighted to unveil Fountech.Ventures today.

This next gen incubator is going to propel the growth of deep tech startups across both sides of the Atlantic. In doing so, we will enable innovative leading edge tech solutions to thrive and consequently improve the lives of consumers, businesses and societies.

Here is the original post:
Tech incubator Fountech.Ventures launches in US and UK - UKTN

Coronavirus just caused the American Physical Society to cancel its biggest meeting of the year – Science Magazine

By Adrian ChoMar. 1, 2020 , 12:12 PM

Citing thegrowing threat of the coronavirus, the American Physical Society (APS), the 55,000 member professional society for physicists and researchers in associated fields, cancelled its largest meeting of the year just 34 hours before it was supposed to begin. APSs March Meeting was to be held this week at the Colorado Convention Center in Denver, and the society anticipated more than 10,000 people from all over the world would attend. However, late yesterday, APS issued a statementabruptly calling off the meeting.

The decision to cancel was based on the latest scientific data being reported, and the fact that a large number of attendees at this meeting are coming from outside the U.S., including countries where the virus is circulating and for which the U.S. Centers for Disease Control and Prevention have advised people to avoid non-essential travel, the APS statement says. [T]his decision was made out of deep concern for the health and well-being of our registrants, staff, vendors, and the Denver community.

Unfortunately for many researchers, the notice came only after theyd arrived in Denver.Holy sh*t! #apsmarch meeting is cancelled!,tweeted Kees Storm, an expert in the theory of polymers and soft matter from Eindhoven University of Technology in the Netherlands. 1000s of people must already be here in Denver, this is major. No idea what I should do now; already here and all booked for a whole week... He later tweeted that he had calmed down and was able to book an earlier flight home.

Others worried about the costs, especially for the thousands of graduate students who typically give contributed talks at the meeting.I understand their decision, but horrible timing,tweeted Una Goncin, a graduate student at the University of Saskatchewan. I feel esp sorry for all the grad students who will have to pay out of pocket for this! APS says it will refund the conference registration fees, which can range up to $695 dollars for regular members and $305 for graduate-student members, and will try to help registrants recoup fees for unused hotel reservations.

Generally, physicists in Denver and elsewhere appeared to be trying to make the best of the situation, with many proposing to post talks on the internet.Maybe this can also become a thing[for future meetings] and we can help those unable to travel and also reduce some carbon output, tweeted Christopher Savoie, cofounder and CEO of Zapata Computing, a quantum computing company spun out of Harvard University.

APS leadership now faces a similar decision for its other big annual confab, the somewhat smaller April Meeting, which is scheduled for 18-21 April in Washington, DC. Elsewhere in the world, the coronovirus outbreak has already snarled research, causing the cancellation or postponement of meetings and research efforts.

Go here to read the rest:
Coronavirus just caused the American Physical Society to cancel its biggest meeting of the year - Science Magazine

Deltec Bank, Bahamas Quantum Computing Will have Positive Impacts on Portfolio Optimization, Risk Analysis, Asset Pricing, and Trading Strategies -…

Quantum computing is expected to be the new technology, fully integrated with the financial sector within five to ten years. This form of computer, also known as supercomputers, are capable of highly advanced processing power that takes in massive amounts of data to solve a problem in a fraction of the time it would for the best traditional computer on the market to resolve.

Traditional Computer vs. Quantum Computing

A typical computer today stores information in the form of bits. These are represented in the binary language (0s and 1s). In quantum computing, the bits are known as Qubits and will take on the processing of similar input but rather than break it down to 0s and 1s will break the data down significantly greater where the possibilities of computational speed can be almost immeasurable.

Quantum Computing in Banking

Lets examine personal encryption in banking for example. Using a security format called RSA-2048, traditional computers would be able to decrypt the security algorithm in about 1,034 steps. With our best computers on the market, even with a processor capable of performing a trillion calculations per second, these steps translate to 317 billion years to break the secure code. While it is possible, it is not practical for a cyber-criminal to make it worthwhile.

A quantum computer, on the other hand, would be able to resolve this problem in about 107 steps. With a basic quantum computer running at one million calculations per second, this translates to ten seconds to resolve the problem.

While this example centered on breaking complex security, many other use cases can emerge from the use of quantum computing.

Trade Transaction Settlements

Barclays bank researchers have been working on a proof of concept regarding the transaction settlement process. As settlements can only be worked on a transaction-by-transaction basis, they can easily queue up only to be released in batches. When a processing window opens, as many trades as possible are settled.

Complex by their very nature, Traders can end up tapping into funds prior to the transaction being cleared. They will only be settled if the funds are available or if a collateral credit facility was arranged.

As you could probably handle a small number of trades in your head, you would need to rely on a computer after about 10-20 transactions. The same can be described for our current computational power in that it is now nearing the point where it will need more and more time to resolve hundreds of trades at a time.

With quantum computing using a seven-qubit system, it would be able to run a greater amount of complex trades in the same time it would for a traditional system to complete the trades. It would take the equivalent of about two hundred traditional computers to match the speed.

Simulating a Future Product Valuation

Researchers at JP Morgan were working on a concept that simulates the future value of a financial product. The team is testing quantum computers to perform complex intensive pricing calculations that normally take traditional computer hours to complete. This is a problem as each year greater complexity is added via newer algorithms, getting to the point where it is nearing an impossibility to calculate in a practical sense.

The research team has discovered that using quantum computing resulted in finding a resolution to the problem in mere seconds.

Final Thoughts

Banks are working on successful tests today with quantum computing to resolve extreme resource-intensive calculations for financial problem scenarios. Everything from trading, fraud, AML, etc. this is a technology not to be overlooked.

According toDeltec Bank, Bahamas - Quantum Computing will have positive impacts on portfolio optimization, risk analysis, asset pricing, and trading strategies is just the tip of the iceberg of what this technology could provide.

Disclaimer: The author of this text, Robin Trehan, has an Undergraduate degree in economics, Masters in international business and finance and MBA in electronic business. Trehan is Senior VP at Deltec International http://www.deltecbank.com. The views, thoughts, and opinions expressed in this text are solely the views of the author, and not necessarily reflecting the views of Deltec International Group, its subsidiaries and/or employees.

About Deltec Bank

Headquartered in The Bahamas, Deltec is an independent financial services group that delivers bespoke solutions to meet clients unique needs. The Deltec group of companies includes Deltec Bank & Trust Limited, Deltec Fund Services Limited, and Deltec Investment Advisers Limited, Deltec Securities Ltd. and Long Cay Captive Management.

Media ContactCompany Name: Deltec International GroupContact Person: Media ManagerEmail: Send EmailPhone: 242 302 4100Country: BahamasWebsite: https://www.deltecbank.com/

Here is the original post:
Deltec Bank, Bahamas Quantum Computing Will have Positive Impacts on Portfolio Optimization, Risk Analysis, Asset Pricing, and Trading Strategies -...

This Breakthrough Just Got Us One Step Closer to a Quantum Internet – Singularity Hub

While quantum computing tends to garner all the headlines, quantum technology also has huge promise for the communication networks of the future. Thats why on top of the roughly $450 million the Trump administration just earmarked for quantum research in their proposed budget, theres $25 million dedicated to building a nationwide quantum internet.

At what point a quantum network becomes the quantum internet is up for debate, but its likely to develop in phases of increasing sophistication, with the ultimate goal being a global network of quantum-connected quantum computers.

The US is well behind China on this front, though. A team led by quantum supremo Jian-Wei Pan have already demonstrated a host of breakthroughs in transmitting quantum signals to satellites, most recently developing a mobile quantum satellite station.

The reason both countries are rushing to develop the technology is that it could provide an ultra-secure communication channel in an era where cyberwarfare is becoming increasingly common.

Its essentially impossible to eavesdrop on a quantum conversation. The strange rules of quantum mechanics mean that measuring a quantum state immediately changes it, so any message encoded in quantum states will be corrupted if someone tries to intercept it.

But quantum states are also intrinsically fragile, which has made it difficult to establish quantum connections over large distances. But a team led by Pan has reported smashing the record for connecting two quantum memories in a paper in Nature.

Making a quantum connection relies on a phenomenon known as entanglement. If the states of two quantum objects are entangled, manipulating or measuring the state of one will be mirrored in the other. In theory this allows you to transmit quantum information instantaneously over very large distances.

