Machine Learning | Azure Blog and Updates | Microsoft Azure

Monday, March 23, 2020

To help users be more productive and deliberate in their actions while emailing, the web version of Outlook and the Outlook for iOS and Android app have introduced suggested replies, a new feature powered by Azure Machine Learning service.

Tuesday, January 21, 2020

Microsoft Azure Machine Learning (ML) is addressing complex business challenges that were previously thought unsolvable and is having a transformative impact across every vertical.

Tuesday, November 5, 2019

Enterprises today are adopting artificial intelligence (AI) at a rapid pace to stay ahead of their competition, deliver innovation, improve customer experiences, and grow revenue. AI and machine learning applications are ushering in a new era of transformation across industries from skillsets to scale, efficiency, operations, and governance.

Monday, October 28, 2019

Azure Machine Learning is the center for all things machine learning on Azure, be it creating new models, deploying models, managing a model repository and/or automating the entire CI/CD pipeline for machine learning. We recently made some amazing announcements on Azure Machine Learning, and in this post, Im taking a closer look at two of the most compelling capabilities that your business should consider while choosing the machine learning platform.

Wednesday, July 17, 2019

Today we are announcing the open sourcing of our recipe to pre-train BERT (Bidirectional Encoder Representations from Transformers) built by the Bing team, including code that works on Azure Machine Learning, so that customers can unlock the power of training custom versions of BERT-large models for their organization. This will enable developers and data scientists to build their own general-purpose language representation beyond BERT.

Tuesday, June 25, 2019

The next time you see your physician, consider the times you fill in a paper form. It may seem trivial, but the information could be crucial to making a better diagnosis. Now consider the other forms of healthcare data that permeate your lifeand that of your doctor, nurses, and the clinicians working to keep patients thriving.

Monday, June 10, 2019

Data scientists have a dynamic role. They need environments that are fast and flexible while upholding their organizations security and compliance policies. Notebook Virtual Machine (VM), announced in May 2019, resolves these conflicting requirements while simplifying the overall experience for data scientists.

Thursday, June 6, 2019

Build more accurate forecasts with the release of capabilities in automated machine learning. Have scenarios that require have gaps in training data or need to apply contextual data to improve your forecast or need to apply lags to your features? Learn more about the new capabilities that can assist you.

Tuesday, June 4, 2019

The automated machine learning capability in Azure Machine Learning service allows data scientists, analysts, and developers to build machine learning models with high scalability, efficiency, and productivity all while sustaining model quality.

Wednesday, May 22, 2019

During Microsoft Build we announced the preview of the visual interface for Azure Machine Learning service. This new drag-and-drop workflow capability in Azure Machine Learning service simplifies the process of building, testing, and deploying machine learning models for customers who prefer a visual experience to a coding experience.

See original here:
Machine Learning | Azure Blog and Updates | Microsoft Azure

New Bellwethr Report Highlights the Devastating Impact Coronavirus is Already Having on US Small Businesses – AiThority

Machine learning-powered customer conversion and retention platform Bellwethr has released findings from its new reportThe Impact of Coronavirus on US Businesses [March 2020].

The goal of the survey was to better understand the specific wayscoronavirus is already impacting day-to-day business operations and how business owners feel about what will happen in the upcoming months.

Commenting on the report, Bellwethr COO and co-founderDaron Jamisonsaid,While the results paint a dark picture of the reality that many businesses are facing right now, there is a tremendous opportunity for those companies who are able to calm their nerves and use this time to test new ideas, double down on what they know is working, and look for ways to improve efficiencies.

Recommended AI News:Three Secrets To Better Understanding Target Accounts And Buying Committees

Key Findings:

Recommended AI News: AiThority Interview with Jeff Elton, CEO at Concerto HealthAI

Read the original:
New Bellwethr Report Highlights the Devastating Impact Coronavirus is Already Having on US Small Businesses - AiThority

Machine Learning Applications for the Characterization of Particle Profiles of Therapeutic Products, Upcoming Webinar Hosted by Xtalks – PR Web

Xtalks Life Science Webinars

TORONTO (PRWEB) March 10, 2020

Flow Imaging is a proven method for the characterization of particulates in therapeutic products. It is routinely performed alongside the United States Pharmacopeia (USP) 788/787 Light Obscuration methods to more accurately quantify and characterize the particle subpopulations in drug products (silicone oil, protein aggregate, extrinsic material, etc.). Typical classifications of imaging data use single parameter filters such as aspect ratio to quantify silicone oil compared to protein. However, machine learning provides a sophisticated approach to more accurately classify particles in therapeutic products by leveraging the information present in the raw particle images.

This free webinar will demonstrate how various machine learning algorithms facilitate improved classification compared to the traditional approach, leading to superior sample descriptions. It will also showcase examples of the benefits that machine learning provides for protein products and cell therapy products. Flow Imaging has tremendous potential to monitor particle size distributions, aggregates/agglomerates and extrinsic contaminants from batch to batch. Applying machine learning to flow imaging of pharmaceutical products can assist in defining the criticality of product quality attributes, as well as establishing an integrated control strategy for characterization and control of drug products.

Join Amber Fradkin, Director, Particle Core Facility, KBI Biopharma in a live webinar on Tuesday, March 24, 2020 at 11am EDT (NA) (3pm GMT/UK).

For more information or to register for this event, visit Machine Learning Applications for the Characterization of Particle Profiles of Therapeutic Products.

ABOUT XTALKS

Xtalks, powered by Honeycomb Worldwide Inc., is a leading provider of educational webinars to the global life science, food and medical device community. Every year thousands of industry practitioners (from life science, food and medical device companies, private & academic research institutions, healthcare centers, etc.) turn to Xtalks for access to quality content. Xtalks helps Life Science professionals stay current with industry developments, trends and regulations. Xtalks webinars also provide perspectives on key issues from top industry thought leaders and service providers.

To learn more about Xtalks visit http://xtalks.comFor information about hosting a webinar visit http://xtalks.com/why-host-a-webinar/

Share article on social media or email:

Here is the original post:
Machine Learning Applications for the Characterization of Particle Profiles of Therapeutic Products, Upcoming Webinar Hosted by Xtalks - PR Web

With launch of COVID-19 data hub, the White House issues a call to action for AI researchers – TechCrunch

In a briefing on Monday, research leaders across tech, academia and the government joined the White House to announce an open data set full of scientific literature on the novel coronavirus. The COVID-19 Open Research Dataset, known as CORD-19, will also add relevant new research moving forward, compiling it into one centralized hub. The new data set is machine readable, making it easily parsed for machine learning purposes a key advantage according to researchers involved in the ambitious project.

In a press conference, U.S. CTO Michael Kratsios called the new data set the most extensive collection of machine readable coronavirus literature to date. Kratsios characterized the project as a call to action for the AI community, which can employ machine learning techniques to surface unique insights in the body of data. To come up with guidance for researchers combing through the data, the National Academies of Sciences, Engineering, and Medicine collaborated with the World Health Organization to come up with high priority questions about the coronavirus related to genetics, incubation, treatment, symptoms and prevention.

The partnership, announced today by the White House Office of Science and Technology Policy, brings together the Chan Zuckerberg Initiative, Microsoft Research, the Allen Institute for Artificial Intelligence, the National Institutes of Healths National Library of Medicine, Georgetown Universitys Center for Security and Emerging Technology, Cold Spring Harbor Laboratory and the Kaggle AI platform, owned by Google.

The database brings together nearly 30,000 scientific articles about the virus known as SARS-CoV-2. as well as related viruses in the broader coronavirus group. Around half of those articles make the full text available. Critically, the database will include pre-publication research from resources like medRxiv and bioRxiv, open access archives for pre-print health sciences and biology research.

Sharing vital information across scientific and medical communities is key to accelerating our ability to respond to the coronavirus pandemic, Chan Zuckerberg Initiative Head of Science Cori Bargmann said of the project.

The Chan Zuckerberg Initiative hopes that the global machine learning community will be able to help the science community connect the dots on some of the enduring mysteries about the novel coronavirus as scientists pursue knowledge around prevention, treatment and a vaccine.

