Quantum Computing for Enterprise Market 2020 | Know the Latest COVID19 Impact Analysis And Strategies of Key Players: 1QB Information Technologies,…

Quantum Computing for Enterprise Marketreport analyses the market potential for each geographical region based on the growth rate, macroeconomic parameters, consumer buying patterns, and market demand and supply scenarios. The report covers the present scenario and the growth prospects of the global Quantum Computing for Enterprisemarket for 2020-2025.

The Quantum Computing for EnterpriseMarket Report further describes detailed information about tactics and strategies used by leading key companies in the Quantum Computing for Enterpriseindustry. It also gives an extensive study of different market segments and regions.

Request For Exclusive Sample PDF along with few company profileshttps://inforgrowth.com/sample-request/6212957/quantum-computing-for-enterprise-market

The Top players are

Market Segmentation:

By Product Type:

On the basis of the end users/applications,

Get Chance of 20% Extra Discount, If your Company is Listed in Above Key Players List https://inforgrowth.com/discount/6212957/quantum-computing-for-enterprise-market

Impact of COVID-19:

Quantum Computing for Enterprise Market report analyses the impact of Coronavirus (COVID-19) on the Quantum Computing for Enterprise industry. Since the COVID-19 virus outbreak in December 2019, the disease has spread to almost 180+ countries around the globe with the World Health Organization declaring it a public health emergency. The global impacts of the coronavirus disease 2019 (COVID-19) are already starting to be felt, and will significantly affect the Quantum Computing for Enterprise market in 2020.

The outbreak of COVID-19 has brought effects on many aspects, like flight cancellations; travel bans and quarantines; restaurants closed; all indoor events restricted; emergency declared in many countries; massive slowing of the supply chain; stock market unpredictability; falling business assurance, growing panic among the population, and uncertainty about future.

COVID-19 can affect the global economy in 3 main ways: by directly affecting production and demand, by creating supply chain and market disturbance, and by its financial impact on firms and financial markets.

Download Sample ToC to understand the CORONA Virus/COVID19 impact and be smart in redefining business strategies. https://inforgrowth.com/CovidImpact-Request/6212957/quantum-computing-for-enterprise-market

Reasons to Get this Report:

Study on Table of Contents:

ENQUIRE MORE ABOUT THIS REPORT AT https://inforgrowth.com/enquiry/6212957/quantum-computing-for-enterprise-market

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:Address: 6400 Village Pkwy suite # 104, Dublin, CA 94568, USAContact Name: Rohan S.Email:[emailprotected]Phone: +1-909-329-2808UK: +44 (203) 743 1898Website:

See the rest here:
Quantum Computing for Enterprise Market 2020 | Know the Latest COVID19 Impact Analysis And Strategies of Key Players: 1QB Information Technologies,...

This Equation Calculates The Chances We Live In A Computer Simulation – Discover Magazine

The Drake equation is one of the more famous reckonings in science. It calculates the likelihood that we are not alone in the universe by estimating the number of other intelligent civilizations in our galaxy that might exist now.

Some of the terms in this equation are well known or becoming better understood, such as the number of stars in our galaxy and the proportion that have planets in the habitable zone. But others are unknown, such as the proportion of planets that develop intelligent life; and some may never be known such as the proportion that destroy themselves before they can be discovered.

Nevertheless, the Drake equation allows scientists to place important bounds on the numbers of intelligent civilizations that might be out there.

However, there is another sense in which humanity could be linked with an alien intelligenceour world may just be a simulation inside a massively powerful supercomputer run by such a species. Indeed, various scientists, philosophers and visionaries have said that the probability of such a scenario could be close to one. In other words, we probably are living in a simulation.

The accuracy of these claims is somewhat controversial. So a better way to determine the probability that we live in a simulation would be much appreciated.

Enter Alexandre Bibeau-Delisle and Gilles Brassard at the University of Montreal in Canada. These researchers have derived a Drake-like equation that calculates the chances that we live in a computer simulation. And the results throw up some counterintuitive ideas that are likely to change the way we think about simulations, how we might determine whether we are in one and whether we could ever escape.

Bibeau-Delisle and Brassard begin with a fundamental estimate of the computing power available to create a simulation. They say, for example, that a kilogram of matter, fully exploited for computation, could perform 10^50 operations per second.

By comparison, the human brain, which is also kilogram-sized, performs up to 10^16 operations per second. It may thus be possible for a single computer the mass of a human brain to simulate the real-time evolution of 1.4 10^25 virtual brains, they say.

In our society, a significant number of computers already simulate entire civilizations, in games such as Civilization VI, Hearts of Iron IV, Humankind and so. So it may be reasonable to assume that in a sufficiently advanced civilization, individuals will be able to run games that simulate societies like ours, populated with sentient conscious beings.

So an interesting question is this: of all the sentient beings in existence, what fraction are likely to be simulations? To derive the answer, Bibeau-Delisle and Brassard start with the total number of real sentient beings NRe, multiply that by the fraction with access to the necessary computing power fCiv; multiply this by the fraction of that power that is devoted to simulating consciousness fDed (because these beings are likely to be using their computer for other purposes too); and then multiply this by the number of brains they could simulate Rcal.

The resulting equation is this, where fSim is the fraction of simulated brains:

Here RCal is the huge number of brains that fully exploited matter should be able to simulate.

The sheer size of this number, ~10^25, pushes Bibeau-Delisle and Brassard towards an inescapable conclusion. It is mathematically inescapable from [the above] equation and the colossal scale of RCal that fSim 1 unless fCiv fDed 0, they say.

So there are two possible outcomes. Either we live in a simulation or a vanishingly small proportion of advanced computing power is devoted to simulating brains.

Its not hard to imagine why the second option might be true. A society of beings similar to us (but with a much greater technological development) could indeed decide it is not very ethical to simulate beings with enough precision to make them conscious while fooling them and keeping them cut-off from the real world, say Bibeau-Delisle and Brassard.

Another possibility is that advanced civilizations never get to the stage where their technology is powerful enough to perform these kinds of computations. Perhaps they destroy themselves through war or disease or climate change long before then. There is no way of knowing.

But suppose we are in a simulation. Bibeau-Delisle and Brassard ask whether we might escape while somehow hiding our intentions from our overlords. They assume that the simulating technology will be quantum in nature. If quantum phenomena are as difficult to compute on classical systems as we believe them to be, a simulation containing our world would most probably run on quantum computing power, they say.

This raises the possibility that it may be possible to detect our alien overlords since they cannot measure the quantum nature of our world without revealing their presence. Quantum cryptography uses the same principle; indeed, Brassard is one of the pioneers of this technology.

That would seem to make it possible for us to make encrypted plans that are hidden from the overlords, such as secretly transferring ourselves into our own simulations.

However, the overlords have a way to foil this. All they need to do is to rewire their simulation to make it look as if we are able to hide information, even though they are aware of it all the time. If the simulators are particularly angry at our attempted escape, they could also send us to a simulated hell, in which case we would at least have the confirmation we were truly living inside a simulation and our paranoia was not unjustified...conclude Bibeau-Delisle and Brassard, with their tongues firmly in their cheeks.

In that sense, we are the ultimate laboratory guinea pigs: forever trapped and forever fooled by the evil genius of our omnipotent masters.

Time for another game of Civilization VI.

Ref: arxiv.org/abs/2008.09275 : Probability and Consequences of Living Inside a Computer Simulation

More here:
This Equation Calculates The Chances We Live In A Computer Simulation - Discover Magazine

Eight trends accelerating the age of commercial-ready quantum computing – TechCrunch

Ethan BatraskiContributor

Ethan Batraski is a partner at Venrock, where he invests across sectors with a particular focus on hard engineering problems such as developer infrastructure, advanced computing and space.

Every major technology breakthrough of our era has gone through a similar cycle in pursuit of turning fiction to reality.

It starts in the stages of scientific discovery, a pursuit of principle against a theory, a recursive process of hypothesis-experiment. Success of the proof of principle stage graduates to becoming a tractable engineering problem, where the path to getting to a systemized, reproducible, predictable system is generally known and de-risked. Lastly, once successfully engineered to the performance requirements, focus shifts to repeatable manufacturing and scale, simplifying designs for production.

Since theorized by Richard Feynman and Yuri Manin, quantum computing has been thought to be in a perpetual state of scientific discovery. Occasionally reaching proof of principle on a particular architecture or approach, but never able to overcome the engineering challenges to move forward.

Thats until now. In the last 12 months, we have seen several meaningful breakthroughs from academia, venture-backed companies, and industry that looks to have broken through the remaining challenges along the scientific discovery curve. Moving quantum computing from science fiction that has always been five to seven years away, to a tractable engineering problem, ready to solve meaningful problems in the real world.

Companies such as Atom Computing* leveraging neutral atoms for wireless qubit control, Honeywells trapped ions approach, and Googles superconducting metals, have demonstrated first-ever results, setting the stage for the first commercial generation of working quantum computers.

While early and noisy, these systems, even at just 40-80 error-corrected qubit range, may be able to deliver capabilities that surpass those of classical computers. Accelerating our ability to perform better in areas such as thermodynamic predictions, chemical reactions, resource optimizations and financial predictions.

As a number of key technology and ecosystem breakthroughs begin to converge, the next 12-18 months will be nothing short of a watershed moment for quantum computing.

Here are eight emerging trends and predictions that will accelerate quantum computing readiness for the commercial market in 2021 and beyond:

1. Dark horses of QC emerge: 2020 will be the year of dark horses in the QC race. These new entrants will demonstrate dominant architectures with 100-200 individually controlled and maintained qubits, at 99.9% fidelities, with millisecond to seconds coherence times that represent 2x-3x improved qubit power, fidelity and coherence times. These dark horses, many venture-backed, will finally prove that resources and capital are not sole catalysts for a technological breakthrough in quantum computing.

Go here to read the rest:
Eight trends accelerating the age of commercial-ready quantum computing - TechCrunch

Designing the computers of tomorrow – The Science Show – ABC News

Robyn Williams: The Science Show on RN, and time once more for some quantum guitar.

[Music]

Professor David Reilly with one of his pieces, and we'll hear about his diamonds in a minute. And from Donna Strickland, who was only the third woman in the world to win a Nobel Prize for physics.

But, before we do, something from The Money, the program presented by Richard Aedy, which last week confirmed what we've just heard from Jayne Thompson.

Phil Morle: For one reason or another this country has a concentration of some of the most talented, globally in-demand quantum computing experts, and there is an opportunity right now today to build the Silicon Valley of quantum computing and to do that here in Australia, and that's truly the next generation of computing, which will unfold over the next ten years and live for decades after that.

And the other side of that same equation is the great migration out of Silicon Valley, which is happening. My brother, for example, works at Facebook where everyone has been told they don't need to come back and work in the office, and so he doesn't live in Silicon Valley anymore. That's one result of the pandemic. So I think the world of innovation is afoot, it's in motion, it's going to land different to where it was in 2019.

Richard Aedy: Yes, how big is your fund? Are you able to give me a kind of dollar amount?

Phil Morle: Yes, our first fund is $240 million.

Richard Aedy: The implication is first fund. Are there going to be more?

Phil Morle: That's right, we are getting close to closing our second fund and that will be the same sort of quantum.