So far most research has been done on entangled photonsincluding Pans work on quantum satellitesbut single particles can only carry limited information. Quantum memories, which are made up of clouds of millions of rubidium atoms, can store more, but the biggest distance theyd previously been entangled over was 1.3 kilometers.

Pans team came up with a clever workaround, as John Timmer explains in Ars Technica. Each quantum memory is set by shooting a photon at it, which causes the memory to emit another photon that is entangled with the state of the memory. This photon is then converted to an infrared wavelength so it can be transmitted over fiber optic cable.

The photons from each memory meet at a halfway point where they are measured in such a way that they become entangled. Because each was already entangled with their respective memories, these both become entangled as well, setting up the quantum connection.

The researchers carried out two experiments, one where they transmitted photons over 22 kilometers of cable buried underground between two separate facilities and one where they sent the particles around a 50-kilometer spool of optical cable in their lab.

The authors say those kinds of distances make it feasible to connect cities on a quantum internet and could be used to create quantum repeaters, a series of nodes that help boost the signal over longer distances.

But theres still some way to go. The process of converting the photons into a form that can travel along the fiber optic loses about 30 percent of the photons. The complex process involved in entangling the two photons also leads to further inefficiencies, which means theyre only able to successfully entangle photons roughly twice a second.

Thats a problem, because the memories only hold their state for 70 microseconds. The researchers admit they likely need to both boost the lifetime of the memories and the rate of entanglement for this approach to work in practice.

Its early, but the research is a significant step towards a quantum internet. If the US wants to play any part in its development, its going to have to play catch-up.

Image Credit: Garik Barseghyan from Pixabay

Excerpt from:
This Breakthrough Just Got Us One Step Closer to a Quantum Internet - Singularity Hub

Quantum computing – Wikipedia

Study of a model of computation

Quantum Computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. A quantum computer is used to perform such computation, which can be implemented theoretically or physically[1]:I-5 There are two main approaches to physically implementing a quantum computer currently, analog and digital. Analog approaches are further divided into quantum simulation, quantum annealing, and adiabatic quantum computation. Digital quantum computers use quantum logic gates to do computation. Both approaches use quantum bits or qubits.[1]:213

Qubits are fundamental to quantum computing and are somewhat analogous to bits in a classical computer. Qubits can be in a 1 or 0 quantum state. But they can also be in a superposition of the 1 and 0 states. However, when qubits are measured the result is always either a 0 or a 1; the probabilities of the two outcomes depends on the quantum state they were in.

Quantum computing began in the early 1980s, when physicist Paul Benioff proposed a quantum mechanical model of the Turing machine.[2]Richard FeynmanandYuri Maninlater suggested that a quantum computer had the potential to simulate things that a classical computer could not.[3][4] In 1994, Peter Shor developed a quantum algorithm for factoring integers that had the potential to decrypt all secured communications.[5]

Despite ongoing experimental progress since the late 1990s, most researchers believe that "fault-tolerant quantum computing [is] still a rather distant dream".[6] On 23 October 2019, Google AI, in partnership with the U.S. National Aeronautics and Space Administration (NASA), published a paper in which they claimed to have achieved quantum supremacy.[7] While some have disputed this claim, it is still a significant milestone in the history of quantum computing.[8]

The field of quantum computing is a subfield of quantum information science, which includes quantum cryptography and quantum communication.

The prevailing model of quantum computation describes the computation in terms of a network of quantum logic gates. What follows is a brief treatment of the subject based upon Chapter 4 of Nielsen and Chuang.[9]

A memory consisting of n {textstyle n} bits of information has 2 n {textstyle 2^{n}} possible states. A vector representing all memory states has hence 2 n {textstyle 2^{n}} entries (one for each state). This vector should be viewed as a probability vector and represents the fact that the memory is to be found in a particular state.

In the classical view, one entry would have a value of 1 (i.e. a 100% probability of being in this state) and all other entries would be zero. In quantum mechanics, probability vectors are generalized to density operators. This is the technically rigorous mathematical foundation for quantum logic gates, but the intermediate quantum state vector formalism is usually introduced first because it is conceptually simpler. This article focuses on the quantum state vector formalism for simplicity.

We begin by considering a simple memory consisting of only one bit. This memory may be found in one of two states: the zero state or the one state. We may represent the state of this memory using Dirac notation so that

The state of this one-qubit quantum memory can be manipulated by applying quantum logic gates, analogous to how classical memory can be manipulated with classical logic gates. One important gate for both classical and quantum computation is the NOT gate, which can be represented by a matrix

The mathematics of single qubit gates can be extended to operate on multiqubit quantum memories in two important ways. One way is simply to select a qubit and apply that gate to the target qubit whilst leaving the remainder of the memory unaffected. Another way is to apply the gate to its target only if another part of the memory is in a desired state. These two choices can be illustrated using another example. The possible states of a two-qubit quantum memory are

In summary, a quantum computation can be described as a network of quantum logic gates and measurements. Any measurement can be deferred to the end of a quantum computation, though this deferment may come at a computational cost. Because of this possibility of deferring a measurement, most quantum circuits depict a network consisting only of quantum logic gates and no measurements. More information can be found in the following articles: universal quantum computer, Shor's algorithm, Grover's algorithm, DeutschJozsa algorithm, amplitude amplification, quantum Fourier transform, quantum gate, quantum adiabatic algorithm and quantum error correction.

Any quantum computation can be represented as a network of quantum logic gates from a fairly small family of gates. A choice of gate family that enables this construction is known as a universal gate set. One common such set includes all single-qubit gates as well as the CNOT gate from above. This means any quantum computation can be performed by executing a sequence of single-qubit gates together with CNOT gates. Though this gate set is infinite, it can be replaced with a finite gate set by appealing to the Solovay-Kitaev theorem.

Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300-digit primes).[10] By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular, the RSA, DiffieHellman, and elliptic curve DiffieHellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.

However, other cryptographic algorithms do not appear to be broken by those algorithms.[11][12] Some public-key algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the McEliece cryptosystem based on a problem in coding theory.[11][13] Lattice-based cryptosystems are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the dihedral hidden subgroup problem, which would break many lattice based cryptosystems, is a well-studied open problem.[14] It has been proven that applying Grover's algorithm to break a symmetric (secret key) algorithm by brute force requires time equal to roughly 2n/2 invocations of the underlying cryptographic algorithm, compared with roughly 2n in the classical case,[15] meaning that symmetric key lengths are effectively halved: AES-256 would have the same security against an attack using Grover's algorithm that AES-128 has against classical brute-force search (see Key size).

Quantum cryptography could potentially fulfill some of the functions of public key cryptography. Quantum-based cryptographic systems could, therefore, be more secure than traditional systems against quantum hacking.[16]

Besides factorization and discrete logarithms, quantum algorithms offering a more than polynomial speedup over the best known classical algorithm have been found for several problems,[17] including the simulation of quantum physical processes from chemistry and solid state physics, the approximation of Jones polynomials, and solving Pell's equation. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely.[18] However, quantum computers offer polynomial speedup for some problems. The most well-known example of this is quantum database search, which can be solved by Grover's algorithm using quadratically fewer queries to the database than that are required by classical algorithms. In this case, the advantage is not only provable but also optimal, it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups. Several other examples of provable quantum speedups for query problems have subsequently been discovered, such as for finding collisions in two-to-one functions and evaluating NAND trees.

Problems that can be addressed with Grover's algorithm have the following properties:

For problems with all these properties, the running time of Grover's algorithm on a quantum computer will scale as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can be applied[19] is Boolean satisfiability problem. In this instance, the database through which the algorithm is iterating is that of all possible answers. An example (and possible) application of this is a password cracker that attempts to guess the password or secret key for an encrypted file or system. Symmetric ciphers such as Triple DES and AES are particularly vulnerable to this kind of attack.[citation needed] This application of quantum computing is a major interest of government agencies.[20]

Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe quantum simulation will be one of the most important applications of quantum computing.[21] Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a collider.[22]

Quantum annealing or Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.