For updates to the CORD-19 data set, the Chan Zuckerberg Initiative will track new research on a dedicated page on Meta, the research search engine the organization acquired in 2017.

The CORD-19 data set announcement is certain to roll out more smoothly than the White Houses last attempt at a coronavirus-related partnership with the tech industry. The White House came under criticism last week for President Trumps announcement that Google would build a dedicated website for COVID-19 screening. In fact, the site was in development by Verily, Alphabets life science research group, and intended to serve California residents, beginning with San Mateo and Santa Clara County. (Alphabet is the parent company of Google.)

The site, now live, offers risk screening through an online questionnaire to direct high-risk individuals toward local mobile testing sites. At this time, the project has no plans for a nationwide rollout.

Google later clarified that the company is undertaking its own efforts to bring crucial COVID-19 information to users across its products, but that may have become conflated with Verilys much more limited screening site rollout. On Twitter, Googles comms team noted that Google is indeed working with the government on a website, but not one intended to screen potential COVID-19 patients or refer them to local testing sites.

In a partial clarification over the weekend, Vice President Pence, one of the Trump administrations designated point people on the pandemic, indicated that the White House is working with Google but also working with many other tech companies. Its not clear if that means a central site will indeed launch soon out of a White House collaboration with Silicon Valley, but Pence hinted that might be the case. If that centralized site will handle screening and testing location referral is not clear.

Our best estimate is that some point early in the week we will have a website that goes up, Pence said.

More:
With launch of COVID-19 data hub, the White House issues a call to action for AI researchers - TechCrunch

Algorithms and bias, explained – Vox.com

Humans are error-prone and biased, but that doesnt mean that algorithms are necessarily better. Still, the tech is already making important decisions about your life and potentially ruling over which political advertisements you see, how your application to your dream job is screened, how police officers are deployed in your neighborhood, and even predicting your homes risk of fire.

But these systems can be biased based on who builds them, how theyre developed, and how theyre ultimately used. This is commonly known as algorithmic bias. Its tough to figure out exactly how systems might be susceptible to algorithmic bias, especially since this technology often operates in a corporate black box. We frequently dont know how a particular artificial intelligence or algorithm was designed, what data helped build it, or how it works.

Typically, you only know the end result: how it has affected you, if youre even aware that AI or an algorithm was used in the first place. Did you get the job? Did you see that Donald Trump ad on your Facebook timeline? Did a facial recognition system identify you? That makes addressing the biases of artificial intelligence tricky, but even more important to understand.

When thinking about machine learning tools (machine learning is a type of artificial intelligence), its better to think about the idea of training. This involves exposing a computer to a bunch of data any kind of data and then that computer learns to make judgments, or predictions, about the information it processes based on the patterns it notices.

For instance, in a very simplified example, lets say you wanted to train your computer system to recognize whether an object is a book, based on a few factors, like its texture, weight, and dimensions. A human might be able to do this, but a computer could do it more quickly.

To train the system, you show the computer metrics attributed to a lot of different objects. You give the computer system the metrics for every object, and tell the computer when the objects are books and when theyre not. After continuously testing and refining, the system is supposed to learn what indicates a book and, hopefully, be able to predict in the future whether an object is a book, depending on those metrics, without human assistance.

That sounds relatively straightforward. And it might be, if your first batch of data was classified correctly and included a good range of metrics featuring lots of different types of books. However, these systems are often applied to situations that have much more serious consequences than this task, and in scenarios where there isnt necessarily an objective answer. Often, the data on which many of these decision-making systems are trained or checked are often not complete, balanced, or selected appropriately, and that can be a major source of although certainly not the only source of algorithmic bias.

Nicol Turner-Lee, a Center for Technology Innovation fellow at the Brookings Institution think tank, explains that we can think about algorithmic bias in two primary ways: accuracy and impact. An AI can have different accuracy rates for different demographic groups. Similarly, an algorithm can make vastly different decisions when applied to different populations.

Importantly, when you think of data, you might think of formal studies in which demographics and representation are carefully considered, limitations are weighed, and then the results are peer-reviewed. Thats not necessarily the case with the AI-based systems that might be used to make a decision about you. Lets take one source of data everyone has access to: the internet. One study found that, by teaching an artificial intelligence to crawl through the internet and just reading what humans have already written the system would produce prejudices against black people and women.

Another example of how training data can produce sexism in an algorithm occurred a few years ago, when Amazon tried to use AI to build a rsum-screening tool. According to Reuters, the companys hope was that technology could make the process of sorting through job applications more efficient. It built a screening algorithm using rsums the company had collected for a decade, but those rsums tended to come from men. That meant the system, in the end, learned to discriminate against women. It also ended up factoring in proxies for gender, like whether an applicant went to a womens college. (Amazon says the tool was never used and that it was nonfunctional for several reasons.)

Amid discussions of algorithmic biases, companies using AI might say theyre taking precautions, taking steps to use more representative training data and regularly auditing their systems for unintended bias and disparate impact against certain groups. But Lily Hu, a doctoral candidate at Harvard in applied mathematics and philosophy who studies AI fairness, says those arent assurances that your system will perform fairly in the future.

You dont have any guarantees because your algorithm performs fairly on your old dataset, Hu told Recode. Thats just a fundamental problem of machine learning. Machine learning works on old data [and] on training data. And it doesnt work on new data, because we havent collected that data yet.

Still, shouldnt we just make more representative datasets? That might be part of the solution, though its worth noting that not all efforts aimed at building better data sets are ethical. And its not just about the data. As Karen Hao of the MIT Tech Review explains, AI could also be designed to frame a problem in a fundamentally problematic way. For instance, an algorithm designed to determine creditworthiness thats programmed to maximize profit could ultimately decide to give out predatory, subprime loans.

Heres another thing to keep in mind: Just because a tool is tested for bias which assumes that engineers who are checking for bias actually understand how bias manifests and operates against one group doesnt mean it is tested for bias against another type of group. This is also true when an algorithm is considering several types of identity factors at the same time: A tool may deemed fairly accurate on white women, for instance, but that doesnt necessarily mean it works with black women.

In some cases, it might be impossible to find training data free of bias. Take historical data produced by the United States criminal justice system. Its hard to imagine that data produced by an institution rife with systemic racism could be used to build out an effective and fair tool. As researchers at New York University and the AI Now Institute outline, predictive policing tools can be fed dirty data, including policing patterns that reflect police departments conscious and implicit biases, as well as police corruption.

So you might have the data to build an algorithm. But who designs it, and who decides how its deployed? Who gets to decide what level of accuracy and inaccuracy for different groups is acceptable? Who gets to decide which applications of AI are ethical and which arent?

While there isnt a wide range of studies on the demographics of the artificial intelligence field, we do know that AI tends to be dominated by men. And the high tech sector, more broadly, tends to overrepresent white people and underrepresent black and Latinx people, according to the Equal Employment Opportunity Commission.

Turner-Lee emphasizes that we need to think about who gets a seat at the table when these systems are proposed, since those people ultimately shape the discussion about ethical deployments of their technology.

But theres also a broader question of what questions artificial intelligence can help us answer. Hu, the Harvard researcher, argues that for many systems, the question of building a fair system is essentially nonsensical, because those systems try to answer social questions that dont necessarily have an objective answer. For instance, Hu says algorithms that claim to predict a persons recidivism dont ultimately address the ethical question of whether someone deserves parole.

Theres not an objective way to answer that question, Hu says. When you then insert an AI system, an algorithmic system, [or] a computer, that doesnt change the fundamental context of the problem, which is that the problem has no objective answer. Its fundamentally a question of what our values are, and what the purpose of the criminal justice system is.

That in mind, some algorithms probably shouldnt exist, or at least they shouldnt come with such a high risk of abuse. Just because a technology is accurate doesnt make it fair or ethical. For instance, the Chinese government has used artificial intelligence to track and racially profile its largely Muslim Uighur minority, about 1 million of whom are believed to be living in internment camps.

One of the reasons algorithmic bias can seem so opaque is because, on our own, we usually cant tell when its happening (or if an algorithm is even in the mix). That was one of the reasons why the controversy over a husband and wife who both applied for an Apple Card and got widely different credit limits attracted so much attention, Turner-Lee says. It was a rare instance in which two people, who at least appeared to be exposed to the same algorithm and could easily compare notes. The details of this case still arent clear, though the companys credit card is now being investigated by regulators.