Richard Aedy: So, overall, Phil, you actually sound not buoyant but definitely optimistic, despite what we've been going through with the pandemic.

Phil Morle: I suppose I am. I am worried, nevertheless, and let's say vigilant. I'm vigilant, I'm watching very, very carefully. I meet with our start-up founders, the CEOs of our companies every week or two to say what's happening, what's changing, what do we need to know, how do we adapt. So there's very real-time adapting happening, and anything could happen in the weeks and months to come, but there is still a massive planet with lots of people on it with an endless amount of problems to solve which companies can solve, and there is no reason why the venture supported start-up world can't be bigger than it has ever been.

Richard Aedy: Phil Morle is a partner with Main Sequence Ventures.

Robyn Williams: Richard Aedy from The Money program on RN every Thursday, 5:30. Yes, Australia certainly has a reputation for quantum work and needs to prepare a qualified workforce.

Now let's meet that guitarist at the University of Sydney, David Reilly. He also works with diamonds and has a position with Microsoft.

First of all, you haven't brought a guitar with you.

David Reilly: I should have done so.

Robyn Williams: You should have done so because you remind me of the kind of Brian May of Australian physics.

David Reilly: Not quite as tall or as talented.

Robyn Williams: He's amazing, isn't he. What do you play?

David Reilly: At the moment I really can't get the Fender Stratocaster out of my hand, but it depends on the style of music.

Robyn Williams: I remember your playing in fact at the opening of this department, the nano research outfit five years ago or four years ago, whatever it was. But have you brought any tiny diamonds with you?

David Reilly: I have not. Although, they are probably around on the floor and in the air to some very small amount.

Robyn Williams: They are that small?

David Reilly: Yes, they're tiny, nanometres in size. The ones that we focus on are synthetic.

Robyn Williams: And these are ones that are in the body and they are spotted by the MRI, in other words the machine that looks through you to see what's going on inside the body. But what do they tell you as a person who wants to find out what's wrong with the body or not?

David Reilly: Well, the motivation is really trying to track something in the body. We wanted to make a lighthouse, and what you attach that lighthouse to, well, that's really at the discretion of medical research. But, for instance, if you wanted to know where certain drugs went, maybe chemotherapy drugs, anyone who has been in a very challenging circumstance of having to undergo chemotherapy knows that it's a horrific process, in part because those drugs go everywhere and they attack healthy tissue as much as they do cancerous tissue. A lot of the reason for that just blanket approach to treatment is because there are still a lot of open fundamental questions about how do we target certain types of pharmaceuticals to certain particular functions or parts in the body. And from a physics point of view, I mean, I'm obviously a physicist not a medical researcher, but it's a physics problem, how do you create a beacon or a lighthouse that is going to be useful in MRI, not require you to be opened up, not require us to go and biopsy an organ but just to take a somewhat regular MRI, and then have certain regions light up where the drugs are or where they aren't or cancer is or cancer isn't. So that was the long-term motivation, a really challenging physics problem, how to make diamond effectively light up in an MRI.

Robyn Williams: Does it work?

David Reilly: Yeah, it does, we've developed the technique to the point it works in mice, and it is now really moving out of the physics lab into that wider area where it's going to have impact in biomedical research.

Robyn Williams: Normally with various machines you can tell whether there is a tumour there, how extensive it is. You're looking at something rather small, but what kind of things are you being able to spot that the normal X-ray-type investigation can't?

David Reilly: The history of where this came from maybe gives you a better understanding of what we're trying to do. I read a paper justI remember I think I was waiting somewhere, it wasn't to see a doctor, it was something like that, I was reading something and I came across an article that said that chemotherapy drugs ferried around the body on a substrate, like on a raft, and that raft happened to be nano-diamond because it's relatively inert and doesn't react and is somewhat safe in small concentrations. And I thought that's really interesting, they're just using diamond purely for the reason that it's inert and it doesn't react with anything. Physics point of view tells you that diamond has other remarkable properties to be optically active, and it's also possible to basically program its nuclear spins, the little tiny bar-magnets that live in the inside of the atom, orient them such that it can give you an image and a signature in an MRI. So it's all about then attaching to something else, goes along for the ride, it's a big lightbulb that will light up whatever it is that it's attached to.

Robyn Williams: This nano outfit that you are in also of course works on quantum computing. Now, without making you cross I hope, I usually think of quantum computing not just at the University of New South Wales and Michelle Simmons, but also with silicon. In what way is your investigation different?

David Reilly: Yes, silicon is a very interesting material, and the effort that you're describing has been around now for over 20 years, and in fact my PhD is from that activity at the University of New South Wales, in fact before it just started back in the late '90s. Silicon is in many ways a very obvious choice in which to make what we call qubits, the fundamental building blocks of quantum information. And the reason that they are an obvious choice is because the name of the game when it comes to quantum information is trying to protect it. It's very fragile, it wants to become regular, boring classical information all the time.

And to preserve these exotic or almost very counterintuitive properties, one has to preserve the quantum nature. So the name of the game is protect it. And silicon is a material that when it comes to the electron spin or the nuclear spin, again that is the little bar-magnet goes along with the electron or the nucleus in an atom, silicon is a material that is extremely free of uncontrolled bar-magnets, uncontrolled spin. So if you then intentionally put a spin in silicon, that's great because that spin can encode information and there is no other spins in the system that can lead to a loss of quantum information.

However, the challenge is, and this is something I think over the last 20 years we've realised, is that if you think of a line where you can choose between really protected systems where the information is stored in a way that is isolated, like silicon, and up the other end of the line is controllable, I can manipulate it really quickly, I can interact with it very strongly, and the challenge is how do you create systems that are both highly protected from the environment but not highly protected from the control because I want to be able to manipulate it. And that did my head in, thinking about that problem. You realise that there is no escaping it.

You can choose your flavour of qubit, it could be spins in silicon, highly protected, but a bit challenging to control, pretty slow and so on, or qubits that want to interact with everything, including the environment, but they can also be controlled very effectively and very quickly. You know, how do you break out of that double-edged sword? That was what inspired me to start to work on very different systems. And the work that's happening here at the University of Sydney is really about trying to explore new types of qubits that break free of this limitation.

Robyn Williams: In different materials?

David Reilly: Different materials, but totally different principles, totally fundamentally different ways of storing and manipulating quantum information. So we are trying to build what we call a topological qubit, that is a system that uses topology, the branch of mathematics associated with global properties of shapes, we want to use those principles to protect the information and break free of this challenge of protected but controllable. So, very different.

Robyn Williams: The president of the Academy of Technological Sciences and Engineering Hugh Bradlow is the president, and he famously said, and we broadcast this on The Science Show, that there are many ways of tackling this gigantic field of quantum computing. And if you imagine a horse race, it's one where you will have not just one winner, there will be a whole stream. And what you're doing is being supported by Microsoft, which shows that they've got tremendous faith in what you are accomplishing with your search for qubits. What's the relationship built on, what does it mean?

David Reilly: There's a whole range of interesting things to unpack there. The first is I would agree with Hugh that we don't havewe, the world, humankind does not yet, in my view, possess a technology that's going to allow us to build a quantum computer, not one of scale that's going to be significant enough to do impactful things, we don't have that technology yet.

We need to go back to the drawing board and really now we understand a lot of these ideas better, that's Microsoft's view, and in some ways it's actually a little bit pessimistic because I think we as a group within the company over a number of years are working on these different systems. You know, many of the people that are part of Microsoft's effort, including myself, started in spin qubits, in silicon or in other materials, or superconducting technology, the different flavours of qubit, and after a decade or so in that, you realise there needs to be other ways of doing it.

And so it's a collection of people who are actually a little bit pessimistic about the approaches that are out there, let's figure out how to do it right, that's going to allow us to scale, build a machine of sufficient complexity and size that it can go after. In some ways Microsoft is not interested in building a quantum computer, it's interested in the applications and the impact of such a machine. So we want to build a useful machine.

Robyn Williams: And it's going to change the world, it's a big deal.

David Reilly: Exactly, and that's what our sights are set on, it's not about for us a physics experiment. For me personally that's very interesting but I recognise if you're going to touch people in the street, if you're going to make an impact in people's lives beyond a physics experiment, then you have to build a very different machine, one that is sufficiently complex and large-scale that it can solve really hard problems.

Robyn Williams: I'm sure in your late-night thoughts you've had dreams about the ways in which it's going to be if everything goes right. What are some of those dreams are made of, what would kind of speculation can you have, not simply just, if you like, more secure bankcards, but our lives, how will they be affected?

David Reilly: You can spend a lot of time dreaming about that. There are things we see right now with the technology as we understand it, even though it doesn't exist at the level that you can actually start to use it. One can imagine using it for obviously a range of things in what people call quantum chemistry, a lot of designing of, again, pharmaceuticals, catalysts, chemicals that are needed in manufacturing, dyes and so on, carbon capture. Many of those types of applications will benefit I think from having a machine of sufficient scale, a quantum computer that can really solve some of the intricacies of quantum chemistry problems.

But the truth is we really don't know, and that sounds bizarre because people think why would you put such a huge effort into building something you don't even know what it's good for. And the answer to that I think is a little bit subtle. On the one hand we can identify applications, but for me a quantum computer changes the fundamental logic, it's totally different logic to how the machines that we carry around in our pockets work. And I think when you change that underlying fundamental aspect of how computing works, it would be very surprising if that didn't also open up all kinds of other applications. I think we can look back in history and see that many, many times. I think the most exciting applications will be the ones we can't dream about and envisage.

Robyn Williams: Just to give you a tiny bit of story which you can bounce off, once I was at a conference and a little old man was looking at an exercise machine, and he thought it would be good for his back and he went off to get his credit card. And I said to the woman running the booth, I said, 'Do you know who that was? That was one of the three guys who got the Nobel prize for inventing lasers. And this was something for which apparently there was no use, laser, organised light. Okay, his credit card is going to be read by you by a laser beam.' In other words, you have something which is so huge, like computers have become so huge, transformed the world. In other words, jobs, in other words who knows what.

David Reilly: Yes, that's exactly right, and transistors are also another story that there are still many people alive who lived through that era and know firsthand about the discussions where people said; what are we going to do with this stuff? The transistor, the original motivation was to make a repeater, telephone repeater stations more robust, serviceable, less frequentlyget away from vacuum tubes that were always blowing. But as they realised they were holding something that was also very small; what are we going to do with that? And here we are, and it's not that long ago, 30, 40, 50 years, and now we are carrying 10 billion of these things around in everybody's pocket and doing things that we could never imagine.

So humans are pretty bad I think at predicting the future, but you've got to believe if you change the fundamental way in which you're doing logic, the logic that you learn in kindergarten, in preschool, whatever, one plus one equals two. Imagine if, well, actually there is some other laws here, some other fundamental mathematics that you can tap into, of course that's going to lead to many other applications, and we are getting a glimpse of those now but I think it's really going to be exciting over the next 10, 20 years to just see how the world changes because we've changed the fundamental logic.

Robyn Williams: A final question, a very short one; have you recorded an album, as they used to call it, done live gigs?