The Quantum algorithm for linear systems of equations or "HHL Algorithm", named after its discoverers Harrow, Hassidim, and Lloyd, is expected to provide speedup over classical counterparts.[23]

John Preskill has introduced the term quantum supremacy to refer to the hypothetical speedup advantage that a quantum computer would have over a classical computer in a certain field.[24] Google announced in 2017 that it expected to achieve quantum supremacy by the end of the year though that did not happen. IBM said in 2018 that the best classical computers will be beaten on some practical task within about five years and views the quantum supremacy test only as a potential future benchmark.[25] Although skeptics like Gil Kalai doubt that quantum supremacy will ever be achieved,[26][27] in October 2019, a Sycamore processor created in conjunction with Google AI Quantum was reported to have achieved quantum supremacy,[28] with calculations more than 3,000,000 times as fast as those of Summit, generally considered the world's fastest computer.[29] Bill Unruh doubted the practicality of quantum computers in a paper published back in 1994.[30] Paul Davies argued that a 400-qubit computer would even come into conflict with the cosmological information bound implied by the holographic principle.[31]

There are a number of technical challenges in building a large-scale quantum computer,.[32] David DiVincenzo listed the following requirements for a practical quantum computer:[33]

Sourcing parts for quantum computers is very difficult: Quantum computers need Helium-3, a nuclear research byproduct, and special cables that are only made by a single company in Japan.[34]

One of the greatest challenges is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively non-unitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems in particular, the transverse relaxation time T2 (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature.[35] Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.[36]

As a result, time-consuming tasks may render some quantum algorithms inoperable, as maintaining the state of qubits for a long enough duration will eventually corrupt the superpositions.[37]

These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an often-cited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.

As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for the required error rate in each gate for fault-tolerant computation is 103, assuming the noise is depolarizing.

Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L2, where L is the number of qubits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000-bit number, this implies a need for about 104 bits without error correction.[38] With error correction, the figure would rise to about 107 bits. Computation time is about L2 or about 107 steps and at 1MHz, about 10 seconds.

A very different approach to the stability-decoherence problem is to create a topological quantum computer with anyons, quasi-particles used as threads and relying on braid theory to form stable logic gates.[39][40]

Physicist Mikhail Dyakonov has expressed skepticism of quantum computing as follows:

There are a number of quantum computing models, distinguished by the basic elements in which the computation is decomposed. The four main models of practical importance are:

The quantum Turing machine is theoretically important but the direct implementation of this model is not pursued. All four models of computation have been shown to be equivalent; each can simulate the other with no more than polynomial overhead.

For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):

A large number of candidates demonstrates that the topic, in spite of rapid progress, is still in its infancy. There is also a vast amount of flexibility.

The class of problems that can be efficiently solved by quantum computers is called BQP, for "bounded error, quantum, polynomial time". Quantum computers only run probabilistic algorithms, so BQP on quantum computers is the counterpart of BPP ("bounded error, probabilistic, polynomial time") on classical computers. It is defined as the set of problems solvable with a polynomial-time algorithm, whose probability of error is bounded away from one half.[61] A quantum computer is said to "solve" a problem if, for every instance, its answer will be right with high probability. If that solution runs in polynomial time, then that problem is in BQP.

BQP is contained in the complexity class #P (or more precisely in the associated class of decision problems P#P),[62] which is a subclass of PSPACE.

BQP is suspected to be disjoint from NP-complete and a strict superset of P, but that is not known. Both integer factorization and discrete log are in BQP. Both of these problems are NP problems suspected to be outside BPP, and hence outside P. Both are suspected to not be NP-complete. There is a common misconception that quantum computers can solve NP-complete problems in polynomial time. That is not known to be true, and is generally suspected to be false.[62]

The capacity of a quantum computer to accelerate classical algorithms has rigid limitsupper bounds of quantum computation's complexity. The overwhelming part of classical calculations cannot be accelerated on a quantum computer.[63] A similar fact prevails for particular computational tasks, like the search problem, for which Grover's algorithm is optimal.[64]

Bohmian Mechanics is a non-local hidden variable interpretation of quantum mechanics. It has been shown that a non-local hidden variable quantum computer could implement a search of an N-item database at most in O ( N 3 ) {displaystyle O({sqrt[{3}]{N}})} steps. This is slightly faster than the O ( N ) {displaystyle O({sqrt {N}})} steps taken by Grover's algorithm. Neither search method will allow quantum computers to solve NP-Complete problems in polynomial time.[65]

Although quantum computers may be faster than classical computers for some problem types, those described above cannot solve any problem that classical computers cannot already solve. A Turing machine can simulate these quantum computers, so such a quantum computer could never solve an undecidable problem like the halting problem. The existence of "standard" quantum computers does not disprove the ChurchTuring thesis.[66] It has been speculated that theories of quantum gravity, such as M-theory or loop quantum gravity, may allow even faster computers to be built. Currently, defining computation in such theories is an open problem due to the problem of time, i.e., there currently exists no obvious way to describe what it means for an observer to submit input to a computer and later receive output.[67][68]

Visit link:
Quantum computing - Wikipedia

White House reportedly aims to double AI research budget to $2B – TechCrunch

The White House is pushing to dedicate an additional billion dollars to fund artificial intelligence research, effectively doubling the budget for that purpose outside of Defense Department spending, Reuters reported today, citing people briefed on the plan. Investment in quantum computing would also receive a major boost.

The 2021 budget proposal would reportedly increase AI R&D funding to nearly $2 billion, and quantum to about $860 million, over the next two years.

The U.S. is engaged in what some describe as a race with China in the field of AI, though unlike most races this one has no real finish line. Instead, any serious lead means opportunities in business and military applications that may grow to become the next globe-spanning monopoly, a la Google or Facebook which themselves, as quasi-sovereign powers, invest heavily in the field for their own purposes.

Simply doubling the budget isnt a magic bullet to take the lead, if anyone can be said to have it, but deploying AI to new fields is not without cost and an increase in grants and other direct funding will almost certainly enable the technology to be applied more widely. Machine learning has proven to be useful for a huge variety of purposes and for many researchers and labs is a natural next step but expertise and processing power cost money.

Its not clear how the funds would be disbursed; Its possible existing programs like federal Small Business Innovation Research awards could be expanded with this topic in mind, or direct funding to research centers like the National Labs could be increased.

Research into quantum computing and related fields is likewise costly. Googles milestone last fall of achieving quantum superiority, or so the claim goes, is only the beginning for the science and neither the hardware nor software involved have much in the way of precedents.

Furthermore quantum computers as they exist today and for the foreseeable future have very few valuable applications, meaning pursuing them is only an investment in the most optimistic sense. However, government funding via SBIR and grants like those are intended to de-risk exactly this kind of research.

The proposed budget for NASA is also expected to receive a large increase in order to accelerate and reinforce various efforts within the Artemis Moon landing program. It was not immediately clear how these funds would be raised or from where they would be reallocated.

Here is the original post:
White House reportedly aims to double AI research budget to $2B - TechCrunch

QUANTUM COMPUTING TECHNOLOGIES Market: Comprehensive study explores Huge Growth in Future | D-Wave Systems Inc., IBM Corporation, Lockheed Martin…

The QUANTUM COMPUTING TECHNOLOGIES market research report added by Report Ocean, is an in-depth analysis of the latest trends, market size, status, upcoming technologies, industry drivers, challenges, regulatory policies, with key company profiles and strategies of players. The research study provides market introduction, QUANTUM COMPUTING TECHNOLOGIES market definition, regional market scope, sales and revenue by region, manufacturing cost analysis, Industrial Chain, market effect factors analysis, QUANTUM COMPUTING TECHNOLOGIES market size forecast, 100+ market data, Tables, Pie Chart, Graphs and Figures, and many more for business intelligence.

