Nanotechnology-enabled High Resolution DBT
Nanotechnology-enabled High Resolution DBT.
By: The Oncologist Journal
Continue reading here:
Nanotechnology-enabled High Resolution DBT - Video
Nanotechnology-enabled High Resolution DBT
Nanotechnology-enabled High Resolution DBT.
By: The Oncologist Journal
Continue reading here:
Nanotechnology-enabled High Resolution DBT - Video
Nanotechnology-Radiation Therapy (Ketel)
Research paper about nano-level radiation therapy, including some research from the experiments on lab mice.
By: Brandy Ketel
Thermal paints - Nanotechnology - Barozzi Vernici
Innovative and tested paints based on nanotechnology to improve indoor comfort and energy efficiency of buildings both in summer and in winter, thanks to their heat reflecting and thermal insulatin...
By: Barozzi Vernici
See more here:
Thermal paints - Nanotechnology - Barozzi Vernici - Video
Diamon Fusion Nanotechnology Glass Treatment on car windshield
Diamon Fusion Nanotechnology Glass Treatment on car windshield https://www.youtube.com/channel/UCJ3uQsY3a_gA-eQaYiH2HPA crl crlaurence, protect your love one...
By: Alsquality
Continued here:
Diamon Fusion Nanotechnology Glass Treatment on car windshield - Video
Lockheed Martin #39;s Nanotechnology and 3D Printing Robot Arm
Dan Hedges of ENGINEERING.com speaks to Slade Gardner from Lockheed Martin about their 3D printer and nano-tech.
By: engineeringdotcom
Link:
Lockheed Martin's Nanotechnology and 3D Printing Robot Arm - Video
Nanotechnology is a powerful emerging technology for engineering nature at the atomic and molecular level. Nanoparticles are infinitesimally small, about 1000 times thinner than a human hair. At this scale, familiar substances change in ways that scientists may not expect or predict, presenting new toxicity risks. A growing body of scientific data suggests that nanoparticles can be harmful to our health and to the environment.
Nanomaterials are now being used in hundreds of consumer products, from toys to clothes to toothpaste. These new products are being commercialized largely outside of public view or debate and with few regulations to protect workers, the public and the environment.
As just one example of potential concerns, studies indicate that manufactured nanomaterials used in sunscreens have the potential to harm our health. When we shower or swim, the nanoparticles in sunscreens end up in our water systems -- these substances could damage microbes that are helpful to ecosystems and could be absorbed up the food chain from smaller to larger organisms.
Friends of the Earth is pushing policymakers in the U.S. and internationally to apply a precautionary approach to the regulation of nanotechnology by putting the health of people and the environment before corporate profits. We are also advocating for mandatory labeling of products that contain nanomaterials so that consumers can make informed decisions.
Friends of the Earth has published several groundbreaking reports on the prevalence and risks of nanomaterials to inform public debate and government solutions, and we work with a variety of partners around the world to monitor the increasing use of this technology and advance common principles for government oversight. We joined over 70 groups from six continents to endorse a guiding document called Principles for the Oversight of Nanotechnologies and Nanomaterials.
Excerpt from:
Nanotechnology - Friends of the Earth
Introduction
Imagine a world in which cars can be assembled molecule-by-molecule, garbage can be disassembled and turned into beef steaks, and people can be operated on and healed by cell-sized robots. Sound like science fiction? Well, with current semiconductor chip manufacturing encroaching upon the nanometer scale and the ability to move individual atoms at the IBM Almaden laboratory, we are fast approaching the technological ability to fabricate productive machines and devices that can manipulate things at the atomic level. From this ability we will be able to develop molecular-sized computers and robots, which would give us unprecedented control over matter and the ability to shape the physical world as we see fit. Some may see it as pure fantasy, but others speculate that it is an inevitability that will be the beginning of the next technological revolution.