But consumers being able to make apples-to-apples comparisons of algorithmic results are rare, and thats part of why advocates are demanding more transparency about how systems work and their accuracy. Ultimately, its probably not a problem we can solve on the individual level. Even if we do understand that algorithms can be biased, that doesnt mean companies will be forthright in allowing outsiders to study their artificial intelligence. Thats created a challenge for those pushing for more equitable, technological systems. How can you critique an algorithm a sort of black box if you dont have true access to its inner workings or the capacity to test a good number of its decisions?

Companies will claim to be accurate, overall, but wont always reveal their training data (remember, thats the data that the artificial intelligence trains on before evaluating new data, like, say, your job application). Many dont appear to be subjecting themselves to audit by a third-party evaluator or publicly sharing how their systems fare when applied to different demographic groups. Some researchers, such as Joy Buolamwini and Timnit Gebru, say that sharing this demographic information about both the data used to train and the data used to check artificial intelligence should be a baseline definition of transparency.

We will likely need new laws to regulate artificial intelligence, and some lawmakers are catching up on the issue. Theres a bill that would force companies to check their AI systems for bias through the Federal Trade Commission (FTC). And legislation has also been proposed to regulate facial recognition, and even to ban the technology from federally assisted public housing.

But Turner-Lee emphasizes that new legislation doesnt mean existing laws or agencies dont have the power to look over these tools, even if theres some uncertainty. For instance, the FTC oversees deceptive acts and practices, which could give the agency authority over some AI-based tools.

The Equal Employment Opportunity Commission, which investigates employment discrimination, is reportedly looking into at least two cases involving algorithmic discrimination. At the same time, the White House is encouraging federal agencies that are figuring out how to regulate artificial intelligence to keep technological innovation in mind. That raises the challenge of whether the government is prepared to study and govern this technology, and figure out how existing laws apply.

You have a group of people that really understand it very well, and that would be technologists, Turner-Lee cautions, and a group of people who dont really understand it at all, or have minimal understanding, and that would be policymakers.

Thats not to say there arent technical efforts to de-bias flawed artificial intelligence, but its important to keep in mind that the technology wont be a solution to fundamental challenges of fairness and discrimination. And, as the examples weve gone through indicate, theres no guarantee companies building or using this tech will make sure its not discriminatory, especially without a legal mandate to do so. It would seem its up to us, collectively, to push the government to rein in the tech and to make sure it helps us more than it might already be harming us.

Open Sourced is made possible by Omidyar Network. All Open Sourced content is editorially independent and produced by our journalists.

See the original post:
Algorithms and bias, explained - Vox.com

Machine Learning Is No Place To Move Fast And Break Things – Forbes

It is much easier to apologize than it is to get permission.

jamesnoellert.com

The hacking culture has been the lifeblood of software engineering long before the move fast and break things mantra became ubiquitous of tech startups [1, 2]. Computer industry leaders from Chris Lattner [3] to Bill Gates recount breaking and reassembling radios and other gadgets in their youth, ultimately being drawn to computers for their hackability. Silicon Valley itself may have never become the worlds innovation hotbed if it were not for the hacker dojo started by Gordon French and Fred Moore, The Homebrew Club.

Computer programmers still strive to move fast and iterate things, developing and deploying reliable, robust software by following industry proven processes such as test-driven development and the Agile methodology. In a perfect world, programmers could follow these practices to the letter and ship pristine software. Yet time is money. Aggressive, business-driven deadlines pass before coders can properly finish developing software ahead of releases. Add to this the modern best practices of rapid-releases and hot-fixing (or updating features on the fly [4]), the bar for deployable software is even lower. A company like Apple even prides itself by releasing phone hardware with missing software features: the Deep Fusion image processing was part of an iOS update months after the newest iPhone was released [5].

Software delivery becoming faster is a sign of progress; software is still eating the world [6]. But its also subject to abuse: Rapid software processes are used to ship fixes and complete new features, but are also used to ship incomplete software that will be fixed later. Tesla has emerged as a poster child with over the air updates that can improve driving performance and battery capacity, or hinder them by mistake [7]. Naive consumers laud Tesla for the tech-savvy, software-first approach theyre bringing to the old-school automobile industry. Yet industry professionals criticize Tesla for their recklessness: A/B testing [8] an 1800kg vehicle on the road is slightly riskier than experimenting with a new feature on Facebook.

Add Tesla Autopilot and machine learning algorithms into the mix, and this becomes significantly more problematic. Machine learning systems are by definition probabilistic and stochastic predicting, reacting, and learning in a live environment not to mention riddled with corner cases to test and vulnerabilities to unforeseen scenarios.

Massive progress in software systems has enabled engineers to move fast and iterate, for better or for worse. Now with massive progress in machine learning systems (or Software 2.0 [9]), its seamless for engineers to build and deploy decision-making systems that involve humans, machines, and the environment.

A current danger is that the toolset of the engineer is being made widely available but the theoretical guarantees and the evolution of the right processes are not yet being deployed. So while deep learning has the appearance of an engineering profession it is missing some of the theoretical checks and practitioners run the risk of falling flat upon their faces.

In his recent book Reboot AI [10], Gary Marcus draws a thought provoking analogy between deep learning and pharmacology: Deep learning models are more like drugs than traditional software systems. Biological systems are so complex it is rare for the actions of medicine to be completely understood and predictable. Theories of how drugs work can be vague, and actionable results come from experimentation. While traditional software systems are deterministic and debuggable (and thus robust), drugs and deep learning models are developed via experimentation and deployed without fundamental understanding and guarantees. Too often the AI research process is first experiment, then justify results. It should be hypothesis-driven, with scientific rigor and thorough testing processes.

What were missing is an engineering discipline with principles of analysis and design.

Before there was civil engineering, there were buildings that fell to the ground in unforeseen ways. Without proven engineering practices for deep learning (and machine learning at large), we run the same risk.

Taking this to the extreme is not advised either. Consider the shift in spacecraft engineering the last decade: Operational efficiencies and the move fast culture has been essential to the success of SpaceX and other startups such as Astrobotic, Rocket Lab, Capella, and Planet.NASA cannot keep up with the pace of innovation rather, they collaborate with and support the space startup ecosystem. Nonetheless, machine learning engineers can learn a thing or two from an organization that has an incredible track record of deploying novel tech in massive coordination with human lives at stake.

Grace Hopper advocated for moving fast: That brings me to the most important piece of advice that I can give to all of you: if you've got a good idea, and it's a contribution, I want you to go ahead and DO IT. It is much easier to apologize than it is to get permission. Her motivations and intent hopefully have not been lost on engineers and scientists.

[1] Facebook Cofounder Mark Zuckerberg's "prime directive to his developers and team", from a 2009 interview with Business Insider, "Mark Zuckerberg On Innovation".

[2] xkcd

[3] Chris Lattner is the inventor of LLVM and Swift. Recently on the AI podcast, he and Lex Fridman had a phenomenal discussion:

[4] Hotfix: A software patch that is applied to a "hot" system; i.e., a fix to a deployed system already in use. These are typically issues that cannot wait for the next release cycle, so a hotfix is made quickly and outside normal development and testing processes.

[5]

[6]

[7]

[8] A/B testing is an experimental processes to compare two or more variants of a product, intervention, etc. This is very common in software products when considering e.g. colors of a button in an app.

[9] Software 2.0 was coined by renowned AI research engineer Andrej Karpathy, who is now the Director of AI at Tesla.

[10]

[11]

View original post here:
Machine Learning Is No Place To Move Fast And Break Things - Forbes

JP Morgan expands dive into machine learning with new London research centre – The TRADE News

JP Morgan is expanding its foray into machine learning and artificial intelligence (AI) with the launch of a new London-based research centre, as it explores how it can use the technology for new trading solutions.

The US investment bank has recently launched a Machine Learning Centre of Excellence (ML CoE) in London and has hired Chak Wong who will be responsible for overseeing a new team of machine learning engineers, technologists, data engineers and product managers.