David Reilly: Not for some time. I do have fun recording at home, and in this day and age you can easily do that and plug in. Your laptop is a recording studio, it's a fascinating thing to me actually because talking about vacuum tubes and transistors, I've got to tell you this, this really does amuse me more than keep me up at night, but the idea that for aficionados of sound and music and guitars and amplifiers, it's the vacuum tube that sounds so good, and people spend huge amounts of money to buy amplifiers built from vacuum tubes, as opposed to transistors. But today you can take your laptop with 10 billion transistors, run an operating system and a whole range of high-level applications and software, and then you can dial up the sound with those 10 billion transistors in your CPU, you can dial up the sound of one vacuum tube. So here we are emulating with all of this complex software the sound of 50 years ago, and it's remarkable how history repeats itself in some very weird way like that.

Robyn Williams: Professor David Reilly at the University of Sydney's Nano Centre.

Read the original here:
Designing the computers of tomorrow - The Science Show - ABC News

Rep. John Joyce: TikTok, the spy in your child’s pocket, just tip of tech iceberg – TribLIVE

TribLIVE's Daily and Weekly email newsletters deliver the news you want and information you need, right to your inbox.

During the coronavirus crisis, Americans have increasingly turned to technology for work, school, keeping in touch with friends and loved ones, and entertainment. Staying at home, we improvised and took advantage of the video chats and conference calls that connected us to the outside world.

At the same time, droves of young Americans found virtual community and amusement on TikTok, a popular video sharing platform. And, contrary to what our kids may believe, it is not a safe space.

Videos uploaded by American children and teenagers, which can range from seemingly benign dance routines to harmful depictions of violence or worse, are stored on TikToks servers deep within communist China along with every TikTok users personal information. Owned by the Chinese company ByteDance, TikTok is a shameless front for data harvesting on behalf of the Chinese Communist Party (CCP).

If youre concerned about TikToks influence and encroachment on the American people, youre not alone. Recently, President Donald Trump and national security leaders like Secretary of State Mike Pompeo have indicated that they will not allow TikTok to continue pocketing the private data of American citizens.

Congress also is taking action. On the China Task Force, we have been taking on the CCP and exposing TikToks efforts to mine Americans data and edge out competition in the free market. We know that the CCPs end goal is to limit free speech and the flow of information in America and across the world.

Our nation simply cannot allow this trajectory to continue. Ending TikToks influence in the United States would be a solid step in the right direction, but this platform is just the beginning of our problems. For too long, the Chinese communist government has sought to exert influence in the world by gaining dominance in the global telecommunications network.

In addition to TikToks parent company ByteDance, the CCP uses pawns like Huawei and ZTE to gain control over next-generation technology including artificial intelligence, semiconductor production, quantum computing and 5G.

Enabled by years of manipulative practices, including cheating and even outright theft, the Chinese government is poised to achieve global dominance in the technology and telecommunications sectors with the ultimate goal of controlling critical market segments and weaponizing global supply chains for medical equipment, weapons and other critical electronics.

In the 21st century, America cannot allow China to win the race to next-generation technology, and we on the China Task Force are leading Congress efforts in this pursuit.

Countering Chinas overreach into our technology requires a comprehensive approach. To be successful, we must equip young Americans with the skills and resources they need to once again lead in innovation. Additionally, we must move the manufacturing of our technology away from China.

As a solution, I introduced legislation that seeks to end Americas dependence on China for the rare earth elements and other minerals which are used to manufacture medical supplies, defense technology and high-tech products by establishing a supply chain for these resources in the United States. Instead of relying on China for the materials needed to make smartphones and other devices that we use every day, we should be utilizing the resources that we have here at home. In Pennsylvania, we have the dedicated skilled workforce and the rich stores of minerals needed to move the supply chain away from the hostile Chinese government and create jobs in our community.

Given Americans ever-increasing dependence on technology, its more important than ever that we guard against cyberattacks and protect our country from foreign interference. As our nation seeks to combat the CCP, we know that theres a long road ahead but this is the time to make a difference.

Each parents first step should be removing the spies from our childrens pockets by deleting TikTok to protect their privacy and thats just the beginning. Beyond banning TikTok, we must take steps today to limit the Chinese governments attempts to gain dominance tomorrow.

As a nation, we cannot afford to fall behind and endanger our national security. On the China Task Force, we are working to protect you and your data from the Chinese communist government. To win this fight, the China Task Force is leading the way to correct course and ensure that Americans are never beholden to the CCP.

U.S. Rep. John Joyce, M.D., a Republican from Altoona, represents Pennsylvanias 13th Congressional District.

Categories:Featured Commentary | Opinion

TribLIVE's Daily and Weekly email newsletters deliver the news you want and information you need, right to your inbox.

Link:
Rep. John Joyce: TikTok, the spy in your child's pocket, just tip of tech iceberg - TribLIVE

Healthcare Shopping: The new age of consumerism – The Financial Express

By Lalit Dash

Srishti, a 35-year-old HR professional, recently started experiencing palpitations and shortness of breath. While looking up on the Internet for information on the probable causes of her condition, she found an online health services platform where she could review portfolios of doctors and treatment options allowing her to shop for the best care provider and a treatment plan at a cost she could afford. Booking and paying for the appointment through the hospitals web interface made it easy for her to schedule the visit as per her convenience.

Post consultation she explored online pharmacies and got her medicine at the best rate, earning some loyalty points in the process. Srishtis situation could be ours. With the onset of digital transformation, the healthcare sector is witnessing a major overhaul. Today, an individual is not just a prospective patient, but a customer armed with a shopping list to select the best doctors, facilities and treatment at an affordable cost and at a time and location of her choice. The flow of information is no longer unidirectional (caregiver to care receiver) but bidirectional and consumer choices are made within and outside the clinical environment. This has led to the healthcare system to leapfrog from a legacy PDS (Public Distribution System) model to a supermarket model.

With an increased focus on the quality of consumer experience, healthcare companies are deploying technologies to make care delivery more accessible and personalised. Medical diagnostics, Internet of Medical Things (IoMT), Blockchain, Artificial Intelligence (AI) and data analytics are triggering disruptive innovations that are, in turn, redefining care paradigms.

Technology, as is evident, is a crucial cog in the evolution of consumerism in healthcare. Innovations in cloud computing, mobility solutions, telemedicine, and quantum computing are making their way into mainstream health operations. For instance, AI and ML are pushing this change through algorithms built for diagnostics of chronic diseases. Augmented reality/virtual reality (AR/VR)-led technology is already being put to use to set up virtual care systems that enable doctors to conduct surgeries in remote areas or during times of a public health emergency.

Natural Language Processing (NLP) technology a form of AI that enables computer programs to process and analyse unstructured data from different sources is extensively being used in technical documentation, leading to a faster diagnosis. Additionally, the gamification of healthcare particularly in-patient wellness is enhancing the customer (vs. patient) mindset and reciprocal engagement. Take for instance, mobile apps that run a rewards program for people who accomplish a health-related task every day or those that encourage participation of friends and family in fitness contests.

With the care providers focus shifting more towards value across customer lifecycle, there will be stronger collaboration between healthcare providers and customers for pre-, during- and post-care medical services. As healthcare consumerism continues to grow, healthcare providers will have to learn to adapt to this changing environment to guide and engage consumer as well as secure their loyalty. This will eventually lead to ease in access to care, reduced cost of care and enhanced quality of care benefitting many consumers such as Srishti.

The writer is senior director Technology, Optum Global Solutions

Get live Stock Prices from BSE, NSE, US Market and latest NAV, portfolio of Mutual Funds, calculate your tax by Income Tax Calculator, know markets Top Gainers, Top Losers & Best Equity Funds. Like us on Facebook and follow us on Twitter.

Financial Express is now on Telegram. Click here to join our channel and stay updated with the latest Biz news and updates.

See the rest here:
Healthcare Shopping: The new age of consumerism - The Financial Express

ASX Small Cap Lunch Wrap: Who’s beating expectations today? – Stockhead

Global investors were bracing for a rough earnings season, but most companies have so far surpassed much-lowered analyst expectations.

Refinitiv data showed that about 60 per cent of the biggest European listed companies have, so far, beaten dramatically lowered estimates.

On Wall Street, about 82 per cent of S&P 500 companies reporting so far have beaten estimates.

Meanwhile, the Australian reporting season continues today with large cap rail company Aurizon Holdings and real estate giant GPT Group both of which nudged higher in early trade.

The ASX more generally is in positive territory, with the benchmark ASX 200 Index up 0.85 per cent to 6,055 points by 11:30am AEST.

Here are the best performing ASX small cap stocks at 12pm Monday August 10:

Swipe or scroll to reveal the full table. Click headings to sort.

Biotech Emerald Clinics (ASX:EMD) jumped +70 per cent after signing a contract with the UK arm of pot giant Canopy Growth.

Secos Group (ASX:SES) locked in a significant supply contract for its compostable pet waste bags with a leading US pet supply company.

The stock was up +25 per cent in morning trade.

And quantum computing stock Archer Materials (ASX:AXE) is progressing through milestones as it aims to build a room-temperature quantum computing qubit processor.

Here are the worst performing ASX small cap stocks at 12pm Monday August 10:

Swipe or scroll to reveal the full table. Click headings to sort.

Farm Pride Foods (ASX:FRM) fell after confirming that the Lethbridge facility in Victoria has tested positive for H7N7 avian influenza virus.

The approximate number of hens lost represents about 30 per cent of the companys productive hen flock, it says.

The full financial impact of this event is still being determined but is considered material.

Get the latest Stock & Small Caps news and insights direct to your inbox.

It's free. Unsubscribe whenever your want.

You might be interested in

The rest is here:
ASX Small Cap Lunch Wrap: Who's beating expectations today? - Stockhead

European quantum computing startup takes its funding to 32M with fresh raise – TechCrunch

IQM Finland Oy (IQM), a European startup which makes hardware for quantum computers, has raised a 15M equity investment round from the EIC Accelerator program for the development of quantum computers. This is in addition to a raise of 3.3M from the Business Finland government agency. This takes the companys funding to over 32M. The company previously raised a 11.4M seed round.

IQM has hired a lot of engineers in its short life, and now says it plans to hire one quantum engineer per week on the pathway to commercializing its technology through the collaborative design of quantum-computing hardware and applications.

Dr. Jan Goetz, CEO and co-founder of IQM said: Quantum computers will be funded by European governments, supporting IQM s expansion strategy to build quantum computers in Germany, in a statement.

The news comes as the Finnish government announced only last week that it would acquire a quantum computer with 20.7M for the Finnish State Research center VTT.

It has been a mind-blowing forty-million past week for quantum computers in Finland. IQM staff is excited to work together with VTT, Aalto University, and CSC in this ecosystem, rejoices Prof. Mikko Mttnen, Chief Scientist and co-founder of IQM.

Previously, the German government said it would put 2bn into commissioning at least two quantum computers.

IQM thus now plans to expand its operations in Germany via its team in Munich.

IQM will build co-design quantum computers for commercial applications and install testing facilities for quantum processors, said Prof. Enrique Solano, CEO of IQM Germany.

The company is focusing on superconducting quantum processors, which are streamlined for commercial applications in a Co-Design approach. This works by providing the full hardware stack for a quantum computer, integrating different technologies, and then invites collaborations with quantum software companies.

IQM was one of the 72 to succeed in the selection process of the EIC. Altogether 3969 companies applied for this funding.