UPTO 30% OFF ON SINGLE USER PDF: https://www.reportocean.com/industry-verticals/sample-request?report_id=43463

In the QUANTUM COMPUTING TECHNOLOGIES Market, some of the major companies are:

D-Wave Systems Inc.IBM CorporationLockheed Martin CorporationIntel CorporationAnyon Systems Inc.Cambridge Quantum Computing Limited

The report consists of various chapters and company profiling is a major among them. Company profiling garners business intelligence and track key elements of a business, such as:

QUANTUM COMPUTING TECHNOLOGIES Market: Insights

Global Quantum Computing Technologies Market valued approximately USD 75.0 million in 2018 is anticipated to grow with a healthy growth rate of more than 24.0% over the forecast period 2019-2026. The Quantum Computing Technologies Market is continuously growing in the global scenario at significant pace. As it is recognized as a computer technology based on the principles of quantum theory, which explains the nature and behavior of energy and matter on the quantum level. A Quantum computer follows the laws of quantum physics through which it can gain enormous power, have the ability to be in multiple states and perform tasks using all possible permutations simultaneously. Surging implementation of machine learning by quantum computer, escalating application in cryptography and capability in simulating intricate systems are the substantial driving factors of the market during the forecast period. Moreover, rising adoption & utility in cyber security is the factors that likely to create numerous opportunity in the near future. However, lack of skilled professionals is one of the major factors that restraining the growth of the market during the forecast period.

The regional analysis of Global Quantum Computing Technologies Market is considered for the key regions such as Asia Pacific, North America, Europe, Latin America and Rest of the World. North America is the leading/significant region across the world in terms of market share due to increasing usage of quantum computers by government agencies and aerospace & defense for machine learning in the region. Europe is estimated to grow at second largest region in the global Quantum Computing Technologies market over the upcoming years. Further, Asia-Pacific is anticipated to exhibit higher growth rate / CAGR over the forecast period 2019-2026 due to rising adoption of quantum computers by BFSI sectors in the region.

Get a Sample Report for more Expert and Official insights: @https://www.reportocean.com/industry-verticals/sample-request?report_id=43463

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming eight years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within each of the regions and countries involved in the study. Furthermore, the report also caters the detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, the report shall also incorporate available opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players.

The Global QUANTUM COMPUTING TECHNOLOGIES Market is segmented into various sub-groups to understand the market scenario in detail, the market segmentation are as follows:

By Application:OptimizationMachine LearningSimulation

By Vertical:BFSIIT and TelecommunicationHealthcareTransportationGovernmentAerospace & DefenseOthers

Other Report Highlights Competitive Landscape Sales, Market Share, Geographical Presence, Business Segments Product Benchmarking. Market Dynamics Drivers and Restraints. Market Trends. Porter Five Forces Analysis. SWOT Analysis.

Furthermore, the years considered for the study are as follows:

Historical year 2013-2017

Base year 2018

Forecast period** 2019 to 2025 [** unless otherwise stated]

Regional split of the Global QUANTUM COMPUTING TECHNOLOGIES Market research report is as follows:

The market research study offers in-depth regional analysis along with the current market scenarios. The major regions analyzed in the study are:

Get Free PDF Brochure of this Report:

Questions answered in the QUANTUM COMPUTING TECHNOLOGIES market research report:

Key highlights and important features of the Report:

Overview and highlights of product and application segments of the global QUANTUM COMPUTING TECHNOLOGIES Market are provided. Highlights of the segmentation study include price, revenue, sales, sales growth rate, and market share by product.

Explore about Sales data of key players of the global QUANTUM COMPUTING TECHNOLOGIES Market as well as some useful information on their business. It talks about the gross margin, price, revenue, products, and their specifications, type, applications, competitors, manufacturing base, and the main business of key players operating in the QUANTUM COMPUTING TECHNOLOGIES Market.

Explore about gross margin, sales, revenue, production, market share, CAGR, and market size by region.

Describe QUANTUM COMPUTING TECHNOLOGIES Market Findings and Conclusion, Appendix, methodology and data source;

Research Methodology:

We identify the major drivers and restraints for every region (North America, Latin America, Europe, Asia Pacific, & Middle East) of any particular market with a weightage value of how it is impacting the market. For each driver and restraint, we provide weightage in short term, medium term, and long term. Here the driver acts as a pull factor and restraint as a push factor.

Primary ResearchKey players in the market are identified through review of secondary sources such as industry whitepapers, annual reports, published reports by credible agencies, financial reports and published interviews of Key Opinion Leaders (KOLs) from leading companies. During the primary interviews, KOLs also suggested some producers that are included under the initial scope of the study. We further refined company profile section by adding suggested producers by KOLs. KOLs include Chief Executive Officer (CEO), general managers, vice presidents, sales directors, market executives, R&D directors, product managers, procurement managers, export managers etc. During the research process, all the major stakeholders across the value chain are contacted for conducting primary interviews.

Browse Premium Research Report with Tables and Figures at @ https://www.reportocean.com/industry-verticals/details?report_id=43463

There are 15 Chapters to display the Global QUANTUM COMPUTING TECHNOLOGIES Market:

Chapter 1, to describe Definition, Specifications and Classification of Global QUANTUM COMPUTING TECHNOLOGIES, Applications of, Market Segment by Regions;Chapter 2, to analyze the Manufacturing Cost Structure, Raw Material and Suppliers, Manufacturing Process, Industry Chain Structure;Chapter 3, to display the Technical Data and Manufacturing Plants Analysis of , Capacity and Commercial Production Date, Manufacturing Plants Distribution, Export & Import, R&D Status and Technology Source, Raw Materials Sources Analysis;Chapter 4, to show the Overall Market Analysis, Capacity Analysis (Company Segment), Sales Analysis (Company Segment), Sales Price Analysis (Company Segment);Chapter 5 and 6, to show the Regional Market Analysis that includes United States, EU, Japan, China, India & Southeast Asia, Segment Market Analysis (by Type);Chapter 7 and 8, to explore the Market Analysis by Application Major Manufacturers Analysis;Chapter 9, Market Trend Analysis, Regional Market Trend, Market Trend by Product Type, Market Trend by Application;Chapter 10, Regional Marketing Type Analysis, International Trade Type Analysis, Supply Chain Analysis;Chapter 11, to analyze the Consumers Analysis of Global QUANTUM COMPUTING TECHNOLOGIES by region, type and application;Chapter 12, to describe QUANTUM COMPUTING TECHNOLOGIES Research Findings and Conclusion, Appendix, methodology and data source;Chapter 13, 14 and 15, to describe QUANTUM COMPUTING TECHNOLOGIES sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source.

About Report Ocean:

We are the best market research reports provider in the industry. Report Ocean believe in providing the quality reports to clients to meet the top line and bottom line goals which will boost your market share in todays competitive environment. Report Ocean is one-stop solution for individuals, organizations, and industries that are looking for innovative market research reports.

Get in Touch with Us:

Report Ocean

Email: [emailprotected]

Tel: +1 888 212 3539 (US TOLL FREE)

Website: https://www.reportocean.com/

Blog: https://reportoceanblog.com/

Go here to read the rest:
QUANTUM COMPUTING TECHNOLOGIES Market: Comprehensive study explores Huge Growth in Future | D-Wave Systems Inc., IBM Corporation, Lockheed Martin...

Deltec Bank, Bahamas says the Impact of Quantum Computing in Banking will be huge – Press Release – Digital Journal

Deltec Bank, Quantum Computing can help institutions speed up their transactional activities while making sense of assets that typically seem incongruent.

Technologies based on quantum theory are coming to the financial sector. It is not an if, but a when for banks to begin using this option to evolve current business practices.

Companies like JPMorgan Chase and Barclays have over two years of experience working with IBMs quantum computing technology. The goal of this work is to optimize portfolios for investors, but several additional benefits could come into the industry as banks learn more about it.

Benefits of Quantum Computing in Banking

Quantum computing stayed in the world of academia until recent years when technology developers opened trial opportunities. The banking sector was one of the first to start experimenting with what might be possible.

Their efforts have led to the development of four positive outcomes that can occur because of the faster processing power that quantum computing offers.

1. Big Data Analytics

The high-powered processing capabilities of this technology make it possible for banks to optimize their big data. According to Deltec Bank, Quantum Computing can help institutions speed up their transactional activities while making sense of assets that typically seem incongruent.

2. Portfolio Analysis

Quantum computing permits high-frequency trading activities because it can appraise assets and analyze portfolios to determine individual needs. The creation of algorithms built on the full capabilities of this technology can mine more information to find new pathways to analysis and implementation.

3. Customer Service Improvements

This technology gives banks more access to artificial intelligence and machine learning opportunities. The data collected by institutions can improve customer service by focusing on consumer engagement, risk analysis, and product development. There will be more information available to develop customized financial products that meet individual needs while staying connected to core utilities.