Wong was most recently a professor at the Hong Kong University of Science and Technology, where he taught Masters and PhD level courses on AI and derivatives. He was also a senior quant trader at Morgan Stanley and Goldman Sachs in London.

According to JP Morgans website, the ML CoE teams partner across the firm to create and share Machine Learning Solutions for our most challenging business problems. The bank hopes the expansion of the machine learning centre to Europe will accelerate the deployment of the technology in regions outside of the US.

JP Morgan will look to build on the success of a similar New York-based centre it launched in 2018 under the leadership of Samik Chandarana, head of corporate and investment banking applied AI and machine learning.

These ventures include the application of the technology to provide an optimised execution tool in FX algo trading, and the development of Robotrader as a tool to automate pricing and hedging of vanilla equity options, using machine learning.

In November last year, JP Morgan also made a strategic investment in FinTech firm Limeglass, which deploys AI, machine learning and natural language processing (NLP) to analyse institutional research.

AI and machine learning technology has been touted to revolutionise quantitative and algorithmic trading techniques. Many believe its ability to quantify and analyse huge amounts of data will enable them to make more informed investment decisions. In addition, as data sets become more complex, trading strategies are increasingly being built around new machine and deep learning tools.

Speaking at an industry event in Gaining the Edge Hedge Fund Leadership conference in New York last year, representatives from the hedge fund and allocator industry discussed the significant importance the technology will have on investment strategies and processes.

AI and machine learning is going to raise the bar across everything. Those that are not paying attention to it now will fall behind, said one panellist from a $6 billion alternative investment manager, speaking under Chatham House Rules.

Excerpt from:
JP Morgan expands dive into machine learning with new London research centre - The TRADE News

ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level – Yahoo Finance

One Technologies Partners with Arrikto to Uniquely Tailor its ScoreSense Consumer Credit Platform to Each Individual Customer

DALLAS, Jan. 30, 2020 /PRNewswire/ --To provide customers with the most personalized credit experience possible, One Technologies, LLC has partnered with data management innovator Arrikto Inc. (https://www.arrikto.com/)to incorporate Machine Learning (ML) into its ScoreSense credit platform.

ScoreSense, http://www.ScoreSense.com (PRNewsfoto/One Technologies, LLC)

"To truly empower consumers to take control of their financial future, we must rely on insights from real datanot on assumptions and guesswork," said Halim Kucur, Chief Product Officer at One Technologies, LLC. The innovations we have introduced provide data-driven intelligence about customers' needs and wants before they know this information themselves."

"ScoreSense delivers state-of-the-art credit information through their ongoing investment in the most cutting-edge machine learning products the industry has to offer," said Constantinos Venetsanopoulos, Founder and CEO of Arrikto Inc. "Our partnership has been a big success because One Technologies aligns seamlessly with the most forward-looking developers in the ML space and understands the tremendous value of data for serving customers better."

ScoreSense (https://www.scoresense.com) serves as a one-stop digital resource where consumers can access credit scores and reports from all three main credit bureausTransUnion, Equifax, and Experianand comprehensively pinpoint the factors which are most affecting their credit.

About One Technologies

One Technologies, LLC harnesses the power of technology, analytics and its people to create solutions that empower consumers to make more informed decisions about their financial lives. The firm's consumer credit products include ScoreSense, which enables members to seamlessly access, interact with, and understand their credit profiles from all three main bureaus using a single application. The ScoreSense platform is continually updated to give members deeper insights, personalized tools and one-on-one Customer Care support that can help them make the most sense of their credit.

One Technologies is headquartered in Dallas and was established in October 2000. For more information, please visit https://onetechnologies.net/.

Media Contact

Laura MarvinJConnelly for One Technologies646-922-7774 OT@jconnelly.com

View original content to download multimedia:http://www.prnewswire.com/news-releases/scoresense-leverages-machine-learning-to-take-its-customer-experience-to-the-next-level-300995934.html

SOURCE One Technologies, LLC

Original post:
ScoreSense Leverages Machine Learning to Take Its Customer Experience to the Next Level - Yahoo Finance

Research report investigates the Global Machine Learning In Finance Market 2019-2025 – WhaTech Technology and Markets News

Machine Learning in Finance Market size was xx million US$ and it is expected to reach xx million US$ by the end of 2025, with a CAGR of xx% during 2019-2025.

Machine Learning in Finance Market studies record 2019 gives certain records of primary players like producers, suppliers, vendors, traders, clients, traders and and so on Machine Learning in Finance Market report offers a professional and deep evaluation on the prevailing country of Machine Learning in Finance Market that consists of major types, major packages, information kind consist of ability, manufacturing, market share, price, revenue, cost, gross, gross margin, boom rate, intake, import, export and etc. Enterprise chain, manufacturing procedure, price shape, advertising channel are also analyzed in this report.

The boom trajectory of the worldwide Machine Learning in Finance Market over the assessment period is shaped by way of several common and emerging regional and international developments, a granular assessment of which is offered in the research report. The study on reading the global Machine Learning in Finance Market dynamics takes a critical examine the business regulatory framework, technological advances in related industries, and the strategic avenues.

The value of machine learning in finance is becoming more apparent by the day. As banks and other financial institutions strive to beef up security, streamline processes, and improve financial analysis, ML is becoming the technology of choice.

The key players covered in this study:Ignite Ltd,Yodlee,Trill A.I.,MindTitan,Accenture,ZestFinance...

Request for Sample with TOC@www.researchtrades.com/requestle/1678067

Market segment by Type, the product can be split into;Supervised Learning,Unsupervised Learning,Semi Supervised Learning,Reinforced Leaning

Market segment by Application, split into:Banks,Securities Company,Others

Market segment by Regions/Countries, this report covers:United States,Europe,China,Japan,Southeast Asia,India,Central & South America

The study objectives of this report are:*To analyze global Machine Learning in Finance status, future forecast, growth opportunity, key market and key players.*To present the Machine Learning in Finance development in United States, Europe and China.

This email address is being protected from spambots. You need JavaScript enabled to view it.

Visit link:
Research report investigates the Global Machine Learning In Finance Market 2019-2025 - WhaTech Technology and Markets News

Want To Be AI-First? You Need To Be Data-First. – Forbes

Data First

Those that implement AI and Machine Learning project learn quickly that machine learning projects are not application development projects. Much of the value of machine learning projects rest in the models, training data, and configuration information that guides how the model is applied to the specific machine learning problem. The application code is mostly a means to implement the machine learning algorithms and "operationalize" the machine learning model in a production environment. That's not to say that application code is not necessary after all, the computer needs some way to operationalize the machine learning model but focusing a machine learning project on the application code is missing the big picture. If you want to be AI-first for your project, you need to have a data-first perspective.

Use data-centric methodologies and data-centric technologies

Therefore it follows that if you're going to have a data-first perspective, you need to use a data-first methodology. There's certainly nothing wrong with Agile methodologies as a way of iterating towards success, but Agile on its own leaves much to be desired as it's focused on functionality and delivery of application logic. There are already data-centric methodologies out there that have been proven in many real-world scenarios. One of the most popular is the Cross Industry Standard Process for Data Mining (CRISP-DM), which focuses on the steps needed for successful data projects. In the modern age, it makes sense to merge the notably non-agile CRISP-DM with Agile Methodologies to make it more relevant. While this is still a new area for most enterprises implementing AI projects, we see this sort of merged methodology approach to be more successful than trying to shoehorn all the aspects of an AI project into existing application-focused Agile methodologies.

It stands to reason that if you have a data-centric perspective on AI then you need to pair your data-centric methodologies with data-centric technologies. This means that your choice of tooling to implement all those artifacts detailed above need to be, first and foremost, data-focused. Don't use code-centric IDEs when you should be using data notebooks. Don't use enterprise integration middleware platforms when you should be using tools that focus on model development and maintenance. Don't use so-called machine learning platforms that are really just a pile of cloud-based technologies or overgrown big data management platforms. The tools you use should support the machine learning goals you need, which are in turn supported by the activities you need to do and the artifacts you need to create. Just because a GPU provider has a toolset doesn't mean that it's the right one to use. Just because a big enterprise vendor or a cloud vendor has a "stack" doesn't mean it's the right one. Start from the deliverables and the machine learning objectives and work your way backwards.