See the rest here:
European quantum computing startup takes its funding to 32M with fresh raise - TechCrunch

Docuseries takes viewers into the lives and labs of scientists – UChicago News

The camera crew was given full access to Earnest-Nobles research. In several scenes, Earnest-Noble is suited up in white PPE in the Pritzker Nanofabrication Facility in the Eckhardt Research Center. His scientific process and the breakthrough he seeks are depicted with animations and close-up footage of the state-of-the-art facilities. The filmmakers capture Earnest-Noble in the midst of a failed attempt or among his graveyard of failed quantum devices. As he embraces his doubts and is propelled by tenacity, viewers witness an emotional depiction of real science.

Earnest-Nobles lively interviews focus on the experience versus the result of his labors, providing a realistic portrayal of graduate studies and enabling viewers to follow him to his goal of identifying the ideal qubit for superpositiona phenomenon in quantum mechanics in which a particle can exist in several states at once.

When we were filming, I was trying to explain a qubit or something, and how much I was using jargon words was eye-opening to me. It helped me appreciate the challenge of making science understandable, said Earnest-Noble, who is now a quantum computing researcher at IBM. Science is a process far more than a series of facts. That became clear to me from working on this project.

Science communications typically takes a very long struggle of discovery and wraps it up into a pretty package, said Schuster. But something I found very special in this story is that you got to follow Nate for a couple of years. It accurately captured what Nates experience was like. And it focused on his experience, and not on the result, which is pretty amazing."

STAGEs director of science Sunanda Prabhu-Gaunkar originally joined the STAGE lab as a postdoc, and taught herself filmmaking in order to create the series. The scientific process inspires our filmmaking, she said. The workflow embraces failure, remains receptive to discoveries through iteration, and allows for risk-taking, all within a highly collaborative process.

Ellen Askey, the pilot episodes co-director, joined the project as a first-year student at UChicago with prior filmmaking experience. She worked on the series across her college career, graduating in June with a degree in cinema and media studies. Showing a story develop over time can be powerful, she said. We hope to get it out there to a lot of people who are and who are not yet interested in science.

Interested attendees can register through Eventbrite.

Adapted from an article by Maureen McMahon posted on the Physical Sciences Division website.

The rest is here:
Docuseries takes viewers into the lives and labs of scientists - UChicago News

Quantum Computing Market In-Depth Analysis 2020 : How Market Will Grow In The Upcoming Period 2020-2029? – Cole of Duty

The Global Quantum Computing Market 2020 Research Report is a professional and in-depth study on the current state of Quantum Computing Market.

This is the latest report, covering the current COVID-19 impact on theQuantum Computing market. The pandemic of Coronavirus (COVID-19) has affected every aspect of life globally. This has brought along several changes in market conditions. The rapidly changing market scenario and initial and future assessment of the impact are covered in the report. Our data has been culled out by our team of experts who have curated the report, considering market-relevant information. This report provides the latest insights about the Quantum Computing market drivers, restraints, opportunities, and trends. It also discusses the growth and trends of various segments and the market in various regions.

Our analysts drafted the report by gathering information through primary (through surveys and interviews) and secondary (included industry body databases, reputable paid sources, and trade journals) methods of data collection. The report encompasses an exhaustive qualitative and quantitative evaluation.

Click here to get the short-term and long-term impact of COVID-19 on this Market:https://marketresearch.biz/report/quantum-computing-market/covid-19-impact

The Quantum Computing Market Report Covers the Following Companies:

International Business Machines (IBM) Corporation, Google Inc, Microsoft Corporation, Qxbranch LLC, Cambridge Quantum Computing Ltd, 1QB Information Technologies Inc, QC Ware Corp., Magiq Technologies Inc, D-Wave Systems Inc, Rigetti Computing

The subject matter experts analyzed various companies to understand the products and/services relevant to the market. The report includes information such as gross revenue, production and consumption, average product price, and market shares of key players. Other factors such as competitive analysis and trends, mergers & acquisitions, and expansion strategies have been included in the report. This will enable the existing competitors and new entrants to understand the competitive scenario to plan future strategies.

For Better Understanding, Download FREE Sample PDF Copy of Quantum Computing Market Research Report :https://marketresearch.biz/report/quantum-computing-market/request-sample

The Report Provides:

An overview of the Quantum Computing market

Current COVID-19 impact on the Quantum Computing market

Comprehensive analysis of the market

Analyses of recent developments in the market

Events in the market scenario in the past few years

Emerging market segments and regional markets

Segmentations up to the second and/or third level

Historical, current, and estimated market size in terms of value and volume

Competitive analysis, with company overview, products, revenue, and strategies.

An impartial assessment of the market

Strategic recommendations to help companies increase their market presence

Download FREE Sample PDF Copy Now!

The Quantum Computing Market Report Addresses the Following Queries:

What is the estimated size of the market by 2029?

Which segment accounted or a large share of the market in the past?

Which segment is expected to account the largest market share by 2029?

Which governing bodies have approved the use of Quantum Computing?

Which region accounts for a dominant share of the market?

Which region is anticipated to create lucrative opportunities in the market?

The study includes growth trends, micro- and macro-economic indicators, and regulations and governmental policies.

By Regions:

Asia Pacific (China, Japan, India, and Rest of Asia Pacific)

Europe (Germany, the UK, France, and Rest of Europe)

North America (the US, Mexico, and Canada)

Latin America (Brazil and Rest of Latin America)

Middle East & Africa (GCC Countries and Rest of the Middle East & Africa)

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://marketresearch.biz/report/quantum-computing-market/#inquiry

Contact Us

Mr. Benni Johnson

MarketResearch.Biz (Powered By Prudour Pvt. Ltd.)

420 Lexington Avenue, Suite 300

New York City, NY 10170,

United States

Tel: +1 347 826 1876

Website:https://marketresearch.biz

Email ID:[emailprotected]

See the rest here:
Quantum Computing Market In-Depth Analysis 2020 : How Market Will Grow In The Upcoming Period 2020-2029? - Cole of Duty

Global Quantum Computing Technologies Market Size and Forecast to 2026: Industry Analysis by Types, Top Vendors, Regions, Demand & Outlook 2020 -…

A research report on the Global Quantum Computing Technologies Market delivers complete analysis regarding the size, trends, market share, and growth prospects. In addition, the report includes market volume with an exact opinion offered in the report. This research report assesses the market growth rate and the industry value depending on the growth such as driving factors, market dynamics, and other associated data. The information provided in this report is integrated based on the trends, latest industry news, as well as opportunities. The Quantum Computing Technologies market report is major compilation of major information with respect to the overall competitor data of this market. Likewise, the information is an inclusive of the number of regions where the global Quantum Computing Technologies industry has fruitfully gained the position. This research report delivers a broad assessment of the Quantum Computing Technologies market. The global Quantum Computing Technologies market report is prepared with the detailed verifiable projections, and historical data about the Quantum Computing Technologies market size.

Request a sample of this report @ https://www.orbisresearch.com/contacts/request-sample/4571360

Moreover, the report also includes a full market analysis and supplier landscape with the help of PESTEL and SWOT analysis of the leading service providers. In addition, the projections offered in this report have been derived with the help of proven research assumptions as well as methodologies. By doing so, the Quantum Computing Technologies research study offers collection of information and analysis for each facet of the Quantum Computing Technologies industry such as technology, regional markets, applications, and types. The report has been made through the primary research interviews, complete surveys, as well as observations, and secondary research. Likewise, the Quantum Computing Technologies market report delivers major illustrations and presentations about the market which integrates graphs, pie charts, and charts and offers the precise percentage of the different strategies implemented by the major providers in the global Quantum Computing Technologies market. This report delivers a separate analysis of the foremost trends in the accessible market, regulations and mandates, micro & macroeconomic indicators are also included in this report.

Top Players:

Airbus GroupCambridge Quantum ComputingIBMGoogle Quantum AI LabMicrosoft Quantum ArchitecturesNokia Bell LabsAlibaba Group Holding LimitedIntel CorporationToshiba

Browse the complete report @ https://www.orbisresearch.com/reports/index/global-quantum-computing-technologies-market-size-status-and-forecast-2020-2026

By doing so, the study forecast the attractiveness of each major segment over the prediction period. The global Quantum Computing Technologies market study extensively features a complete quantitative and qualitative evaluation by studying data collected from various market experts and industry participants in the market value chain. The report also integrates the various market conditions around the globe such as pricing structure, product profit, demand, supply, production, capacity, as well as market growth structure. In addition, this study provides important data about the investment return data, SWOT analysis, and investment feasibility analysis.

Types:

SoftwareHardware

Applications:

GovernmentBusinessHigh-TechBanking & SecuritiesManufacturing & LogisticsInsuranceOther

In addition, the number of business tactics aids the Quantum Computing Technologies market players to give competition to the other players in the market while recognizing the significant growth prospects. Likewise, the research report includes significant information regarding the market segmentation which is designed by primary and secondary research techniques. It also offers a complete data analysis about the current trends which have developed and are expected to become one of the strongest Quantum Computing Technologies market forces into coming future. In addition to this, the Quantum Computing Technologies report provides the extensive analysis of the market restraints that are responsible for hampering the Quantum Computing Technologies market growth along with the report also offers a comprehensive description of each and every aspects and its influence on the keyword market.

If enquiry before buying this report @ https://www.orbisresearch.com/contacts/enquiry-before-buying/4571360

About Us :

Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.Orbis Research (orbisresearch.com) is a single point aid for all your market research requirements. We have vast database of reports from the leading publishers and authors across the globe. We specialize in delivering customized reports as per the requirements of our clients. We have complete information about our publishers and hence are sure about the accuracy of the industries and verticals of their specialization. This helps our clients to map their needs and we produce the perfect required market research study for our clients.

Contact Us :

Visit link:
Global Quantum Computing Technologies Market Size and Forecast to 2026: Industry Analysis by Types, Top Vendors, Regions, Demand & Outlook 2020 -...

Announcing the IBM Quantum Challenge – Quantaneo, the Quantum Computing Source

Today, we have 18 quantum systems and counting available to our clients and community. Over 200,000 users, including more than 100 IBM Q Network client partners, have joined us to conduct fundamental research on quantum information science, develop the applications of quantum computing in various industries, and educate the future quantum workforce. Additionally, 175 billion quantum circuits have been executed using our hardware, resulting in more than 200 publications by researchers around the world.

In addition to developing quantum hardware, we have also been driving the development of powerful open source quantum software. Qiskit, written primarily in Python, has grown to be a popular quantum computing software development kit with several novel features, many of which were contributed by dedicated Qiskitters.

Thank you to everyone who has joined us on this exciting journey building the largest and most diverse global quantum computing community.

The IBM Quantum Challenge As we approach the fourth anniversary of the IBM Quantum Experience, we invite you to celebrate with us by completing a challenge with four exercises. Whether you are already a member of the community, or this challenge is your first quantum experiment, these four exercises will improve your understanding of quantum circuits. We hope you also have fun as you put your skills to test.

The IBM Quantum Challenge begins at 9:00 a.m. US Eastern on May 4, and ends 8:59:59 a.m. US Eastern on May 8. To take the challenge, visit https://quantum-computing.ibm.com/challenges.

In recognition of everyones participation, we are awarding digital badges and providing additional sponsorship to the Python Software Foundation.