Laboratories, such as the Stanford Nanofabrication Facility (SNF), have already been researching nanofabrication techniques with applications in fiber optics, biotechnology, microelectromechanical systems (MEMS), and wide variety of other research fields relevant to today's technology. MEMS, "tiny mechanical devices such as sensors, valves, gears, mirrors, and actuators embedded in semiconductor chips", are particularly interesting because they are but a mere step away from the molecular machines envisioned by nanotechnology. MEMS are already being used in automobile airbag systems as accelerometers to detect collisions and will become an increasing part of our everyday technology.
In 1986, a researcher from MIT named K. Eric Drexler already foresaw the advent of molecular machines and published a book, Engines of Creation, in which he outlined the possibilities and consequences of this emerging field, which he called nanotechnology. He was inspired by Nobel laureate Richard Feynman's 1959 lecture, There's Plenty of Room at the Bottom, about miniaturization down to the atomic scale. Since then, Drexler has written numerous other books on the subject, such as Unbounding the Future, and has founded the Foresight Institute, which is a nonprofit organization dedicated to the responsible development of nanotechnology. It hosts conferences and competitions to raise the awareness of nanotechnology and the ethical issues involved in its development.
Today, nanotechnology research and development is quite wide spread, although not high profile yet. Numerous universities, such as Univ. of Washington and Northwestern Univ., have established centers and institutes to study nanotechnology, and the U.S. government has created an organization, the National Nanotechnology Initiative (NNI), to monitor and guide research and development in this field. In fact, as noted in an April 2001 Computerworld article, the Bush administration increased funding to nanoscale science research by 16% through its National Science Foundation (NSF) budget increase. DARPA (Defense Advanced Research Projects Agency) and the NSF are currently the two largest sources of funding for nanotechnology research and have an enormous influence on the direction of scientific research done in the United States. With so many resources dedicated to its development, nanotechnology will surely have an impact within our lifetime, so it is important to examine its ethical implications while it is still in its infancy.
What is Nanotechnology?
Nanotechnology, also called molecular manufacturing, is "a branch of engineering that deals with the design and manufacture of extremely small electronic circuits and mechanical devices built at the molecular level of matter." [Whatis.com] The goal of nanotechnology is to be able to manipulate materials at the atomic level to build the smallest possible electromechanical devices, given the physical limitations of matter. Much of the mechanical systems we know how to build will be transferred to the molecular level as some atomic analogy. (see nanogear animation on the right)
As envisioned by Drexler, as well as many others, this would lead to nanocomputers no bigger than bacteria and nanomachines, also known as nanites (from Star Trek: The Next Generation), which could be used as a molecular assemblers and disassemblers to build, repair, or tear down any physical or biological objects.
In essence, the purpose of developing nanotechnology is to have tools to work on the molecular level analogous to the tools we have at the macroworld level. Like the robots we use to build cars and the construction equipment we use to build skyscrapers, nanomachines will enable us to create a plethora of goods and increase our engineering abilities to the limits of the physical world.
Potential Benefits...
It would not take much of a leap, then, to imagine disassemblers dismantling garbage to be recycled at the molecular level, and then given to assemblers for them to build atomically perfect engines. Stretching this vision a bit, you can imagine a Star Trek type replicator which could reassemble matter in the form of a juicy steak, given the correct blueprints and organization of these nanomachines.
Just given the basic premises of nanotechnology, you can imagine the vast potential of this technology. Some of it's more prominent benefits would be:
Along with all the obvious manufacturing benefits, there are also many potential medical and environmental benefits. With nanomachines, we could better design and synthesize pharmaceuticals; we could directly treat diseased cells like cancer; we could better monitor the life signs of a patient; or we could use nanomachines to make microscopic repairs in hard-to-operate-on areas of the body. With regard to the environment, we could use nanomachines to clean up toxins or oil spills, recycle all garbage, and eliminate landfills, thus reducing our natural resource consumption.
Potential Dangers...