Another big consideration is where and how machine learning models will be deployed - or in AI-speak "operationalized". AI models can be implemented in a remarkably wide range of places from "edge" devices sitting disconnected from the internet to mobile and desktop applications; from enterprise servers to cloud-based instances; and all manner of autonomous vehicles and craft. Each of these locations is a place where AI models and implementations can and do exist. This amount of model operationalization heterogeneity highlights even more so how ludicrous the idea of a single machine learning platform is. How can one platform at the same time provide AI capabilities in a drone, mobile app, enterprise implementation, and cloud instance. Even if you source all this technology from a single vendor, it will be a collection of different tools that sit under a single marketing umbrella rather than a single, cohesive, interoperable platform that makes any sense.

Build data-centric talent

All this methodology and technology can't assemble itself. If you're going to be successful at AI projects you're going to need to be successful at building an AI team. And if the data-centric perspective is the correct one for AI, then it makes sense that your team also needs to be data-centric. The talent to build apps or manage enterprise systems or data is not the same to build AI models, tune algorithms, work with training data sets, and operationalize ML models. The primary core of your AI team needs to be data scientists, data engineers, and those folks responsible for putting machine learning models into operation. While there's always a need for coding, development, and project management, finding and growing your data-centric talent is key to long term success of your AI initiatives.

The primary challenge with building data talent is that it's hard to find and grow. The primary reason for this is because data isn't code. You need folks who know how to wrangle lots of data sources, compile them into clean data sets, and then extract information needles from data haystacks. In addition, the language of AI is math, not programming logic. So a strong data team is also strong in the right kinds of math to understand how to select and implement AI algorithms, properly tweak hyperparameters, and properly interpret testing and validation results. Simply guessing about and changing training data sets and hyperparameters at random is not a good way to create AI projects that deliver value. As such, data-centric talent grounded in a fundamental understanding of machine learning math and algorithms combined with an understanding of how to deal with big data sets is crucial to AI project success.

Prepare to continue to invest for the long haul

It should be pretty obvious at this point that the set of activities for AI are indeed very much data-centric and the activities, artifacts, tools, and team need to follow from that data-centric perspective. The biggest challenge is that so much of that ecosystem is still being developed and is not fully available for most enterprises. AI-specific methodologies are still being tested in large scale projects. AI-specific tools and technologies are still being developed, enhanced, and evolutionary changes are being released on a rapid scale. AI talent continues to be tight and is an area where we're just starting to see investment in growth of this skill set.

As a result, organizations that need to be successful with AI, even with this data-centric perspective, need to be prepared to invest for the long haul. Find your peer groups to see what methodologies are working for them and continue to iterate until you find something that works for you. Find ways to continuously update your team's skills and methods. Realize that you're on the bleeding edge with AI technology and prepare to reinvest in new technology on a regular basis, or invent your own if need be. Even though the history of AI spans at least seven decades, we're still in the early stages of making AI work for large scale projects. This is like the early days of the Internet or mobile or big data. Those early pioneers had to learn the hard way, making many mistakes before realizing the "right" way to do things. But once those ways were discovered, organizations reaped big rewards. This is where we're at with AI. As long as you have a data-centric perspective and are prepared to continue to invest for the long haul, you will be successful with your AI, machine learning, and cognitive technology efforts.

Go here to read the rest:
Want To Be AI-First? You Need To Be Data-First. - Forbes

New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera – PR Web

MOUNTAIN VIEW, Calif. (PRWEB) January 22, 2020

The New York Institute of Finance (NYIF) and Google Cloud announced a new Machine Learning for Trading Specialization available exclusively on the Coursera platform. The Specialization helps learners leverage the latest AI and machine learning techniques for financial trading.

Amid the Fourth Industrial Revolution, nearly 80 percent of financial institutions cite machine learning as a core component of business strategy and 75 percent of financial services firms report investing significantly in machine learning. The Machine Learning for Trading Specialization equips professionals with key technical skills increasingly needed in the financial industry today.

Composed of three courses in financial trading, machine learning, and artificial intelligence, the Specialization features a blend of theoretical and applied learning. Topics include analyzing market data sets, building financial models for quantitative and algorithmic trading, and applying machine learning in quantitative finance.

As we enter an era of unprecedented technological change within our sector, were proud to offer upskilling opportunities for hedge fund traders and managers, risk analysts, and other financial professionals to remain competitive through Coursera, said Michael Lee, Managing Director of Corporate Development at NYIF. The past ten years have demonstrated the staying power of AI tools in the finance world, further proving the importance for both new and seasoned professionals to hone relevant tech skills.

The Specialization is particularly suited for hedge fund traders, analysts, day traders, those involved in investment management or portfolio management, and anyone interested in constructing effective trading strategies using machine learning. Prerequisites include basic competency with Python, familiarity with pertinent libraries for machine learning, a background in statistics, and foundational knowledge of financial markets.

Cutting-edge technologies, such as machine and reinforcement learning, have become increasingly commonplace in finance, said Rochana Golani, Director, Google Cloud Learning Services. Were excited for learners on Coursera to explore the potential of machine learning within trading. Looking beyond traditional finance roles, were also excited for the Specialization to support machine learning professionals seeking to apply their craft to quantitative trading strategies.

The Specialization features renowned data-driven finance experts Ram Seshadri (Google) and Jack Farmer (NYIF). Upon successful completion of the Specialization, paying learners will receive a certificate from NYIF and Google Cloud Platform to display on their LinkedIn profile or resume.

Learners everywhere from the heart of Wall Street to a rural town on the other side of the globe now have access to seasoned instructors from leading institutions like NYIF and Google, said Dil Sidhu, Chief Content Officer at Coursera. With their newfound tech skills, finance professionals can continue to succeed in todays increasingly digital and AI-first economy.

Learners worldwide can enroll in the first two courses of the Specialization on Coursera today, with the third course launching next month. For more information, please visit here.

###

About New York Institute of Finance (NYIF)The New York Institute of Finance (http://www.NYIF.com), is a global leader in training for financial services and related industries. Started by the New York Stock Exchange in 1922, it now trains 250,000+ professionals in over 120 countries. NYIF courses cover everything from investment banking, asset pricing, insurance and market structure to financial modeling, treasury operations, and accounting. The institute has a faculty of industry leaders and offers a range of program delivery options, including self-study, online courses, and in-person classes.

About CourseraCoursera was founded by Daphne Koller and Andrew Ng with a vision of providing life-transforming learning experiences to anyone, anywhere. It is now a leading online learning platform for higher education, where more than 47 million learners from around the world come to learn skills of the future. 200 of the worlds top universities and industry educators partner with Coursera to offer courses, Specializations, certificates, and degree programs. 2,100 companies trust the companys enterprise platform Coursera for Business to transform their talent. Coursera for Government equips government employees and citizens with in-demand skills to build a competitive workforce. Coursera is backed by leading investors that include Kleiner Perkins, New Enterprise Associates, GSV Capital, Learn Capital, and SEEK Group.

Share article on social media or email:

Continue reading here:
New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera - PR Web

Machine learning – Wikipedia

Scientific study of algorithms and statistical models that computer systems use to perform tasks without explicit instructions

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.[1][2]:2 Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.

Machine learning is closely related to computational statistics, which focuses on making predictions using computers. The study of mathematical optimization delivers methods, theory and application domains to the field of machine learning. Data mining is a field of study within machine learning, and focuses on exploratory data analysis through unsupervised learning.[3][4] In its application across business problems, machine learning is also referred to as predictive analytics.

The name machine learning was coined in 1959 by Arthur Samuel.[5] Tom M. Mitchell provided a widely quoted, more formal definition of the algorithms studied in the machine learning field: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."[6] This definition of the tasks in which machine learning is concerned offers a fundamentally operational definition rather than defining the field in cognitive terms. This follows Alan Turing's proposal in his paper "Computing Machinery and Intelligence", in which the question "Can machines think?" is replaced with the question "Can machines do what we (as thinking entities) can do?".[7] In Turing's proposal the various characteristics that could be possessed by a thinking machine and the various implications in constructing one are exposed.