Continued investment in quantum education Trying to explain quantum computing without resorting to incorrect analogies has always been a goal for our team. As a result, we have continuously invested in education, starting with opening access to quantum computers, and continuing to create tools that enable anyone to program them. Notably, we created the first interactive open source textbook in the field.

As developers program quantum computers, what they are really doing is building and running quantum circuits. To support your learning about quantum circuits:

Read the Qiskit textbook chapter where we define quantum circuits as we understand them today. Dive in to explore quantum computing principles and learn how to implement quantum algorithms on your own. Watch our newly launched livelectures called Circuit Sessions, or get started programming a quantum computer by watching Coding with Qiskit. Subscribe to the Qiskit YouTube channel to watch these two series and more. The future of quantum is in open source software and access to real quantum hardwarelets keep building together.

The rest is here:
Announcing the IBM Quantum Challenge - Quantaneo, the Quantum Computing Source

Devs: Here’s the real science behind the quantum computing TV show – New Scientist News

By Rowan Hooper

BBC/FX Networks

TVDevsBBC iPlayer and FX on Hulu

Halfway through episode two of Devs, there is a scene that caused me first to gasp, and then to swear out loud. A genuine WTF moment. If this is what I think it is, I thought, it is breathtakingly audacious. And so it turns out. The show is intelligent, beautiful and ambitious, and to aid in your viewing pleasure, this spoiler-free review introduces some of the cool science it explores.

Alex Garlands eight-part seriesopens with protagonists Lilyand Sergei, who live in a gorgeous apartment in San Francisco. Like their real-world counterparts, people who work atFacebook orGoogle, the pair take the shuttle bus to work.

Advertisement

They work at Amaya, a powerful but secretive technology company hidden among the redwoods. Looming over the trees is a massive, creepy statue of a girl: the Amaya the company is named for.

We see the company tag line asLily and Sergei get off the bus: Your quantum future. Is it just athrow-away tag, or should we think about what that line means more precisely?

Sergei, we learn, works on artificial intelligence algorithms. At the start of the show, he gets some time with the boss, Forest, todemonstrate the project he has been working on. He has managed to model the behaviour of a nematode worm. His team has simulated the worm by recreating all 302 of its neurons and digitally wiring them up. This is basically the WormBot project, an attempt to recreate a life form completely in digital code. The complete map of the connections between the 302 neurons of the nematode waspublished in 2019.

We dont yet have the processing power to recreate theseconnections dynamically in a computer, but when we do, it will be interesting to consider if the resulting digital worm, a complete replica of an organic creature, should be considered alive.

We dont know if Sergeis simulation is alive, but it is so good, he can accurately predict the behaviour of the organic original, a real worm it is apparently simulating, up to 10 seconds in thefuture. This is what I like about Garlands stuff: the show has only just started and we have already got some really deep questions about scientific research that is actually happening.

Sergei then invokes the many-worlds interpretation of quantum mechanics conceived by Hugh Everett. Although Forest dismisses this idea, it is worth getting yourhead around it because the show comes back to it. Adherents say that the maths of quantum physics means the universe isrepeatedly splitting into different versions, creating a vast multiverse of possible outcomes.

At the core of Amaya is the ultrasecretive section where thedevelopers work. No one outside the devs team knows what it is developing, but we suspect it must be something with quantum computers. I wondered whether the devssection is trying to do with the 86 billion neurons of thehuman brain what Sergei has been doing with the 302 neurons of the nematode.

We start to find out when Sergei is selected for a role in devs. He must first pass a vetting process (he is asked if he is religious, a question that makes sense later) and then he is granted access to the devs compound sealed by alead Faraday cage, gold mesh andan unbroken vacuum.

Inside is a quantum computer more powerful than any currently in existence. How many qubits does it run, asks Sergei, looking inawe at the thing (it is beautiful, abit like the machines being developed by Google and IBM). Anumber that it is meaningless to state, says Forest. As a reference point, the best quantum computers currently manage around 50 qubits, or quantum bits. We can only assume that Forest has solved the problem ofdecoherence when external interference such as heat or electromagnetic fields cause qubits to lose their quantum properties and created a quantum computer with fantasticprocessing power.

So what are the devs using it for? Sergei is asked to guess, and then left to work it out for himself from gazing at the code. He figures it out before we do. Then comes that WTF moment. To say any more will give away the surprise. Yet as someone remarks, the world is deterministic, but with this machine we are gaining magical powers. Devs has its flaws, but it is energising and exciting to see TV this thoughtful: it cast a spell on me.

More on these topics:

Go here to read the rest:
Devs: Here's the real science behind the quantum computing TV show - New Scientist News

Eleven Princeton faculty elected to American Academy of Arts and Sciences – Princeton University

Princeton faculty members Rubn Gallo, M. Zahid Hasan, Amaney Jamal, Ruby Lee, Margaret Martonosi, Tom Muir, Eve Ostriker, Alexander Smits, Leeat Yariv and Muhammad Qasim Zaman have been named members of the American Academy of Arts and Sciences. Visiting faculty member Alondra Nelson also was elected to the academy.

They are among 276 scholars, scientists, artists and leaders in the public, nonprofit and private sectors elected this year in recognition of their contributions to their respective fields.

Gallo is the Walter S. Carpenter, Jr., Professor in Language, Literature, and Civilization of Spain and a professor of Spanish and Portuguese. He joined the Princeton faculty in 2002. His most recent book is Conversacin en Princeton(2017)with Mario Vargas Llosa, who was teaching at Princeton when he received the Nobel Prize in Literature in 2010.

Gallos other books include Prousts LatinAmericans(2014);Freuds Mexico: Into the Wilds of Psychoanalysis(2010); Mexican Modernity: the Avant-Garde and the Technological Revolution(2005); New Tendencies in Mexican Art(2004); andThe Mexico City Reader(2004). He is currently working on Cuba: A New Era, a book about the changes in Cuban culture after the diplomatic thaw with the United States.

Gallo received the Gradiva award for the best book on a psychoanalytic theme and the Modern Language Associations Katherine Singer Kovacs Prize for the best book on a Latin American topic. He is a member of the board of the Sigmund Freud Museum in Vienna, where he also serves as research director.

Photo by

Nick Barberio, Office of Communications

Hasan is the Eugene Higgins Professor of Physics. He studiesfundamental quantum effects in exotic superconductors, topological insulators and quantum magnetsto make new discoveries about the nature of matter, work that may have future applications in areas such asquantum computing. He joined the faculty in 2002and has since led his research team to publish many influential findings.

Last year, Hasans lab led research that discovered that certain classes of crystals with an asymmetry like biological handedness, known as chiral crystals, may harbor electrons that behave in unexpected ways. In 2015, he led a research team that first observed Weyl fermions, which, if applied to next-generation electronics, could allow for a nearly free and efficient flow of electricity in electronics, and thus greater power, especially for computers.

In 2013, Hasan was named a fellow of the American Physical Society for the experimental discovery of three-dimensional topological insulators a new kind of quantum matter. In 2009, he received a Sloan Research Fellowship for groundbreaking research.

Photo by Tori Repp/Fotobuddy

Jamal is the Edwards S. Sanford Professor of Politics and director of the Mamdouha S. Bobst Center for Peace and Justice. She has taught at Princeton since 2003. Her current research focuses on the drivers of political behavior in the Arab world, Muslim immigration to the U.S. and Europe, and the effect of inequality and poverty on political outcomes.

Jamal also directs the Workshop on Arab Political Development and the Bobst-AUB Collaborative Initiative. She is also principal investigator for the Arab Barometer project, which measures public opinion in the Arab world. She is the former President of the Association of Middle East Womens Studies.

Her books include Barriers to Democracy (2007), which won the 2008 APSA Best Book Award in comparative democratization, and Of Empires and Citizens, which was published by Princeton University Press (2012). She is co-editor of Race and Arab Americans Before and After 9/11: From Invisible Citizens to Visible Subjects (2007) and Citizenship and Crisis: Arab Detroit after 9/11 (2009).

Photo by Tori Repp/Fotobuddy

Lee is the Forrest G. Hamrick Professor in Engineering and professor of electrical engineering. She is an associated faculty member in computer science. Lee joined the Princeton faculty in 1998.Her work at Princeton explores how the security and performance of computing systems can be significantly and simultaneously improved by hardware architecture. Her designs of secure processor architectures have strongly influenced industry security offerings and also inspired new generations of academic researchers in hardware security, side-channel attacks and defenses, secure processors and caches, and enhanced cloud computing and smartphone security.

Her research lies at the intersection of computer architecture, cybersecurity and, more recently, the branch of artificial intelligence known as deep learning.

Lee spent 17 years designing computers at Hewlett-Packard, and was a chief architect there before coming to Princeton. Among many achievements, Lee is known in the computer industry for her design of the HP Precision Architecture (HPPA or PA-RISC) that powered HPs commercial and technical computer product families for several decades, and was widely regarded as introducing key forward-looking features. In the '90s she spearheaded the development of microprocessor instructions for accelerating multimedia, which enabled video and audio streaming, leading to ubiquitous digital media.Lee is a fellow into the Association for Computing Machinery and the Institute of Electrical and Electronics Engineers.

Margaret Martonosi, the Hugh Trumbull Adams 35 Professor of Computer Science, specializes in computer architecture and mobile computing with an emphasis on power efficiency. She was one of the architects of the Wattch power modeling infrastructure, a tool that was among the first to allow computer scientists to incorporate power consumption into early-stage computer systems design. Her work helped demonstrate that power needs can help dictate the design of computing systems. More recently, Martonosis work has also focused on architecture and compiler issues in quantum computing.

She currently serves as head of the National Science Foundations Directorate for Computer and Information Science and Engineering, one of seven top-level divisions within the NSF. From 2017 until February 2020, she directed Princetons Keller Center for Innovation in Engineering Education, a center focused on enabling students across the University to realize their aspirations for addressing societal problems. She is an inventor who holds seven U.S. patents and has co-authored two technical reference books on power-aware computer architecture. In 2018, she was one of 13 co-authors of a National Academies consensus study report on progress and challenges in quantum computing.

Martonosi is a fellow of the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers IEEE). Among other honors, she has received a Jefferson Science Fellowship, the IEEE Technical Achievement Award, and the ACM SIGARCH Alan D. Berenbaum Distinguished Service Award. She joined the Princeton faculty in 1994.

Muir is the Van Zandt Williams, Jr. Class of 65 Professor of Chemistry and chair of the chemistry department. He joined Princeton in 2011 and is also an associated faculty member in molecular biology.

He leads research in investigating the physiochemical basis of protein function in complex systems of biomedical interest. By combining tools of organic chemistry, biochemistry, biophysics and cell biology, his lab has developed a suite of new technologies that provide fundamental insight into how proteins work. The chemistry-driven approaches pioneered by Muirs lab are now widely used by chemical biologists around the world.

Muir has published over 150 scientific articles and has won a number of honors for his research.He received a MERIT Award from the National Institutes of Health and is a fellow of American Association for the Advancement of Science and the Royal Society of Edinburgh.