4. Improved Security

The results of quantum computing in banking will create the next generation of encryption and safeguarding efforts to protect data. Robust measures that include encrypted individual identification keys and instant detection of anomalies can work to remove fraudulent transactions.

Privately Funded Research is Changing the Banking Industry

Although some firms are working with IBM and other major tech developers to bring quantum computing to the banking sector, it is private money that funds most of the innovations.

An example of this effort comes from Rigetti Computing. This company offers a product called Forest, which is a downloadable SDK that is useful in the writing and testing of programs using quantum technologies.

1QB Information Technologies in Canada has an SDK that offers the necessary tools to develop and test applications on quantum computers.

How the world approaches banking and finance could be very different in the future because of quantum computing. This technology might not solve every problem the industry faces today, but it can certainly put a significant dent in those issues.

Disclaimer: The author of this text, Robin Trehan, has an Undergraduate degree in economics, Masters in international business and finance and MBA in electronic business. Trehan is Senior VP at Deltec International http://www.deltecbank.com. The views, thoughts, and opinions expressed in this text are solely the views of the author, and not necessarily reflecting the views of Deltec International Group, its subsidiaries and/or employees.

About Deltec Bank

Headquartered in The Bahamas, Deltec is an independent financial services group that delivers bespoke solutions to meet clients unique needs. The Deltec group of companies includes Deltec Bank & Trust Limited, Deltec Fund Services Limited, and Deltec Investment Advisers Limited, Deltec Securities Ltd. and Long Cay Captive Management

Media ContactCompany Name: Deltec International GroupContact Person: Media ManagerEmail: Send EmailPhone: 242 302 4100Country: BahamasWebsite: https://www.deltecbank.com/

View original post here:
Deltec Bank, Bahamas says the Impact of Quantum Computing in Banking will be huge - Press Release - Digital Journal

ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam – HPCwire

BEIJING, Jan. 21, 2020 The 2020 ASC Student Supercomputer Challenge (ASC20) announced the tasks for the new season: using supercomputers to simulate Quantum circuit and training AI models to take English test. These tasks can be unprecedented challenges for the 300+ ASC teams from around the world. From April 25 to 29, 2020, top 20 finalists will fiercely compete at SUSTech in Shenzhen, China.

ASC20 set up Quantum Computing tasks for the first time. Teams are going to use the QuEST (Quantum Exact Simulation Toolkit) running on supercomputers to simulate 30 qubits in two cases: quantum random circuits (random.c), and quantum fast Fourier transform circuits (GHZ_QFT.c). Quantum computing is a disruptive technology, considered to be the next generation high performance computing. However the R&D of quantum computers is lagging behind due to the unique properties of quantum. It adds extra difficulties for scientists to use real quantum computers to solve some of the most pressing problems such as particle physics modeling, cryptography, genetic engineering, and quantum machine learning. From this perspective, the quantum computing task presented in the ASC20 challenge, hopefully, will inspire new algorithms and architectures in this field.

The other task revealed is Language Exam Challenge. Teams will take on the challenge to train AI models on an English Cloze Test dataset, vying to achieve the highest test scores. The dataset covers multiple levels of English language tests in China, including the college entrance examination, College English Test Band 4 and Band 6, and others. Teaching the machines to understand human language is one of the most elusive and long-standing challenges in the field of AI. The ASC20 AI task signifies such a challenge, by using human-oriented problems to evaluate the performance of neural networks.

Wang Endong, ASC Challenge initiator, member of the Chinese Academy of Engineering and Chief Scientist at Inspur Group, said that through these tasks, students from all over the world get to access and learn the most cutting-edge computing technologies. ASC strives to foster supercomputing & AI talents of global vision, inspiring technical innovation.

Dr. Lu Chun, Vice President of SUSTech host of the ASC20 Finals, commented that supercomputers are important infrastructure for scientific innovation and economic development. SUSTech makes focused efforts on developing supercomputing and hosting ASC20, hoping to drive the training of supercomputing talent, international exchange and cooperation, as well as inter discipline development at SUSTech.

Furthermore, during January 15-16, 2020, the ASC20 organizing committee held a competition training camp in Beijing to help student teams prepare for the ongoing competition. HPC and AI experts from the State Key Laboratory of High-end Server and Storage Technology, Inspur, Intel, NVIDIA, Mellanox, Peng Cheng Laboratory and the Institute of Acoustics of the Chinese Academy of Sciences gathered to provide on-site coaching and guidance. Previous ASC winning teams also shared their successful experiences.

About ASC

The ASC Student Supercomputer Challenge is the worlds largest student supercomputer competition, sponsored and organized by Asia Supercomputer Community in China and supported by Asian, European, and American experts and institutions. The main objectives of ASC are to encourage exchange and training of young supercomputing talent from different countries, improve supercomputing applications and R&D capacity, boost the development of supercomputing, and promote technical and industrial innovation. The annual ASC Supercomputer Challenge was first held in 2012 and has since attracted over 8,500 undergraduates from all over the world. Learn more ASC athttps://www.asc-events.org/.

Source: ASC

The rest is here:
ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam - HPCwire

Quantum computing leaps ahead in 2019 with new power and speed – CNET

A close-up view of the IBM Q quantum computer. The processor is in the silver-colored cylinder.

Quantum computers are getting a lot more real. No, you won't be playing Call of Duty on one anytime soon. But Google, Amazon, Microsoft, Rigetti Computing and IBM all made important advances in 2019 that could help bring computers governed by the weird laws of atomic-scale physics into your life in other ways.

Google's declaration of quantum supremacywas the most headline-grabbing moment in the field. The achievement -- more limited than the grand term might suggest -- demonstrated that quantum computers could someday tackle computing problems beyond the reach of conventional "classical" computers.

Proving quantum computing progress is crucial. We're still several breakthroughs away from realizing the full vision of quantum computing. Qubits, the tiny stores of data that quantum computers use, need to be improved. So do the finicky control systems used to program and read quantum computer results. Still, today's results help justify tomorrow's research funding to sustain the technology when the flashes of hype inevitably fizzle.

Now playing: Watch this: Quantum computing is the new super supercomputer

4:11

Quantum computers will live in data centers, not on your desk, when they're commercialized. They'll still be able to improve many aspects of your life, though. Money in your retirement account might grow a little faster and your packages might be delivered a little sooner as quantum computers find new ways to optimize businesses. Your electric-car battery might be a little lighter and new drugs might help you live a little longer after quantum computers unlock new molecular-level designs. Traffic may be a little lighter from better simulations.

But Google's quantum supremacy step was just one of many needed to fulfill quantum computing's promise.

"We're going to get there in cycles. We're going to have a lot of dark ages in which nothing happens for a long time," said Forrester analyst Brian Hopkins. "One day that new thing will really change the world."

Among the developments in 2019:

Classical computers, which include everything from today's smartwatches to supercomputers that occupy entire buildings, store data as bits that represent either a 1 or a 0. Quantum computers use a different approach called qubits that can represent a combination of 1 and 0 through an idea called superposition.

Ford and Microsoft adapted a quantum computing traffic simulation to run on a classical computer. The result: a traffic routing algorithm that could cut Seattle traffic congestion by 73%.

The states of multiple qubits can be linked, letting quantum computers explore lots of possible solutions to a problem at once. With each new qubit added, a quantum computer can explore double the number of possible solutions, an exponential increase not possible with classical machines.

Quantum computers, however, are finicky. It's hard to get qubits to remain stable long enough to return useful results. The act of communicating with qubits can perturb them. Engineers hope to add error correction techniques so quantum computers can tackle a much broader range of problems.

Plenty of people are quantum computing skeptics. Even some fans of the technology acknowledge we're years away from high-powered quantum computers. But already, quantum computing is a real business. Samsung, Daimler, Honda, JP Morgan Chase and Barclays are all quantum computing customers. Spending on quantum computers should reach hundreds of millions of dollars in the 2020s, and tens of billions in the 2030s, according to forecasts by Deloitte, a consultancy. China, Europe, the United States and Japan have sunk billions of dollars into investment plans. Ford and Microsoft say traffic simulation technology for quantum computers, adapted to run on classical machines, already is showing utility.