The flip side to these benefits is the possibility of assemblers and disassemblers being used to create weapons, be used as weapons themselves, or for them to run wild and wreak havoc. Other, less invasive, but equally perilous uses of nanotechnology would be in electronic surveillance.
Weapons are an obvious negative use of nanotechnology. Simply extending today's weapon capabilities by miniaturizing guns, explosives, and electronic components of missiles would be deadly enough. However, with nanotechnology, armies could also develop disassemblers to attack physical structures or even biological organism at the molecular level. A similar hazard would be if general purpose disassemblers got loose in the environment and started disassembling every molecule they encountered. This is known as "The Gray Goo Scenario." Furthermore, if nanomachines were created to be self replicating and there were a problem with their limiting mechanism, they would multiply endlessly like viruses. Even without considering the extreme disaster scenarios of nanotechnology, we can find plenty of potentially harmful uses for it. It could be used to erode our freedom and privacy; people could use molecular sized microphones, cameras, and homing beacons to monitor and track others.
Ethical Issues & Analysis
With such awesome potential dangers inherent in nanotechnology, we must seriously examine its potential consequences. Granted, nanotechnology may never become as powerful and prolific as envisioned by its evangelists, but as with any potential, near-horizon technology, we should go through the exercise of formulating solutions to potential ethical issues before the technology is irreversibly adopted by society. We must examine the ethics of developing nanotechnology and create policies that will aid in its development so as to eliminate or at least minimize its damaging effects on society.
Ethical Decision Making Worksheet
Most relevant facts
We are reaching a critical point where technology will enable us to build complex molecular machines. Molecular assemblers and disassemblers could be developed from this technology, which would have great potential for both good and bad. The two greatest threats from development of nanotechnology are catastrophic accidents and misuse.
Professional Issues
Legal/Policy Issues
Ethical Issues
Stakeholders
Possible Actions
Consequences
Individual Rights/Fairness
The second and third options seem to be the most prudent course of action since the second option is commonly done now for emerging technologies and the third option consciously prevents designs that could lead to the catastrophic scenarios.
Common Good
The second and third options also seem to advance the most common good since the second option involves promoting ethics within the research community and the third option is a set of design principles to discourage unethical or accidental uses of nanotechnology.
Final Decision
Nanotechnology research should be allowed to continue but with a non-government advisory council to monitor the research and help formulate ethical guidelines and policies. Generally, nanomachines should NOT be designed to be general purpose, self replicating, or to be able to use an abundant natural compound as fuel. Furthermore, complex nanomachines should be tagged with a radioactive isotope so as to allow them to be tracked in case they are lost.
Conclusion
It would be difficult to deny the potential benefits of nanotechnology and stop development of research related to it since it has already begun to penetrate many different fields of research. However, nanotechnology can be developed using guidelines to insure that the technology does not become too potentially harmful. As with any new technology, it is impossible to stop every well funded organization who may seek to develop the technology for harmful purposes. However, if the researchers in this field put together an ethical set of guidelines (e.g. Molecular Nanotechnology Guidelines) and follow them, then we should be able to develop nanotechnology safely while still reaping its promised benefits.
References
Drexler, K. Eric Engines of Creation. New York: Anchor Books, 1986.
Drexler, K. Eric Unbounding the Future. New York: Quill, 1991.
Feynman, Richard P. There's Plenty of Room at the Bottom. 03 March 2002. http://www.zyvex.com/nanotech/feynman.html
The Foresight Institute. 03 March 2002. http://www.foresight.org/
Institute for Molecular Manufacturing. 03 March 2002. IMM.org
National Nanotechnology Initiative. 03 March 2002. http://www.nano.gov/
Thibodeau, Patrick. "Nanotech, IT research given boost in Bush budget". 03 March 2002. (April 11, 2001) CNN.com
[Definitions]. 03 March 2002. Whatis.com
Read the original post:
The Ethics of Nanotechnology - Santa Clara University
"Nanotechnology: Understanding How Small Solutions Drive Big Innovation"
Energy and Commerce Committee #39;s Subcommittee Chairman on Commerce, Manufacturing, and Trade, Congressman Lee Terry, delivers his opening remarks during a Sub...