Nelson is the Harold F. Linder Chair in the School of Social Science at the Institute for Advanced Study and a visiting lecturer with the rank of professor in sociology at Princeton. She is president of the Social Science Research Council and is one of the country's foremost thinkers in the fields of science, technology, social inequalityand race. Her groundbreaking books include "The Social Life of DNA: Race, Reparations, and Reconciliation after the Genome" (2016) and "Body and Soul: The Black Panther Party and the Fight Against Medical Discrimination" (2011).Her other books include"Genetics and the Unsettled Past: The Collision of DNA, Race, and History" (with Keith Wailoo of Princeton and Catherine Lee) and"Technicolor: Race, Technology, and Everyday Life" (with Thuy Linh Tu). In 2002 she edited "Afrofuturism," a special issue of Social Text.

Nelson's writings and commentary also have reached the broader public through a variety of outlets. She has contributed to national policy discussions on inequality and the implications of new technology on society.

She is an elected fellow of the American Academy of Political and Social Science, the Hastings Centerand the Sociological Research Association. She serves on several advisory boards, including the Andrew. W. Mellon Foundation and the American Association for the Advancement of Science.

Ostriker, professor of astrophysical sciences, studies the universe. Her research is in the area of theoretical and computational astrophysics, and the tools she uses are powerful supercomputers and algorithms capable of simulating the birth, life, death and reincarnation of stars in their galactic homes. Ostriker and her fellow researchers build computer models using fundamental physical laws ones that govern gravity, fluid dynamics and electromagnetic radiation to follow the evolution of conditions found in deep space.

Ostriker, who came to Princeton in 2012, and her team have explored the formation of superbubbles, giant fronts of hot gas that billow out from a cluster of supernova explosions. More recently, she and her colleagues turned their focus toward interstellar clouds.

The research team uses computing resources through the Princeton Institute for Computational Science and Engineering and its TIGER and Perseus research computing clusters, as well as supercomputers administered through NASA. In 2017, Ostriker received a Simons Investigator Award.

Photo by

Nick Donnoli, Office of Communications

Smits is the Eugene Higgins Professor of Mechanical and Aerospace Engineering, Emeritus. His research spans the field of fluid mechanics, including fundamental turbulence, supersonic and hypersonic flows, bio-inspired flows, sports aerodynamics, and novel energy-harvesting concepts.

He joined the Princeton faculty in 1981 and transferred to emeritus status in 2018. Smits served as chair of the Department of Mechanical and Aerospace Engineering for 13 years and was director of the Gas Dynamics Laboratory on the Forrestal Campus for 33 years. During that time, he received several teaching awards, including the Presidents Award for Distinguished Teaching.

Smits has written more than 240 articles and three books, and edited seven volumes. He was awarded seven patents and helped found three companies. He is a member of the National Academy of Engineering and a fellow of the American Physical Society, the American Institute of Aeronautics and Astronautics, the American Society of Mechanical Engineers, the American Association for the Advancement of Science, and the Australasian Fluid Mechanics Society.

Yariv is the Uwe Reinhardt Professor of Economics. An expert in applied theory and experimental economics, her research interests concentrate on game theory, political economy, psychology and economics. She joined the faculty in 2018. Yariv also is director of the Princeton Experimental Laboratory for the Social Sciences.

She is a member of several professional organizations and is lead editor of American Economic Journal: Microeconomics, a research associate with the Political Economy Program of the National Bureau of Economic Research, and a research fellow with the Industrial Organization Programme of the Centre for Economic Policy Research.

She is also a fellow of the Econometric Society and the Society for the Advancement of Economic Theory, and has received numerous grants for researchand awards for her many publications.

Zaman, who joined the Princeton faculty in 2006, is the Robert H. Niehaus 77 Professor of Near Eastern Studies and Religion and chair of the Department of Near Eastern Studies.

He has written on the relationship between religious and political institutions in medieval and modern Islam, on social and legal thought in the modern Muslim world, on institutions and traditions of learning in Islam, and on the flow of ideas between South Asia and the Arab Middle East. He is the author of Religion and Politics under the Early Abbasids (1997), The Ulama in Contemporary Islam: Custodians of Change (2002), Ashraf Ali Thanawi: Islam in Modern South Asia (2008), Modern Islamic Thought in a Radical Age: Religious Authority and Internal Criticism (2012), and Islam in Pakistan: A History (2018). With Robert W. Hefner, he is also the co-editor of Schooling Islam: The Culture and Politics of Modern Muslim Education (2007); with Roxanne L. Euben, of Princeton Readings in Islamist Thought (2009); and, as associate editor, with Gerhard Bowering et al., of the Princeton Encyclopedia of Islamic Political Thought (2013). Among his current projects is a book on South Asia and the wider Muslim world in the 18th and 19th centuries.

In 2017, Zaman received Princetons Graduate Mentoring Award. In 2009, he received a Guggenheim Fellowship.

The mission of the academy: Founded in 1780, the American Academy of Arts and Sciences honors excellence and convenes leaders from every field of human endeavor to examine new ideas, address issues of importance to the nation and the world, and work together to cultivate every art and science which may tend to advance the interest, honor, dignity, and happiness of a free, independent, and virtuous people.

View post:
Eleven Princeton faculty elected to American Academy of Arts and Sciences - Princeton University

Deltec Bank, Bahamas – Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sec – marketscreener.com

When you add AI and machine learning capabilities to the mix, we could potentially develop pre-warning systems that detect fraud before it even happens.

As online banking grows it is becoming a hot target for cybercriminals around the world as they become ever more adept at cracking bank security. Now, banks are looking into the technology behind quantum computing as a potential solution to this threat as well as its many other benefits. Currently, the technology is still in development but it is expected to take over from traditional computing in the next five to ten years.

What is quantum computing?

With quantum computing, the amount of processing power available is far larger than even the fastest silicon chips in existence today. Rather than using the traditional 1 and 0 method of binary computer processing, quantum computing uses qubits. Utilizing the theory of quantum superposition, these provide a way of processing 1s and 0s simultaneously, increasing the speed of the computer by several orders of magnitude.

For example, in October 2019, Google's 'Sycamore' quantum computer solved an equation in 200 seconds that would have taken a normal supercomputer 10,000 years to complete. This gives you an idea of the power that we are talking about.

So how does this help the banking sector?

1. Fraud Detection

Fraud is quickly becoming the biggest threat to online banking and data security. Customers need to feel confident that their money and their personal information is kept secure and with data leaks happening more frequently, this problem must be addressed.

Quantum computing offers significant benefits in the fight against fraud, offering enough computing power to automatically and instantly detect patterns that are commonly associated with fraudulent activity. When you add AI and machine learning capabilities to the mix, we could potentially develop pre-warning systems that detect fraud before it even happens.

2. Quantum Cryptography

Cryptography is an area of science that has recently gained popularity. The technology has proven incredibly useful in helping to secure the blockchain networks.

Quantum cryptography takes this security to an entirely new level, particularly when applied to financial data. It provides the ability to store data in a theoretical state of constant flux, making it near impossible for hackers to read or steal.

However, it could also be used to easily crack existing cryptographic security methods. Currently, the strongest 2048-bit encryption would take normal computer ages to break in to, whereas a quantum computer could do it in a matter of seconds.

3. Distributed Keys

Distributed key generation (DKG) is already being used by many online platforms for increased protection against data interception. Now, quantum technology provides a new system known as Measurement-Device Independent Quantum Key Distribution (MKI-QKD) which secures communications to a level that even quantum computers can't hack.

The technology is already being investigated by several financial institutions, notably major Dutch bank ABN-AMRO for their online and mobile banking applications.

4. Trading and Data

Artificial intelligence, machine learning, and big data are all new technologies that are currently being tested enthusiastically by banks. However, one of the biggest pain points with these technologies is the amount of processing power required.

According to Deltec Bank - "Quantum computing could quickly accelerate this research past the testing level and provide instant solutions to many problems currently facing the banking world. Time-consuming activities like mortgage and loan approvals would become instant and high-frequency trading could become automated and near error-proof."

Banks that are looking into quantum

Many major banks around the world are already investigating the potential benefits of quantum computing.

UK banking giant Barclays has worked in conjunction with IBM to develop a proof-of-concept that utilizes quantum computing to settle transactions. When applied to trading, the concept could successfully complete massive amounts of complex trades in seconds.

Major US bank JPMorgan has also expressed an interest in the technology for its security and data processing abilities. The bank has tasked its senior engineer with creating a 'quantum culture' in the business and meeting fortnightly with scientists to explore developments in the field.

Banco Bilbao Vizcaya Argentaria (BBVA) is working with the Spanish National Research Council (CISC) to explore various applications of quantum computing. The team believes the technology could reduce risk and improve customer service.

Quantum Computing though still in an early stage will have a significant impact on the Banking sectors in years to come.

Disclaimer: The author of this text, Robin Trehan, has an Undergraduate degree in economics, Masters in international business and finance and MBA in electronic business. Trehan is Senior VP at Deltec International http://www.deltecbank.com. The views, thoughts, and opinions expressed in this text are solely the views of the author, and not necessarily reflecting the views of Deltec International Group, its subsidiaries and/or employees.

About Deltec Bank

Headquartered in The Bahamas, Deltec is an independent financial services group that delivers bespoke solutions to meet clients' unique needs. The Deltec group of companies includes Deltec Bank & Trust Limited, Deltec Fund Services Limited, and Deltec Investment Advisers Limited, Deltec Securities Ltd. and Long Cay Captive Management.

Media Contact

Company Name: Deltec International Group

Contact Person: Media Manager

Email: rtrehan@deltecial.com

Phone: 242 302 4100

Country: Bahamas

Website: https://www.deltecbank.com/

Source: http://www.abnewswire.com

.

Original post:
Deltec Bank, Bahamas - Quantum Computing Will bring Efficiency and Effectiveness and Cost Saving in Baking Sec - marketscreener.com

Quantum computing heats up down under as researchers reckon they know how to cut costs and improve stability – The Register

Boffins claim to have found path to 'real-world applications' by running hot

Dr Henry Yang and Professor Andrew Dzurak: hot qubits are a game-changer for quantum computing development. Pic credit: Paul Henderson-Kelly

Scientists in Australia are claiming to have made a breakthrough in the field of quantum computing which could ease the technology's progress to affordability and mass production.

A paper by researchers led by Professor Andrew Dzurak at Sydney's University of New South Wales published in Nature today says they have demonstrated quantum computing at temperatures 15 times warmer than previously thought possible.

Temperature is important to quantum computing because quantum bits (qubits) the equivalent classical computing bits running the computer displaying this story can exist in superconducting circuits or form within semiconductors only at very low temperatures.

Most quantum computers being developed by the likes of IBM and Google form qubits at temperatures within 0.1 degrees above absolute zero or -273.15C (-459.67F). These solid-state platforms require cooling to extremely low temperatures because vibrations generated by heat disrupt the qubits, which can impede performance. Getting this cold requires expensive dilution refrigerators.

Artistic representation of quantum entanglement. Pic credit: Luca Petit for QuTech

But Dzurak's team has shown that they can maintain stable "hotbits" at temperatures up to 15 times higher than existing technologies. That is a sweltering 1.5 Kelvin (-271.65C). It might not seem like much, but it could make a big difference when it comes to scaling quantum computers and getting them one step closer to practical applications.

"For most solid-state qubit technologies for example, those using superconducting circuits or semiconductor spins scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature. As temperatures rise above 1 Kelvin, the cost drops substantially and the efficiency improves. In addition, using silicon-based platforms is attractive, as this can assist integration into classical systems that use existing silicon-based hardware," the paper says.