Right now quantum computers are used mostly in research. But applications with mainstream results are likely coming. The power of quantum computers is expected to allow for the creation of new materials, chemical processes and medicines by giving insight into the physics of molecules. Quantum computers will also help for greater optimization of financial investments, delivery routes and flights by crunching the numbers in situations with a large number of possible courses of action.

They'll also be used for cracking today's encryption, an idea spy agencies love, even if you might be concerned about losing your privacy or some snoop getting your password. New cryptography adapted for a quantum computing future is already underway.

Another promising application is artificial intelligence, though that may be years in the future.

"Eventually we'll be able to reinvent machine learning," Forrester's Hopkinssaid. But it'll take years of steady work in quantum computing beyond the progress of 2019. "The transformative benefits are real and big, but they are still more sci-fi and theory than they are reality."

Read the rest here:

Quantum computing leaps ahead in 2019 with new power and speed - CNET

Googles Quantum Supremacy will mark the End of the Bitcoin in 2020 – The Coin Republic

Ritika Sharma Monday, 13 January 2020, 03:49 EST Modified date: Monday, 13 January 2020, 05:00 EST

Quantum computing whenever hit the headlines left not just Bitcoin holders but also every Cryptocurrency holder worried about the uncertainty around their holdings.

It widely believed that the underlying technology of Bitcoin, Blockchain is immutable, meaning it cannot be changed or encrypted without authority over encryption keys.

However, with quantum computers, it is possible to break a blockchains cryptographic codes. Quantum computing can hit the most significant features of Blockchain like unchangeable data, unalterable, and security making it vulnerable.

Google has achieved quantum supremacy as of late 2019, which poses a threat to Bitcoin. It will be a threat to Blockchain, as quantum computing will affect one blockchains key features like inalterability and security, thus making Blockchain as highly vulnerable technology.

Later, china Joined Google in the quantum supremacy Race and announced working on quantum technology. With this, the year 2020 might witness the end of the Crypto Era.

How can Quantum computing break the Blockchain?

The reason behind this fear is quite genuine and straightforward: Bitcoin or any Cryptocurrency depends on cryptography, hash functions, and asymmetric cryptographic number mainly relies on the computing power of computers. The hash function calculates a random number for each block.

The results obtained by this process are effortless to verify, but challenging to find. However, quantum computing has powerful algorithmic capabilities, which is precisely the enemy of this key.

Quantum computing uses subatomic particles, which will be available in more than one state at one time. This feature makes Quantum computing faster than the technology we use today.

Quantum computers can work 100 million times faster than current systems; the computational power is capable of solving any complex mathematical equation in a matter of a few seconds, which current systems take 10,000 years to solve.

With such super computational powers, Quantum computers is capable of calculating the one-way functions that will make one-way encryption obsolete.

The risk over Blockchain is more if it gets in the wrong hands. Hackers with a quantum computer can hack the Cryptocurrency ledger and take complete control of Blockchain.

Will Googles Quantum computing wipe out your Bitcoins?

Googles quantum Supremacy only to traditional computers on classical problems; this isnt actual quantum technology. It was presented bluntly as, quantum supremacy, though it is just a step in the world of quantum computing space.

Even if Googles quantum computer demonstrates, its computing power on specific problems far exceeds the best performing supercomputing. The results of this research by Google do not have much meaning in terms of Bitcoin. This isnt even near to what we can call breaking Bitcoin or Blockchain.

However, Googles quantum supremacy does not pose any threat to Bitcoin; many people in the space still stressed about quantum threat theory. Many analysts claim that the quantum algorithm used by Shor can crack private keys, but again, there Is a long way to go before it could break bitcoins Blockchain.

According to researchers, a quantum computer with 4,000 qubits is undoubtedly able to break the Blockchain. Still, googles the quantum computer has only 53 qubits, which cannot cause any harm to Blockchain, and it is worth mentioning that The higher the qubit, the more difficult it becomes.

Satoshi Nakamotos Proposed solution to beat Quantum Supremacy

Satoshi was a true visionary, the things we are concerned about today, and had already been answered by him. In 2010, satoshi Nakamoto responded to the question about quantum computers by username llama on bitcoin talk.

He replied that If Bitcoin suddenly cracked, the signature will be destroyed; but if it is slowly changed, the system still has time to convert to a stronger function, and Re-sign all your assets. Another cruder answer to this question suggested by the author of Mastering Bitcoin, Andreas Antonopoulos, If the quantum computer comes, we will upgrade.

The Quantum supremacy threat isnt new to the crypto world, and many cryptocurrency projects such as Ethereum, quantum chains, etc., focused on making blockchain quantum resistance, experts in Cryptocurrency space also advocating the development of quantum encryption technology to ensure the security of funds.

Unless a threat of Actual Quantum computing of far more powerful processor explodes, Bitcoin and its developers still have time to secure it. With the continuous development in Quantum technology and the development of more qubit chips, still, there will be the sword of Damocles hanging on the head of the cryptocurrency.

View post:
Googles Quantum Supremacy will mark the End of the Bitcoin in 2020 - The Coin Republic

The Quantum Computing Era Is Here. Why It MattersAnd How It May Change Our World. – Forbes

IBM Q System One

Hyper-accurate long-term weather forecasting. Life-saving drugs discovered through deep study of the behavior of complex molecules. New synthetic carbon-capturing materials to help reverse climate change caused by fossil fuels. Stable, long-lasting batteries to power electric vehicles and store green energy for the utility grid.

It may read like an ambitious wish list. But many scientists predict that the emerging era of quantum computing could lead to breakthroughs like these, while also tackling other major problems that are beyond reach of our current computing regime.

Quantum computing is not a new idea. But its only been in recent years that workable technology has begun to catch up to the theory.

IBM in 2016 made a quantum computer available to the public by connecting it to the clouda true turning point in the development of this technology by enabling outside researchers and developers to explore its possibilities. And the industry took a major stride in September 2019 with the opening of IBMs Quantum Computation Center. That fleet of 15 systems includes the most advanced quantum computer yet available for external use.

Scientists are tantalized by the possibilities. One analyst predicted quantum will be as world altering in the 2020s as the smartphone was in the decade just ended.

The Quantum Computation Center offers about 100 IBM clients, academic institutions and more than 200,000 registered users access to this cutting-edge technology through a collaborative effort called the IBM Q Network and the rapidly growing community around Qiskit, IBMs open-source development platform for quantum computing. Through these efforts, IBM and others are exploring the ways quantum computing can address their most complicated problems, while training a workforce to use this technology.

Facilitating education and developing the next-generation workforce is a big focus for IBM. That includes spurring access to Qiskit and educational tools like the Coding With Qiskit video series that has generated more than 1.5 million impressions and over 10,000 hours of content consumed by users.The company has also released an open source textbook written by experts in the field, including several from IBM Research, as well as professors who have used some of the material in their own university courses.

Q Network partners include ExxonMobil, Daimler, JPMorgan Chase, Anthem, Delta Airlines, Los Alamos National Laboratory, Oak Ridge National Laboratory, Georgia Tech University, Keio University, Stanford Universitys Q-Farm program and Mitsubishi Chemical among dozens of others.

Last year IBM announced partnerships with the University of Tokyo and the German research company Fraunhofer-Gesellschaft, which will greatly expand the companys already broad network of quantum researchers globally. The history of computing tells us that creative people around the world will find uses for these systems that no one could have predicted.

Katie Pizzolato

At this stage, its difficult to predict what kind of impact quantum will have on employment or the economy. But the research firm Gartner projects that, by 2023, 20 percent of organizations will be budgeting for QC projects, up from less than 1 percent in 2018.*

How do we get to the quantum future? asks Katie Pizzolato, Director of Applications Research within the IBM Q Network. By building the most advanced quantum systems and a developmental platform and making it available to the world.

How does quantum differ from classical digital computing? Conventional computers use transistors that can only store information in two electrical statesOn or Offwhich binary computer code represents as 1 or 0. These are the binary digits, or bits, of classical computing.

Quantum computing is an altogether different beast. It derives its origins from the field of quantum physics, which emerged in the early 20th century when scientists began studying the behavior of subatomic particles.