Machine learning tasks are classified into several broad categories. In supervised learning, the algorithm builds a mathematical model from a set of data that contains both the inputs and the desired outputs. For example, if the task were determining whether an image contained a certain object, the training data for a supervised learning algorithm would include images with and without that object (the input), and each image would have a label (the output) designating whether it contained the object. In special cases, the input may be only partially available, or restricted to special feedback.[clarification needed] Semi-supervised learning algorithms develop mathematical models from incomplete training data, where a portion of the sample input doesn't have labels.

Classification algorithms and regression algorithms are types of supervised learning. Classification algorithms are used when the outputs are restricted to a limited set of values. For a classification algorithm that filters emails, the input would be an incoming email, and the output would be the name of the folder in which to file the email. For an algorithm that identifies spam emails, the output would be the prediction of either "spam" or "not spam", represented by the Boolean values true and false. Regression algorithms are named for their continuous outputs, meaning they may have any value within a range. Examples of a continuous value are the temperature, length, or price of an object.

In unsupervised learning, the algorithm builds a mathematical model from a set of data that contains only inputs and no desired output labels. Unsupervised learning algorithms are used to find structure in the data, like grouping or clustering of data points. Unsupervised learning can discover patterns in the data, and can group the inputs into categories, as in feature learning. Dimensionality reduction is the process of reducing the number of "features", or inputs, in a set of data.

Active learning algorithms access the desired outputs (training labels) for a limited set of inputs based on a budget and optimize the choice of inputs for which it will acquire training labels. When used interactively, these can be presented to a human user for labeling. Reinforcement learning algorithms are given feedback in the form of positive or negative reinforcement in a dynamic environment and are used in autonomous vehicles or in learning to play a game against a human opponent.[2]:3 Other specialized algorithms in machine learning include topic modeling, where the computer program is given a set of natural language documents and finds other documents that cover similar topics. Machine learning algorithms can be used to find the unobservable probability density function in density estimation problems. Meta learning algorithms learn their own inductive bias based on previous experience. In developmental robotics, robot learning algorithms generate their own sequences of learning experiences, also known as a curriculum, to cumulatively acquire new skills through self-guided exploration and social interaction with humans. These robots use guidance mechanisms such as active learning, maturation, motor synergies, and imitation.[clarification needed]

Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning" in 1959 while at IBM.[8] A representative book of the machine learning research during the 1960s was the Nilsson's book on Learning Machines, dealing mostly with machine learning for pattern classification.[9] The interest of machine learning related to pattern recognition continued during the 1970s, as described in the book of Duda and Hart in 1973. [10] In 1981 a report was given on using teaching strategies so that a neural network learns to recognize 40 characters (26 letters, 10 digits, and 4 special symbols) from a computer terminal. [11] As a scientific endeavor, machine learning grew out of the quest for artificial intelligence. Already in the early days of AI as an academic discipline, some researchers were interested in having machines learn from data. They attempted to approach the problem with various symbolic methods, as well as what were then termed "neural networks"; these were mostly perceptrons and other models that were later found to be reinventions of the generalized linear models of statistics.[12] Probabilistic reasoning was also employed, especially in automated medical diagnosis.[13]:488

However, an increasing emphasis on the logical, knowledge-based approach caused a rift between AI and machine learning. Probabilistic systems were plagued by theoretical and practical problems of data acquisition and representation.[13]:488 By 1980, expert systems had come to dominate AI, and statistics was out of favor.[14] Work on symbolic/knowledge-based learning did continue within AI, leading to inductive logic programming, but the more statistical line of research was now outside the field of AI proper, in pattern recognition and information retrieval.[13]:708710; 755 Neural networks research had been abandoned by AI and computer science around the same time. This line, too, was continued outside the AI/CS field, as "connectionism", by researchers from other disciplines including Hopfield, Rumelhart and Hinton. Their main success came in the mid-1980s with the reinvention of backpropagation.[13]:25

Machine learning, reorganized as a separate field, started to flourish in the 1990s. The field changed its goal from achieving artificial intelligence to tackling solvable problems of a practical nature. It shifted focus away from the symbolic approaches it had inherited from AI, and toward methods and models borrowed from statistics and probability theory.[14] It also benefited from the increasing availability of digitized information, and the ability to distribute it via the Internet.

Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases). Data mining uses many machine learning methods, but with different goals; on the other hand, machine learning also employs data mining methods as "unsupervised learning" or as a preprocessing step to improve learner accuracy. Much of the confusion between these two research communities (which do often have separate conferences and separate journals, ECML PKDD being a major exception) comes from the basic assumptions they work with: in machine learning, performance is usually evaluated with respect to the ability to reproduce known knowledge, while in knowledge discovery and data mining (KDD) the key task is the discovery of previously unknown knowledge. Evaluated with respect to known knowledge, an uninformed (unsupervised) method will easily be outperformed by other supervised methods, while in a typical KDD task, supervised methods cannot be used due to the unavailability of training data.

Machine learning also has intimate ties to optimization: many learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions express the discrepancy between the predictions of the model being trained and the actual problem instances (for example, in classification, one wants to assign a label to instances, and models are trained to correctly predict the pre-assigned labels of a set of examples). The difference between the two fields arises from the goal of generalization: while optimization algorithms can minimize the loss on a training set, machine learning is concerned with minimizing the loss on unseen samples.[15]

Machine learning and statistics are closely related fields in terms of methods, but distinct in their principal goal: statistics draws population inferences from a sample, while machine learning finds generalizable predictive patterns.[16] According to Michael I. Jordan, the ideas of machine learning, from methodological principles to theoretical tools, have had a long pre-history in statistics.[17] He also suggested the term data science as a placeholder to call the overall field.[17]

Leo Breiman distinguished two statistical modeling paradigms: data model and algorithmic model,[18] wherein "algorithmic model" means more or less the machine learning algorithms like Random forest.

Some statisticians have adopted methods from machine learning, leading to a combined field that they call statistical learning.[19]

A core objective of a learner is to generalize from its experience.[2][20] Generalization in this context is the ability of a learning machine to perform accurately on new, unseen examples/tasks after having experienced a learning data set. The training examples come from some generally unknown probability distribution (considered representative of the space of occurrences) and the learner has to build a general model about this space that enables it to produce sufficiently accurate predictions in new cases.

The computational analysis of machine learning algorithms and their performance is a branch of theoretical computer science known as computational learning theory. Because training sets are finite and the future is uncertain, learning theory usually does not yield guarantees of the performance of algorithms. Instead, probabilistic bounds on the performance are quite common. The biasvariance decomposition is one way to quantify generalization error.

For the best performance in the context of generalization, the complexity of the hypothesis should match the complexity of the function underlying the data. If the hypothesis is less complex than the function, then the model has under fitted the data. If the complexity of the model is increased in response, then the training error decreases. But if the hypothesis is too complex, then the model is subject to overfitting and generalization will be poorer.[21]

In addition to performance bounds, learning theorists study the time complexity and feasibility of learning. In computational learning theory, a computation is considered feasible if it can be done in polynomial time. There are two kinds of time complexity results. Positive results show that a certain class of functions can be learned in polynomial time. Negative results show that certain classes cannot be learned in polynomial time.

The types of machine learning algorithms differ in their approach, the type of data they input and output, and the type of task or problem that they are intended to solve.

Supervised learning algorithms build a mathematical model of a set of data that contains both the inputs and the desired outputs.[22] The data is known as training data, and consists of a set of training examples. Each training example has one or more inputs and the desired output, also known as a supervisory signal. In the mathematical model, each training example is represented by an array or vector, sometimes called a feature vector, and the training data is represented by a matrix. Through iterative optimization of an objective function, supervised learning algorithms learn a function that can be used to predict the output associated with new inputs.[23] An optimal function will allow the algorithm to correctly determine the output for inputs that were not a part of the training data. An algorithm that improves the accuracy of its outputs or predictions over time is said to have learned to perform that task.[6]

Supervised learning algorithms include classification and regression.[24] Classification algorithms are used when the outputs are restricted to a limited set of values, and regression algorithms are used when the outputs may have any numerical value within a range. Similarity learning is an area of supervised machine learning closely related to regression and classification, but the goal is to learn from examples using a similarity function that measures how similar or related two objects are. It has applications in ranking, recommendation systems, visual identity tracking, face verification, and speaker verification.