Keeping temperature at around 1.5 Kelvin can be achieved using a few thousand dollars' worth of refrigeration, rather than the millions of dollars needed to cool chips to 0.1 Kelvin, Dzurak said.

"Our new results open a path from experimental devices to affordable quantum computers for real-world business and government applications," he added.

The researchers used "isotopically enriched silicon" but the proof of concept published today promises cheaper and more robust quantum computing which can be built on hardware using conventional silicon chip foundries, they said.

Nature published another independent study by Dr Menno Veldhorst and colleagues at Delft University of Technology in the Netherlands which details a quantum circuit that operates at 1.1 Kelvin, confirming the breakthrough.

If made more practical and cheaper, quantum computers could represent a leap forward in information science. Whereas the bit in classical computing either represents a one or a zero, qubits superimpose one and zero, representing both states at the same time. This creates an exponential improvement in performances such that so eight qubits theoretically have two to eight times the performance of eight bits. For example, Google and NASA have demonstrated that a quantum computer with 1,097 qubits outperformed existing supercomputers by more than 3,600 times and personal computers by 100 million.

While the experimental nature and cost of quantum computing means it is unlikely to make it into any business setup soon, anything to make the approach more practical could make a big difference to scientific computational challenges such as protein folding. The problem of how to predict the structure of a protein from its amino acid sequence is important for understanding how proteins function in a wide range of biological processes and could potentially help design better medicines.

Sponsored: Practical tips for Office 365 tenant-to-tenant migration

Original post:
Quantum computing heats up down under as researchers reckon they know how to cut costs and improve stability - The Register

Orquestra, an end-to-end, unified Quantum Operating Environment is now in early access – Neowin

Zapata, a firm whose primary focus is on quantum computing and software, launched early access to Orquestra today. Orquestra, dubbed as a novel end-to-end, unified Quantum Operating Environment (QOE), is meant for designing, manipulating, optimizing, and running quantum circuits. These quantum circuits are then generalized to run across different quantum computers, simulators, and HPC resources.

Orquestra enables advanced technology, R&D and academic teams to acceleratequantum solutions for complex computational problems in optimization, machinelearning and simulation across a variety of industries.

Some of the noteworthy features of Orquestra are as follows. First, it provides an extensive library supplying optimized open-source (VQE, QAOA) and proprietary (VQF) algorithms. The environment allows users to combine modules written in different libraries, some of which include Cirq, Qiskit, PennyLane and PyQuil.

In addition, it also offers hardware-interoperable layering and is the only quantum platform that goes beyond hardware-agnostic capabilities. This allows users to compare various devices in the context of particular computational problems and benchmark how workflows perform across them.

Users can also submit these workflows to the Orquestra Quantum Engine (OQE) servers with command-line tools and orchestrate workflow tasks across a variety of backends that include gate model devices, quantum annealers, quantum simulators, and HPC resources. Automatedparallelization through container orchestration and management of complex records is offered as well.

Orquestra is currently in early-access and is aimed at users with backgrounds in software engineering, machine learning, physics, computational chemistry or quantum information theory. To be a part of the program, and request further information, you can send an e-mail to Zapata.

Visit link:
Orquestra, an end-to-end, unified Quantum Operating Environment is now in early access - Neowin

Quantum Technologies 2020: Impact on COVID-19, Ecosystem & Supply Chain Analysis, Industry Best Practices, Technology Roadmap and Growth…

DUBLIN, April 20, 2020 /PRNewswire/ -- The "Emerging Opportunities of Quantum Technologies in Electronics Industry" report has been added to ResearchAndMarkets.com's offering.

Research and Markets Logo

Key Questions Addressed

Quantum technology, which enables the manipulation of atoms and sub-atomic particles, will allow for a new class of ultra-sensitive devices with key potential to profoundly impact and disrupt significant applications in areas such as defense, aerospace, industrial, commercial, infrastructure, transportation and logistics markets.

The ability to control and predict the behavior of atoms and ions has key opportunities to enable exquisitely sensitive sensors for application such as ultra-precise navigation, improved location of buried objects, enhanced geophysical or resource exploration, as well as ultra-precise measurement of time, computers able to solve very complex problems much faster than classical computers, considerably more secure and rapid data communications, and imaging in previously impossible conditions with greatly enhanced resolution.

Quantum technology is also driving advancements in more compact lasers, microfabricated atom/ion traps and diffraction gratings for trapping and cooling atoms, single-photon detectors for applications such as enhanced imaging and quantum cryptography, microfabricated vapor cells containing atomic vapors or optically cooled atoms.

Key Topics Covered

1. Executive Summary1.1 Scope of Research1.2 Research Methodology1.3 Research Methodology Explained1.4 Key Findings - Quantum Electronics Finds Applications in Submarines and Satellites1.5 Key Findings - Quantum Magnetometers Generate Interest in Navigation

2. Quantum Electronics Technology Landscape - Status Review2.1 Quantum Electronics will Disrupt Industrial, Defense, Security, and Healthcare Markets2.2 Applications of Different Types of Quantum Electronics2.3 Factors Driving the Adoption of Quantum Electronics2.4 Miniaturization is a Major Challenge for Adoption of Quantum Electronics

3. Quantum Inertial Sensors3.1 Quantum Gyroscopes and Accelerometers Provide Enhanced Sensitivity3.2 Quantum Inertial Sensors Have Opportunities to Disrupt Conventional Navigation Systems and MEMS Sensors3.3 Application Impact of Quantum Inertial Sensors3.4 Recent Developments with Stakeholders - Quantum Inertial Sensors3.5 Quantum Inertial Sensors are Gaining Investments

4. Quantum Gravity Sensors4.1 Quantum Gravity Sensors - Overview4.2 Gravity Sensing: An Earlier Opportunity for Quantum Accelerometers4.3 Application Landscape of Quantum Gravity Sensors4.4 Gap Analysis: Quantum Gravity Sensors Opportunities and Challenges4.5 Recent Developments with Stakeholders - Quantum Gravity Sensors

5. Quantum Magnetometers5.1 Quantum Magnetometers - Overview5.2 Application Diversity of Quantum Magnetometers5.3 Quantum Magnetometers find Applications in Precision Location Detection5.4 Opportunities Driving Adoption of Quantum Magnetometers5.5 Factors Hindering Adoption of Quantum Magnetometers5.6 Stakeholder Developments - Quantum Magnetometers

6. Quantum Clocks6.1 Quantum Clocks Enable Precision Timing6.2 Opportunities of Quantum Clocks6.3 Challenges Hindering Adoption of Quantum Atomic Clocks6.4 Applications for Quantum Atomic Clocks6.5 Stakeholder Developments - Quantum Magnetometers6.6 Stakeholders are Collaborating with Universities for Quantum Developments

7. Quantum Computing7.1 Quantum Computers have Unprecedented Computational Power7.2 Opportunities of Quantum Computing7.3 Factors Hindering Adoption of Quantum Computing7.4 Applications of Quantum Computing Across Different Industries7.5 Stakeholder Developments and Recent Research in Quantum Computing7.6 Kagome Metal finds Applications in Quantum Computers7.7 Nitrogen-Vacancy Diamonds have the Potential to Retain Quantum Information

8. Quantum Communications8.1 Quantum Repeaters and Quantum Key Distribution play Key Roles in Enabling Quantum Communication8.2 Opportunities Driving Quantum Communications8.3 Factors Hindering Adoption of Quantum Communications8.4 Stakeholder Developments - Quantum Computing8.5 Recent Research in Quantum Computing Enables Development of Quantum Random Number Generator

9. Impact of Quantum Technologies on COVID-199.1 Opportunities to Combat Coronavirus (COVID-19)9.2 Use of Supercomputers to Study COVID-19 Impact Creates Potential Applications of Quantum Computing

10. Quantum Electronics Ecosystem and Supply Chain Analysis10.1 Quantum Technology Ecosystem Components10.2 Key Types of Participants in the Quantum Supply Chain10.3 Other Participants in the Quantum Supply Chain

11. Industry Best Practices - Assessment of Partnerships/Alliances and Recent Developments11.1 Advancements in Quantum Entanglement Pave the Way for Quantum Internet11.2 Recent Partnerships Drive Developments in Quantum Computing

12. Technology Roadmap & Growth Opportunities12.1 Quantum Electronics Roadmap12.2 Strategic Investments Drive Adoption of Quantum Technologies

13. Industry Contacts13.1 Key Industry Contacts

Story continues

Originally posted here:
Quantum Technologies 2020: Impact on COVID-19, Ecosystem & Supply Chain Analysis, Industry Best Practices, Technology Roadmap and Growth...

The future of quantum computing in the cloud – TechTarget

AWS, Microsoft and other IaaS providers have jumped on the quantum computing bandwagon as they try to get ahead of the curve on this emerging technology.

Developers use quantum computing to encode problems as qubits, which compute multiple combinations of variables at once rather than exploring each possibility discretely. In theory, this could allow researchers to quickly solve problems involving different combinations of variables, such as breaking encryption keys, testing the properties of different chemical compounds or simulating different business models. Researchers have begun to demonstrate real-world examples of how these early quantum computers could be put to use.

However, this technology is still being developed, so experts caution that it could take more than a decade for quantum computing to deliver practical value. In the meantime, there are a few cloud services, such as Amazon Bracket and Microsoft Quantum, that aim to get developers up to speed on writing quantum applications.

Quantum computing in the cloud has the potential to disrupt industries in a similar way as other emerging technologies, such as AI and machine learning. But quantum computing is still being established in university classrooms and career paths, said Bob Sutor, vice president of IBM Quantum Ecosystem Development. Similarly, major cloud providers are focusing primarily on education at this early stage.

"The cloud services today are aimed at preparing the industry for the soon-to-arrive day when quantum computers will begin being useful," said Itamar Sivan, co-founder and CEO of Quantum Machines, an orchestration platform for quantum computing.

There's still much to iron out regarding quantum computing and the cloud, but the two technologies appear to be a logical fit, for now.

Cloud-based quantum computing is more difficult to pull off than AI, so the ramp up will be slower and the learning curve steeper, said Martin Reynolds, distinguished vice president of research at Gartner. For starters, quantum computers require highly specialized room conditions that are dramatically different from how cloud providers build and operate their existing data centers.

Reynolds believes practical quantum computers are at least a decade away. The biggest drawback lies in aligning the quantum state of qubits in the computer with a given problem, especially since quantumcomputersstill haven't been proven to solve problems better than traditional computers.

Coders also must learn new math and logic skills to utilize quantum computing. This makes it hard for them since they can't apply traditional digital programming techniques. IT teams need to develop specialized skills to understand how to apply quantum computing in the cloud so they can fine tune the algorithms, as well as the hardware, to make this technology work.

Current limitations aside, the cloud is an ideal way to consume quantum computing, because quantum computing has low I/O but deep computation, Reynolds said. Because cloud vendors have the technological resources and a large pool of users, they will inevitably be some of the first quantum-as-a-service providers and will look for ways to provide the best software development and deployment stacks.

Quantum computing could even supplement general compute and AI services cloud providers currently offer, said Tony Uttley, president of Honeywell Quantum Solutions.In that scenario, the cloud would integrate with classical computing cloud resources in a co-processing environment.