What they discovered shocked many of them. Simply put, subatomic particles can exist in two places, or two states, at the same time, defying previously accepted laws of the physical world. The term for this is superposition. Researchers also discovered that particles separated by distances are able to share information instantaneously, faster than the speed of light. This is called entanglement.

If this sounds strange and implausible, thats because it is. Niels Bohr, one of the scientists who pioneered the field of quantum mechanics, quipped that anyone who is not shocked by quantum theory doesn't understand it.

This subatomic reality has profound implications for computing. The binary bits used by conventional computersthose 0s and 1slimit the kind of task classical computers can perform, and the speed at which they can do those tasks.

Qubits are the basis for quantum computers. They transcend this 1 or 0 binary limitation. Unlike bits, qubits can exist in multiple states simultaneously. This gives them the potential to processexponential amounts ofinformation.

A quantum machine with just a couple of qubits can process only about as much information as a classical 512-bit computer. But because of the exponential nature of the platform, the dynamic changes very quickly. Assuming perfect stability, 300 qubits could represent more data values than there are atoms in the observable universe. This opens the opportunity to solve highly complex problems that are well beyond the reach of any classical computer.

Dario Gil

A beauty of quantum computers is that they will offer a more subtle way of thinking about problems that goes beyond binarythat goes beyond simple 0 or 1, Yes or No, True or False, says Dario Gil, the Director of IBM Research. That doesnt mean there wont be specific answers in the end. But quantum computing will make it possible to confront many of the worlds most complex problems that are beyond the ability of classical binary computing to quickly solve.

What can quantum computing do for us?

Quantum computers will be orders of magnitude more powerful than anything we have today. But what problems will they solve? What are scientists doing with them now?

Its generally agreed that most important quantum applications are years away. But researchers say some promising applications stand out:

Climate change

Quantum computing could lead to a novel yet ambitious plan to reverse the negative impacts of climate change, by helping find efficient ways to remove carbon from the atmosphere.

To do that, scientists require a better understanding of the carbon atom and how it interacts with other elements. Researchers need to be able to observe and model the way each carbon atoms eight orbiting electrons might interact with the electrons of an almost infinite variety of other molecules, until researchers find the combination that can best bind the carbon.

Batteries to store more electricity for clean-energy uses

One fundamental building block of our clean-energy future will be batteries. Todays batteries lose power too quickly.They also cant hold enough charge to meet increasing demands. And at times, theyre unstable. Todays most-used battery type, lithium-ion, is dependent on cobalt, a metal whose global supplies are dwindling.

Well need better batteries for applications like powering electric vehicles. Utility companies will need them to store solar and wind energy, for example, for use when the sun isnt shining or the wind isnt blowing.

We need to find a fundamentally different chemistry to create the batteries of the future, Pizzolato says. Quantum computing could let us effectively peer inside the batteries chemical reactions, to better understand the materials and reactions that will give the world those better batteries.

New insights into chemistry

Learning more about chemical reactions on the atomic level could also lead to breakthroughs in pharmaceuticals, or materials like energy-efficient fertilizer (currently a massively energy-intensive endeavor, and a major contributor to carbon emissions).

The catalysts that spark these sorts of discoveries are the essence of nearly all progress in chemistry. But because of the infinitely complex ways in which atoms interact with each other, almost all chemistry breakthroughs have come about through accident, intuition or exhausting numbers of experiments. Quantum computing could make this work faster and more methodical, leading to new discoveries in medicine, energy, materials and other fields.

Portfolio management

Its no surprise that that financial institutions are exploring the use of quantum to balance portfolios and pricing options, the instruments used for hedging risk. Because of the complexity of processing a large number of continually changing variables it often takes a full day to come to a correct price.

Quantum promises to make such calculations in a matter of minutes, meaning these derivatives could be bought and sold in near real time. Some banks, like JPMorgan Chase, are already testing quantum computing for this very purpose.

For consumers, whether saving for a home, nurturing a college-savings plan, or building assets for a secure retirement, the peace-of-mind benefits of lower-risk and higher-profit financial products could be significant.

Encryption

Cryptography is a field that has attracted considerable attention in the quantum conversation. So far, much of the discussion has involved the perceived perils of a new class or code breakers. But the counter argumentnew types of more secure data privacy systemscould prove just as compelling.

Either way, true breakthroughs are probably not coming soon.

The most sophisticated data security software now uses complex algorithms to generate passwords that would take classical computers a long time to break. Quantum threatens to completely overturn this paradigm, making current encryption effectively useless. A quantum computer algorithm created a quarter-century ago, called Shors algorithm, could theoretically crack even the most powerful of todays forms of encryption. But Shors algorithm would require fault-tolerant quantum computers that dont yet exist and might still be many years away.

Still, the possibility that current cybersecurity standards could be made obsolete has drawn the attention of governments. The National Institute of Standards and Technology, for example, has a competition to develop new encryption tools resistant to the potential danger.

What Must Happen To Fulfill Quantums Promise?

Despite the flurry of activity and rapidly growing interest in quantum computing, major breakthroughs with real-world applications are probably years away.

One reason is the fickleness of subatomic matter. Qubits are extremely delicate, and even a small disturbance knocks particles out of quantum state. Thats why quantum computers are kept at temperatures slightly above absolute zero, colder than outer space, since matter becomes effectively more stable the colder it gets. Even at that temperature, qubit particles typically remain in superposition for only fractions of a second.

Figuring out how to keep qubits in a prolonged state of superpostition is a major challenge that scientists still need to overcome.

A next major benchmark, Pizzolato says, will be the successful implementation of logical qubits that can maintain a quantum state longer than is now technologically possible. Logical qubits are necessary for fault-tolerancethe true test of quantum computings utility. Like others at IBM, Pizzolato is reluctant to predict a timeline but says the logical qubit is likely to arrive sometime in the next decade.

Another open question is economic: How will the arrival of the Quantum Age impact the number, categories and quality of jobs in the decades to come? Its difficult to say right now how big an industry quantum computing will eventually be. But currently, a major skills gap has left nearly every quantum organization struggling to find qualified recruits.

The National Quantum Initiative, signed into law in early 2019, is meant to provide federal funds to bridge this skills gap. But practical training of the sort made possible by the IBM Q Network will be crucial to a long-term solution.

While the quantum era may develop slowly, its worth remembering that the Internetor an early version of itwas around for decades before it was established as the truly revolutionary force it would become. But like the Internet, the work researchers are doing now on quantum computing lead to a world we cant now imagine.

Only by doing the hard work on quantum computing that we and our partners around the world are doing now, says Pizzolato, can we hope to solve the big global problems that well be facing together in the years ahead.

*Gartner, Top 10 Strategic Technology Trends for 2019: Quantum Computing, March 2019

Go here to read the rest:
The Quantum Computing Era Is Here. Why It MattersAnd How It May Change Our World. - Forbes

Quantum computing will be the smartphone of the 2020s, says Bank of America strategist – MarketWatch

When asked what invention will be as revolutionary in the 2020s as smartphones were in the 2010s, Bank of America strategist Haim Isreal said, without hesitation, quantum computing.

At the banks annual year ahead event last week in New York, Israel qualified his prediction, arguing in an interview with MarketWatch that the timing of the smartphones arrival on the scene in the mid-2000s, and its massive impact on the American business landscape in the 2010s, doesnt line up neatly with quantum-computing breakthroughs, which are only now being seen, just a few weeks before the start of the 2020s.

The iPhone already debuted in 2007, enabling its real impact to be felt in the 2010s, he said, while the first business applications for quantum computing won't be seen till toward the end of the coming decade.

But, Israel argued, when all is said and done, quantum computing could be an even more radical technology in terms of its impact on businesses than the smartphone has been. This is going to be a revolution, he said.

Quantum computing is a nascent technology based on quantum theory in physics which explains the behavior of particles at the subatomic level, and states that until observed these particles can exist in different places at the same time. While normal computers store information in ones and zeros, quantum computers are not limited by the binary nature of current data processing and so can provide exponentially more computing power.

Quantum things can be in multiple places at the same time, said Chris Monroe, a University of Maryland physicist and founder of IonQ told the Associated Press . The rules are very simple, theyre just confounding.