In the case of semi-supervised learning algorithms, some of the training examples are missing training labels, but they can nevertheless be used to improve the quality of a model. In weakly supervised learning, the training labels are noisy, limited, or imprecise; however, these labels are often cheaper to obtain, resulting in larger effective training sets.[25]

Unsupervised learning algorithms take a set of data that contains only inputs, and find structure in the data, like grouping or clustering of data points. The algorithms, therefore, learn from test data that has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning algorithms identify commonalities in the data and react based on the presence or absence of such commonalities in each new piece of data. A central application of unsupervised learning is in the field of density estimation in statistics,[26] though unsupervised learning encompasses other domains involving summarizing and explaining data features.

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that observations within the same cluster are similar according to one or more predesignated criteria, while observations drawn from different clusters are dissimilar. Different clustering techniques make different assumptions on the structure of the data, often defined by some similarity metric and evaluated, for example, by internal compactness, or the similarity between members of the same cluster, and separation, the difference between clusters. Other methods are based on estimated density and graph connectivity.

Semi-supervised learning

Semi-supervised learning falls between unsupervised learning (without any labeled training data) and supervised learning (with completely labeled training data). Many machine-learning researchers have found that unlabeled data, when used in conjunction with a small amount of labeled data, can produce a considerable improvement in learning accuracy.

Reinforcement learning is an area of machine learning concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward. Due to its generality, the field is studied in many other disciplines, such as game theory, control theory, operations research, information theory, simulation-based optimization, multi-agent systems, swarm intelligence, statistics and genetic algorithms. In machine learning, the environment is typically represented as a Markov Decision Process (MDP). Many reinforcement learning algorithms use dynamic programming techniques.[27] Reinforcement learning algorithms do not assume knowledge of an exact mathematical model of the MDP, and are used when exact models are infeasible. Reinforcement learning algorithms are used in autonomous vehicles or in learning to play a game against a human opponent.

Self-learning as machine learning paradigm was introduced in 1982 along with a neural network capable of self-learning named Crossbar Adaptive Array (CAA). [28] It is a learning with no external rewards and no external teacher advices. The CAA self-learning algorithm computes, in a crossbar fashion, both decisions about actions and emotions (feelings) about consequence situations. The system is driven by the interaction between cognition and emotion. [29]The self-learning algorithm updates a memory matrix W =||w(a,s)|| such that in each iteration executes the following machine learning routine:

It is a system with only one input, situation s, and only one output, action (or behavior) a. There is neither a separate reinforcement input nor an advice input from the environment. The backpropagated value (secondary reinforcement) is the emotion toward the consequence situation. The CAA exists in two environments, one is behavioral environment where it behaves, and the other is genetic environment, wherefrom it initially and only once receives initial emotions about situations to be encountered in the behavioral environment. After receiving the genome (species) vector from the genetic environment, the CAA learns a goal seeking behavior, in an environment that contains both desirable and undesirable situations. [30]

Several learning algorithms aim at discovering better representations of the inputs provided during training.[31] Classic examples include principal components analysis and cluster analysis. Feature learning algorithms, also called representation learning algorithms, often attempt to preserve the information in their input but also transform it in a way that makes it useful, often as a pre-processing step before performing classification or predictions. This technique allows reconstruction of the inputs coming from the unknown data-generating distribution, while not being necessarily faithful to configurations that are implausible under that distribution. This replaces manual feature engineering, and allows a machine to both learn the features and use them to perform a specific task.

Feature learning can be either supervised or unsupervised. In supervised feature learning, features are learned using labeled input data. Examples include artificial neural networks, multilayer perceptrons, and supervised dictionary learning. In unsupervised feature learning, features are learned with unlabeled input data. Examples include dictionary learning, independent component analysis, autoencoders, matrix factorization[32] and various forms of clustering.[33][34][35]

Manifold learning algorithms attempt to do so under the constraint that the learned representation is low-dimensional. Sparse coding algorithms attempt to do so under the constraint that the learned representation is sparse, meaning that the mathematical model has many zeros. Multilinear subspace learning algorithms aim to learn low-dimensional representations directly from tensor representations for multidimensional data, without reshaping them into higher-dimensional vectors.[36] Deep learning algorithms discover multiple levels of representation, or a hierarchy of features, with higher-level, more abstract features defined in terms of (or generating) lower-level features. It has been argued that an intelligent machine is one that learns a representation that disentangles the underlying factors of variation that explain the observed data.[37]

Feature learning is motivated by the fact that machine learning tasks such as classification often require input that is mathematically and computationally convenient to process. However, real-world data such as images, video, and sensory data has not yielded to attempts to algorithmically define specific features. An alternative is to discover such features or representations through examination, without relying on explicit algorithms.

Sparse dictionary learning is a feature learning method where a training example is represented as a linear combination of basis functions, and is assumed to be a sparse matrix. The method is strongly NP-hard and difficult to solve approximately.[38] A popular heuristic method for sparse dictionary learning is the K-SVD algorithm. Sparse dictionary learning has been applied in several contexts. In classification, the problem is to determine the class to which a previously unseen training example belongs. For a dictionary where each class has already been built, a new training example is associated with the class that is best sparsely represented by the corresponding dictionary. Sparse dictionary learning has also been applied in image de-noising. The key idea is that a clean image patch can be sparsely represented by an image dictionary, but the noise cannot.[39]

In data mining, anomaly detection, also known as outlier detection, is the identification of rare items, events or observations which raise suspicions by differing significantly from the majority of the data.[40] Typically, the anomalous items represent an issue such as bank fraud, a structural defect, medical problems or errors in a text. Anomalies are referred to as outliers, novelties, noise, deviations and exceptions.[41]

In particular, in the context of abuse and network intrusion detection, the interesting objects are often not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common statistical definition of an outlier as a rare object, and many outlier detection methods (in particular, unsupervised algorithms) will fail on such data, unless it has been aggregated appropriately. Instead, a cluster analysis algorithm may be able to detect the micro-clusters formed by these patterns.[42]

Three broad categories of anomaly detection techniques exist.[43] Unsupervised anomaly detection techniques detect anomalies in an unlabeled test data set under the assumption that the majority of the instances in the data set are normal, by looking for instances that seem to fit least to the remainder of the data set. Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier (the key difference to many other statistical classification problems is the inherently unbalanced nature of outlier detection). Semi-supervised anomaly detection techniques construct a model representing normal behavior from a given normal training data set and then test the likelihood of a test instance to be generated by the model.

Association rule learning is a rule-based machine learning method for discovering relationships between variables in large databases. It is intended to identify strong rules discovered in databases using some measure of "interestingness".[44]

Rule-based machine learning is a general term for any machine learning method that identifies, learns, or evolves "rules" to store, manipulate or apply knowledge. The defining characteristic of a rule-based machine learning algorithm is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system. This is in contrast to other machine learning algorithms that commonly identify a singular model that can be universally applied to any instance in order to make a prediction.[45] Rule-based machine learning approaches include learning classifier systems, association rule learning, and artificial immune systems.

Based on the concept of strong rules, Rakesh Agrawal, Tomasz Imieliski and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets.[46] For example, the rule { o n i o n s , p o t a t o e s } { b u r g e r } {displaystyle {mathrm {onions,potatoes} }Rightarrow {mathrm {burger} }} found in the sales data of a supermarket would indicate that if a customer buys onions and potatoes together, they are likely to also buy hamburger meat. Such information can be used as the basis for decisions about marketing activities such as promotional pricing or product placements. In addition to market basket analysis, association rules are employed today in application areas including Web usage mining, intrusion detection, continuous production, and bioinformatics. In contrast with sequence mining, association rule learning typically does not consider the order of items either within a transaction or across transactions.