By: NebraskaTerry
Go here to see the original:
"Nanotechnology: Understanding How Small Solutions Drive Big Innovation" - Video
Hearing on "Nanotechnology: Understanding How Small Solutions Drive Big Innovation"
The Subcommittee on Commerce, Manufacturing, and Trade held a hearing on Tuesday, July 29, 2014, at 10:15 a.m. in 2322 Rayburn House Office Building, titled ...
By: EnergyCommerce
Read more from the original source:
Hearing on "Nanotechnology: Understanding How Small Solutions Drive Big Innovation" - Video
The Role of Nanotechnology in the Clinical Laboratory - Steven C. Kazmierczak, Ph.D.
Nanotechnology is a term widely used today that describes man #39;s ability to control the manufacture of functional "nanosystems", or to deliberately create structures at the nano scale that exhibit...
By: UWTV
More:
The Role of Nanotechnology in the Clinical Laboratory - Steven C. Kazmierczak, Ph.D. - Video
TechSci Research: Karan Chechi Presented India Nanotechnology at conference
TechSci Research submited study on India Nanotechnology at #39;Nano India: Policy Regulation #39; conference.
By: Karan Chechi
Go here to read the rest:
TechSci Research: Karan Chechi Presented India Nanotechnology at conference - Video
Trans-Pyrenees Action for Advanced Infrastructures for Nanosciences and Nanotechnology (Train2)
The Trans-Pyrenees Action for Advanced Infrastructures for Nanosciences and Nanotechnology (Train2) project aims to make the SUDOE region a global reference in Nanoscience and Nanotechnology...
By: train2sudoe
See the original post here:
Trans-Pyrenees Action for Advanced Infrastructures for Nanosciences and Nanotechnology (Train2) - Video
1 Nanotechnology Morgellons NWO Truth
MUST READ!! COLIN POWELL LETTER http://www.unhealthyearth.com/2012/07/chemtrail-whistleblower-speaks.html?spr... LEAVE A COMMENT IF YOU THINK MY VIDEOS SHOW POLICE HARASSMENT, GANG STALKING...
By: STOP THE CRIMINAL CIA NWO
Read the original here:
1 Nanotechnology Morgellons NWO Truth - Video
Ruk Nanotechnology - Dimostrazione trattamento protettivo per superfici
Immagini e video valgono pi delle parole. Efficace su molti tipi di superfici e materiali, in casa e all #39;aperto, il trattamento protettivo Ruk Nanotechnolog...
By: Ruk Nanotechnology
Here is the original post:
Ruk Nanotechnology - Dimostrazione trattamento protettivo per superfici - Video
Technion Russell Berrie Nanotechnology Institute Winter School 2014
Technion #39;s Russell Berrie Nanotechnology Institute RBNI held its biennial winter school in February 2014. For the first time ever, we had 38 foreign students...
By: Technion
Here is the original post:
Technion Russell Berrie Nanotechnology Institute Winter School 2014 - Video
Bilkent University UNAM National Nanotechnology Research Center
By: newestParadigm
More:
Bilkent University UNAM National Nanotechnology Research Center - Video
Nanotechnology - hallowed be your name...
By: Pol Septentrio
Read more:
Nanotechnology - hallowed be your name... - Video
Hydrophobic [Waterproof] Nanotechnology Surface Coatings
By: EcoTech Nano Solutions
Go here to see the original:
Hydrophobic [Waterproof] Nanotechnology Surface Coatings - Video
Dark Agenda ~ Bio Genetic Engineering with Nanotechnology
Changing you and your world from within and without.
By: Vexstar
Originally posted here:
Dark Agenda ~ Bio Genetic Engineering with Nanotechnology - Video