In October, Alphabet Inc. GOOG, -0.18% subsidiary Google claimed to have achieved a breakthrough by using a quantum computer to complete a calculation in 200 seconds on a 53-qubit quantum computing chip, a task it calculated would take the fastest current super-computer 10,000 years. Earlier this month, Amazon.com Inc. AMZN, +0.03% announced its intention to collaborate with experts to develop quantum computing technologies that can be used in conjunction with its cloud computing services. International Business Machines Corp. IBM, -0.82% and Microsoft Corp. MSFT, +0.84% are also developing quantum computing technology.

Israel argued these tools will revolutionize several industries, including health care, the internet of things and cyber security. He said that pharmaceutical companies are most likely to be the first commercial users of these devices, given the explosion of data created by health care research.

Pharma companies are right now subject to Moores law in reverse, he said. They are seeing the cost of drug development doubling every nine years, as the amount of data on the human body becomes ever more onerous to process. Data on genomics doubles every 50 days, he added, arguing that only quantum computers will be able to solve the pharmaceutical industrys big-data problem.

Quantum computing will also have a major impact on cybersecurity, an issue that effects nearly every major corporation today. Currently cyber security relies on cryptographic algorithms, but quantum computings ability to solve these equations in the fraction of the time a normal computer does will render current cyber security methods obsolete.

In the future, even robust cryptographic algorithms will be substantially weakened by quantum computing, while others will no longer be secure at all, according to Swaroop Sham, senior product marketing manager at Okta.

For investors, Israel said, it is key to realize that the first one or two companies to develop commercially applicable quantum-computing will be richly rewarded with access to untold amounts of data and that will only make their software services more valuable to potential customers in a virtuous circle.

What weve learned this decade is that whoever controls the data will win big time, he said.

Read more:

Quantum computing will be the smartphone of the 2020s, says Bank of America strategist - MarketWatch

Could quantum computing be the key to cracking congestion? – SmartCitiesWorld

The technology has helped to improve congestion by 73 per cent in scenario-testing

Ford and Microsoft are using quantum-inspired computing technology to reduce traffic congestion. Through a joint research pilot, scientists have used the technology to simulate thousands of vehicles and their impact on congestion in the US city of Seattle.

Ford said it is still early in the project but encouraging progress has been made and it is further expanding its partnership with the tech giant.

The companies teamed up in 2018 to develop new quantum approaches running on classical computers already available to help reduce Seattles traffic congestion.

Writing on a blog post on Medium.com, Dr Ken Washington, chief technology officer, Ford Motor Company, explained that during rush hour, numerous drivers request the shortest possible routes at the same time, but current navigation services handle these requests "in a vacuum": They do not take into consideration the number of similar incoming requests, including areas where other drivers are all planning to share the same route segments, when delivering results.

What is required is a more balanced routing system that could manage all the various route requests from drivers and provide optimised route suggestions, reducing the number of vehicles on a particular road.

These and more are all variables well need to test for to ensure balanced routing can truly deliver tangible improvements for cities.

Traditional computers dont have the computational power to do this but, as Washington explained, in a quantum computer, information is processed by a quantum bit (or a qubit) and can simultaneously exist "in two different states" before it gets measured.

This ultimately enables a quantum computer to process information with a faster speed, he wrote. Attempts to simulate some specific features of a quantum computer on non-quantum hardware have led to quantum-inspired technology powerful algorithms that mimic certain quantum behaviours and run on specialised conventional hardware. That enables organisations to start realising some benefits before fully scaled quantum hardware becomes available."

Working with Microsoft, Ford tested several different possibilities, including a scenario involving as many as 5,000 vehicles each with 10 different route choices available to them simultaneously requesting routes across Metro Seattle. It reports that in 20 seconds, balanced routing suggestions were delivered to the vehicles that resulted in a 73 per cent improvement in total congestion when compared to selfish routing.

The average commute time, meanwhile, was also cut by eight per cent representing an annual reduction of more than 55,000 hours across this simulated fleet.

Based on these results, Ford is expanding its partnership with Microsoft to further improve the algorithm and understand its effectiveness in more real-world scenarios.

For example, will this method still deliver similar results when some streets are known to be closed, if route options arent equal for all drivers, or if some drivers decide to not follow suggested routes? wrote Washington. These and more are all variables well need to test for to ensure balanced routing can truly deliver tangible improvements for cities.

You might also like:

View post:

Could quantum computing be the key to cracking congestion? - SmartCitiesWorld

Quantum Computing Market 2020 | Growing Rapidly with Significant CAGR, Leading Players, Innovative Trends and Expected Revenue by 2026 – Skyline…

New Jersey, United States:The Quantum Computing Market is carefully researched in the report while largely concentrating on top players and their business tactics, geographical expansion, market segments, competitive landscape, manufacturing, and pricing and cost structures. Each section of the research study is specially prepared to explore key aspects of the Quantum Computing market. For instance, the market dynamics section digs deep into the drivers, restraints, trends, and opportunities of the Quantum Computing Market. With qualitative and quantitative analysis, we help you with thorough and comprehensive research on the Quantum Computing market. We have also focused on SWOT, PESTLE, and Porters Five Forces analyses of the Quantum Computing market.

Global Quantum Computing Market was valued at USD 89.35 million in 2016 and is projected to reach USD 948.82 million by 2025, growing at a CAGR of 30.02% from 2017 to 2025.

Leading players of the Quantum Computing market are analyzed taking into account their market share, recent developments, new product launches, partnerships, mergers or acquisitions, and markets served. We also provide an exhaustive analysis of their product portfolios to explore the products and applications they concentrate on when operating in the Quantum Computing market. Furthermore, the report offers two separate market forecasts one for the production side and another for the consumption side of the Quantum Computing market. It also provides useful recommendations for new as well as established players of the Quantum Computing market.

Quantum Computing Market by Regional Segments:

The chapter on regional segmentation describes the regional aspects of the Quantum Computing market. This chapter explains the regulatory framework that is expected to affect the entire market. It illuminates the political scenario of the market and anticipates its impact on the market for Quantum Computing.

Analysts who have authored the report have segmented the market for Quantum Computing by product, application and region. All segments are the subject of extensive research, with a focus on CAGR, market size, growth potential, market share and other important factors. The segment study provided in the report will help players focus on the lucrative areas of the Quantum Computing market. The regional analysis will help the actors to strengthen their position in the most important regional markets. It shows unused growth opportunities in regional markets and how they can be used in the forecast period.

Ask for Discount @ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24845&utm_source=SGN&utm_medium=003

Highlights of TOC:

Overview: In addition to an overview of the Quantum Computing market, this section provides an overview of the report to give an idea of the type and content of the study.

Market dynamics: Here the authors of the report discussed in detail the main drivers, restrictions, challenges, trends and opportunities in the market for Quantum Computing.

Product Segments: This part of the report shows the growth of the market for various types of products sold by the largest companies.

Application segments: The analysts who have authored the report have thoroughly evaluated the market potential of the key applications and identified the future opportunities they should create in the Quantum Computing.

Geographic Segments: Each regional market is carefully examined to understand its current and future growth scenarios.

Company Profiles: The top players in the Quantum Computing market are detailed in the report based on their market share, served market, products, applications, regional growth and other factors.

The report also includes specific sections on production and consumption analysis, key results, key suggestions and recommendations, and other issues. Overall, it offers a complete analysis and research study of the Quantum Computing market to help players ensure strong growth in the coming years.

Complete Report is Available @ https://www.verifiedmarketresearch.com/product/Quantum-Computing-Market/?utm_source=SGN&utm_medium=003

About us:

Verified market research partners with the customer and offer an insight into strategic and growth analyzes; Data necessary to achieve corporate goals and objectives. Our core values are trust, integrity and authenticity for our customers.

Analysts with a high level of expertise in data collection and governance use industrial techniques to collect and analyze data in all phases. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise and years of collective experience to produce informative and accurate research reports.

Contact us:

Mr. Edwyne FernandesCall: +1 (650) 781 4080Email: [emailprotected]

Tags: Quantum Computing Market Size, Quantum Computing Market Trends, Quantum Computing Market Forecast, Quantum Computing Market Growth, Quantum Computing Market Analysis

Our Trending Reports

Probe Card Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

The rest is here:
Quantum Computing Market 2020 | Growing Rapidly with Significant CAGR, Leading Players, Innovative Trends and Expected Revenue by 2026 - Skyline...