The cloud plays two key roles in quantum computing today, according to Hyoun Park, CEO and principal analyst at Amalgam Insights. The first is to provide an application development and test environment for developers to simulate the use of quantum computers through standard computing resources.

The second is to offer access to the few quantum computers that are currently available, in the way mainframe leasing was common a generation ago. This improves the financial viability of quantum computing, since multiple users can increase machine utilization.

It takes significant computing power to simulate quantum algorithm behavior from a development and testing perspective. For the most part, cloud vendors want to provide an environment to develop quantum algorithms before loading these quantum applications onto dedicated hardware from other providers, which can be quite expensive.

However, classical simulations of quantum algorithms that use large numbers of qubits are not practical. "The issue is that the size of the classical computer needed will grow exponentially with the number of qubits in the machine," said Doug Finke, publisher of the Quantum Computing Report.So, a classical simulation of a 50-qubit quantum computer would require a classical computer with roughly 1 petabyte of memory. This requirement will double with every additional qubit.

Nobody knows which approach is best, or which materials are best. We're at the Edison light bulb filament stage. Martin ReynoldsDistinguished vice president of research at Gartner

But classical simulations for problems using a smaller number of qubits are useful both as a tool to teach quantum algorithms to students and also for quantum software engineers to test and debug algorithms with "toy models" for their problem, Finke said.Once they debug their software, they should be able to scale it up to solve larger problems on a real quantum computer.

In terms of putting quantum computing to use, organizations can currently use it to support last-mile optimization, encryption and other computationally challenging issues, Park said. This technology could also aid teams across logistics, cybersecurity, predictive equipment maintenance, weather predictions and more. Researchers can explore multiple combinations of variables in these kinds of problems simultaneously, whereas a traditional computer needs to compute each combination separately.

However, there are some drawbacks to quantum computing in the cloud. Developers should proceed cautiously when experimenting with applications that involve sensitive data, said Finke. To address this, many organizations prefer to install quantum hardware in their own facilities despite the operational hassles, Finke said.

Also, a machine may not be immediately available when a quantum developer wants to submit a job through quantum services on the public cloud. "The machines will have job queues and sometimes there may be several jobs ahead of you when you want to run your own job," Finke said. Some of the vendors have implemented a reservation capability so a user can book a quantum computer for a set time period to eliminate this problem.

IBM was first to market with its Quantum Experience offering, which launched in 2016 and now has over 15 quantum computers connected to the cloud. Over 210,000 registered users have executed more than 70 billion circuits through the IBM Cloud and published over 200 papers based on the system, according to IBM.

IBM also started the Qiskit open source quantum software development platform and has been building an open community around it. According to GitHub statistics, it is currently the leading quantum development environment.

In late 2019, AWS and Microsoft introduced quantum cloud services offered through partners.

Microsoft Quantum provides a quantum algorithm development environment, and from there users can transfer quantum algorithms to Honeywell, IonQ or Quantum Circuits Inc. hardware. Microsoft's Q# scripting offers a familiar Visual Studio experience for quantum problems, said Michael Morris, CEO of Topcoder, an on-demand digital talent platform.

Currently, this transfer involves the cloud providers installing a high-speed communication link from their data center to the quantum computer facilities, Finke said. This approach has many advantages from a logistics standpoint, because it makes things like maintenance, spare parts, calibration and physical infrastructure a lot easier.

Amazon Braket similarly provides a quantum development environment and, when generally available, will provide time-based pricing to access D-Wave, IonQ and Rigetti hardware. Amazon says it will add more hardware partners as well. Braket offers a variety of different hardware architecture options through a common high-level programming interface, so users can test out the machines from the various partners and determine which one would work best with their application, Finke said.

Google has done considerable core research on quantum computing in the cloud and is expected to launch a cloud computing service later this year. Google has been more focused on developing its in-house quantum computing capabilities and hardware rather than providing access to these tools to its cloud users, Park said. In the meantime, developers can test out quantum algorithms locally using Google's Circ programming environment for writing apps in Python.

In addition to the larger offerings from the major cloud providers, there are several alternative approaches to implementing quantum computers that are being provided through the cloud.

D-Wave is the furthest along, with a quantum annealer well-suited for many optimization problems. Other alternatives include QuTech, which is working on a cloud offering of its small quantum machine utilizing its spin qubits technology. Xanadu is another and is developing a quantum machine based on a photonic technology.

Researchers are pursuing a variety of approaches to quantum computing -- using electrons, ions or photons -- and it's not yet clear which approaches will pan out for practical applications first.

"Nobody knows which approach is best, or which materials are best. We're at the Edison light bulb filament stage, where Edison reportedly tested thousands of ways to make a carbon filament until he got to one that lasted 1,500 hours," Reynolds said. In the meantime, recent cloud offerings promise to enable developers to start experimenting with these different approaches to get a taste of what's to come.

Continue reading here:
The future of quantum computing in the cloud - TechTarget

Startup building the infrastructure for quantum computing – The Science Show – ABC News

Robyn Williams: But what about jobs now in areas like quantum computing, even before those computers exist? Well, Pauline Newman has just met Michele Reilly who is a quantum entrepreneur, and when she started, only the second one in existence, we're told.

Pauline Newman: Michele, I think that you said you were only the second entrepreneur in quantum technology in the world.

Michele Reilly: At the time that I started the company, that was definitely the case. The industry is growing very rapidly, we are seeing a lot of different efforts, so it's an interesting time to be involved in quantum computing.

Pauline Newman: So tell me what quantum technology entrepreneurs do.

Michele Reilly: We in particular are focused on what I have now started to call digital error correction, to distinguish it from control of errors at the hardware level. So the thing to understand is that quantum computers have an extensive classical infrastructure in order to manage the errors. So we are building an operating system for quantum computers. And the amount of data that is going to be coming out of these machines is upwards of 50 terabytes a second, depending on which particular hardware chipset technology we're talking about.

In the case of superconductors and silicon, it's upwards of 140 terabytes a second, so this is more data than the LHC is currently managing. So from our perspective, most of what we see that comes out of the machine are errors, so we set up a company to work on that now because it's a critical problem that is currently not the focus of a lot of major technology companies, and we know that in order for these machines to even run in the first place, this is necessary. Without this technology, no quantum computer will be running quantum algorithms any time soon.

Pauline Newman: In fact you are way ahead of the curve, aren't you, because quantum computers don't exist, and they may not exist. I don't know, it may be 15 years, maybe never.

Michele Reilly: Yes, this is a big debate in many different communities, how to address this, and I think any effort that is going for visionary purpose of solving some of the biggest problems has to address. Yes, it's an exciting time to be part of this.

Pauline Newman: And if you can actually get that done, the world's problems could be solved, or some of them, but more will be created.

Michele Reilly: Yes, we are all reluctant to over-promise, but there are pretty strong indications that this should work. If it doesn't work, it would be sort of a revolution in physics.

Pauline Newman: Okay, in terms of the impact on human life, what matters to people, what will quantum computers do?

Michele Reilly: Well, I suppose if we are talking about the ultimate limits of this technology, there is an exciting aspect of can we even be thinking about life extension due to chemical searches in these machines.

Pauline Newman: You mean find new drugs that might help us, things like that?

Michele Reilly: Yes. In some sense I could imagine a world wherewe have these very lengthy clinical trials to bring a drug to market, we're talking about upwards of ten years, in some cases decades, and I can imagine a world where the regulatory environment requires having these machines in order to do a search in advance on what is the correct molecular compound, and in some sense the promise is getting rid of lab science or reducing the amount of lab science. I don't think it's going to go away completely, but it would be something that would be very, very supportive in parallel to the current empirical process that we have.

Pauline Newman: Maybe the uses will become more apparent when the machines exist.

Michele Reilly: Yes, right. We've always hadeven in the development of the computers we know and love today, the applications weren't obvious in the '40s and the early '50s. If you asked the original founders of transistors 'what's a computer, and what is it going to do for society', most of them would decline to comment. And it's similar today.

Pauline Newman: Which brings me back to one of my first points, you are an entrepreneur, so I always thought that entrepreneurs tried to make money, but quantum computing is so far ahead. What is your business model?

Michele Reilly: So we are focused on building out and developing all the IP that's going to be needed to run these machines. So without this digital error correction component that I've been talking about, really if you pick up your cell phone there are about 1,500 pieces of IP in that that control noise. And so in a quantum computer the noise is even more egregious because of this thing called decoherence. And so we have taken up this providing all of the middleware, if you will, for controlling the errors in a quantum computer.

Pauline Newman: So people will need you when they come to actually build the real thing.

Michele Reilly: Yes, when everybody gets here, we've got the tools to make them run.

Pauline Newman: And you're quite interested in satellite communication, aren't you, satellite to Earth.

Michele Reilly: Well, I've been noticing there is definitely a rush towards space, and I've been watching these plans very closely on the satellite launches. We are seeing OneWeb, and Jeff Bezos's company and SpaceX launch these satellites to give the entire globe internet broadband connections, and I think that's important to think about the security of all these satellites that are going to be providingour tech luminaries are calling it broadband for the entire Earth. There is a question as to the security of this technique.

Pauline Newman: Because how do you keep it secure? You've got a signal coming down from a satellite, pretty easy to intercept, you'd think.

Michele Reilly: There you go. So what's always on my mind is quantum and quantum security, quantum technologies, and the main focus has been trying to launch a satellite into space to do quantum encryption. This is a very simple demonstration, a one-hertz information transfer capacity. But the issue with that is that they lose seven orders of magnitude of content in the atmospheric attenuation and it only works for an hour, and it only works at night. But it's evidence that we should be paying attention to this now.

Pauline Newman: So that satellite is actually using quantum technology.

Michele Reilly: It is. What they did is quantum. That would be the secure version. This is a very basic proof of principle of how to get to fully secure internet one day, in a world where we eventually have quantum computers and we need this type of security.

Pauline Newman: You're talking about the key technology. We're using key technologies, aren't we, in our general internet security. When you see the little lock on your computer screen, something like that, isn't it, that makes our communication secure?

Michele Reilly: Well, we have great security for the pre-quantum regime. Part of the excitement and the concern around quantum computers is that they would be able to break this. Once these quantum computers are up and running, most of our current systems, like in banking, will no longer be fully secure, and so this is something that many people are starting to think about today of how to keep these systems secure. And I've just been looking up into space and thinking, okay, we are all launching these satellites. I think that there are other ways to do that security in a way that's not as expensive or cumbersome as having the satellite launch and you on land. So we are looking at being able to provide the internet in a post-quantum world.

Pauline Newman: Right, so you'd somehow have to be very careful with sending quantum signals and not to degrade the signal.

Michele Reilly: Right, so we have a technology that acts as a memory that stays coherent for very long periods of time, up to years of time, depending on how much memory is added into the system. This is something that has been very much on my mind.

Pauline Newman: Have you had lots of backers for your company?

Michele Reilly: We've gotten a lot of interest

Pauline Newman: How about Jeff Bezos with his satellites?

Michele Reilly: Yes, I think this is something Jeff should be taking a very serious look at. The technology is there and ready, and we'd love to talk to you Jeff, if you're listening!

Robyn Williams: Jeff Bezos? Never misses a Science Show, surely! Michele Reilly is based in Vienna.

Go here to see the original:
Startup building the infrastructure for quantum computing - The Science Show - ABC News