Learning classifier systems (LCS) are a family of rule-based machine learning algorithms that combine a discovery component, typically a genetic algorithm, with a learning component, performing either supervised learning, reinforcement learning, or unsupervised learning. They seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions.[47]

Inductive logic programming (ILP) is an approach to rule-learning using logic programming as a uniform representation for input examples, background knowledge, and hypotheses. Given an encoding of the known background knowledge and a set of examples represented as a logical database of facts, an ILP system will derive a hypothesized logic program that entails all positive and no negative examples. Inductive programming is a related field that considers any kind of programming languages for representing hypotheses (and not only logic programming), such as functional programs.

Inductive logic programming is particularly useful in bioinformatics and natural language processing. Gordon Plotkin and Ehud Shapiro laid the initial theoretical foundation for inductive machine learning in a logical setting.[48][49][50] Shapiro built their first implementation (Model Inference System) in 1981: a Prolog program that inductively inferred logic programs from positive and negative examples.[51] The term inductive here refers to philosophical induction, suggesting a theory to explain observed facts, rather than mathematical induction, proving a property for all members of a well-ordered set.

Performing machine learning involves creating a model, which is trained on some training data and then can process additional data to make predictions. Various types of models have been used and researched for machine learning systems.

Artificial neural networks (ANNs), or connectionist systems, are computing systems vaguely inspired by the biological neural networks that constitute animal brains. Such systems "learn" to perform tasks by considering examples, generally without being programmed with any task-specific rules.

An ANN is a model based on a collection of connected units or nodes called "artificial neurons", which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit information, a "signal", from one artificial neuron to another. An artificial neuron that receives a signal can process it and then signal additional artificial neurons connected to it. In common ANN implementations, the signal at a connection between artificial neurons is a real number, and the output of each artificial neuron is computed by some non-linear function of the sum of its inputs. The connections between artificial neurons are called "edges". Artificial neurons and edges typically have a weight that adjusts as learning proceeds. The weight increases or decreases the strength of the signal at a connection. Artificial neurons may have a threshold such that the signal is only sent if the aggregate signal crosses that threshold. Typically, artificial neurons are aggregated into layers. Different layers may perform different kinds of transformations on their inputs. Signals travel from the first layer (the input layer) to the last layer (the output layer), possibly after traversing the layers multiple times.

The original goal of the ANN approach was to solve problems in the same way that a human brain would. However, over time, attention moved to performing specific tasks, leading to deviations from biology. Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis.

Deep learning consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain processes light and sound into vision and hearing. Some successful applications of deep learning are computer vision and speech recognition.[52]

Decision tree learning uses a decision tree as a predictive model to go from observations about an item (represented in the branches) to conclusions about the item's target value (represented in the leaves). It is one of the predictive modeling approaches used in statistics, data mining and machine learning. Tree models where the target variable can take a discrete set of values are called classification trees; in these tree structures, leaves represent class labels and branches represent conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression trees. In decision analysis, a decision tree can be used to visually and explicitly represent decisions and decision making. In data mining, a decision tree describes data, but the resulting classification tree can be an input for decision making.

Support vector machines (SVMs), also known as support vector networks, are a set of related supervised learning methods used for classification and regression. Given a set of training examples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that predicts whether a new example falls into one category or the other.[53] An SVM training algorithm is a non-probabilistic, binary, linear classifier, although methods such as Platt scaling exist to use SVM in a probabilistic classification setting. In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.

Regression analysis encompasses a large variety of statistical methods to estimate the relationship between input variables and their associated features. Its most common form is linear regression, where a single line is drawn to best fit the given data according to a mathematical criterion such as ordinary least squares. The latter is oftentimes extended by regularization (mathematics) methods to mitigate overfitting and high bias, as can be seen in ridge regression. When dealing with non-linear problems, go-to models include polynomial regression (e.g. used for trendline fitting in Microsoft Excel [54]), Logistic regression (often used in statistical classification) or even kernel regression, which introduces non-linearity by taking advantage of the kernel trick to implicitly map input variables to higher dimensional space.

A Bayesian network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional independence with a directed acyclic graph (DAG). For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms exist that perform inference and learning. Bayesian networks that model sequences of variables, like speech signals or protein sequences, are called dynamic Bayesian networks. Generalizations of Bayesian networks that can represent and solve decision problems under uncertainty are called influence diagrams.

A genetic algorithm (GA) is a search algorithm and heuristic technique that mimics the process of natural selection, using methods such as mutation and crossover to generate new genotypes in the hope of finding good solutions to a given problem. In machine learning, genetic algorithms were used in the 1980s and 1990s.[55][56] Conversely, machine learning techniques have been used to improve the performance of genetic and evolutionary algorithms.[57]

Usually, machine learning models require a lot of data in order for them to perform well. Usually, when training a machine learning model, one needs to collect a large, representative sample of data from a training set. Data from the training set can be as varied as a corpus of text, a collection of images, and data collected from individual users of a service. Overfitting is something to watch out for when training a machine learning model.

Federated learning is a new approach to training machine learning models that decentralizes the training process, allowing for users' privacy to be maintained by not needing to send their data to a centralized server. This also increases efficiency by decentralizing the training process to many devices. For example, Gboard uses federated machine learning to train search query prediction models on users' mobile phones without having to send individual searches back to Google.[58]

There are many applications for machine learning, including:

In 2006, the media-services provider Netflix held the first "Netflix Prize" competition to find a program to better predict user preferences and improve the accuracy on its existing Cinematch movie recommendation algorithm by at least 10%. A joint team made up of researchers from AT&T Labs-Research in collaboration with the teams Big Chaos and Pragmatic Theory built an ensemble model to win the Grand Prize in 2009 for $1million.[60] Shortly after the prize was awarded, Netflix realized that viewers' ratings were not the best indicators of their viewing patterns ("everything is a recommendation") and they changed their recommendation engine accordingly.[61] In 2010 The Wall Street Journal wrote about the firm Rebellion Research and their use of machine learning to predict the financial crisis.[62] In 2012, co-founder of Sun Microsystems, Vinod Khosla, predicted that 80% of medical doctors' jobs would be lost in the next two decades to automated machine learning medical diagnostic software.[63] In 2014, it was reported that a machine learning algorithm had been applied in the field of art history to study fine art paintings, and that it may have revealed previously unrecognized influences among artists.[64] In 2019 Springer Nature published the first research book created using machine learning.[65]

Although machine learning has been transformative in some fields, machine-learning programs often fail to deliver expected results.[66][67][68] Reasons for this are numerous: lack of (suitable) data, lack of access to the data, data bias, privacy problems, badly chosen tasks and algorithms, wrong tools and people, lack of resources, and evaluation problems.[69]

In 2018, a self-driving car from Uber failed to detect a pedestrian, who was killed after a collision.[70] Attempts to use machine learning in healthcare with the IBM Watson system failed to deliver even after years of time and billions of investment.[71][72]

Machine learning approaches in particular can suffer from different data biases. A machine learning system trained on current customers only may not be able to predict the needs of new customer groups that are not represented in the training data. When trained on man-made data, machine learning is likely to pick up the same constitutional and unconscious biases already present in society.[73] Language models learned from data have been shown to contain human-like biases.[74][75] Machine learning systems used for criminal risk assessment have been found to be biased against black people.[76][77] In 2015, Google photos would often tag black people as gorillas,[78] and in 2018 this still was not well resolved, but Google reportedly was still using the workaround to remove all gorillas from the training data, and thus was not able to recognize real gorillas at all.[79] Similar issues with recognizing non-white people have been found in many other systems.[80] In 2016, Microsoft tested a chatbot that learned from Twitter, and it quickly picked up racist and sexist language.[81] Because of such challenges, the effective use of machine learning may take longer to be adopted in other domains.[82] Concern for fairness in machine learning, that is, reducing bias in machine learning and propelling its use for human good is increasingly expressed by artificial intelligence scientists, including Fei-Fei Li, who reminds engineers that "Theres nothing artificial about AI...Its inspired by people, its created by people, andmost importantlyit impacts people. It is a powerful tool we are only just beginning to understand, and that is a profound responsibility.[83]

Classification machine learning models can be validated by accuracy estimation techniques like the Holdout method, which splits the data in a training and test set (conventionally 2/3 training set and 1/3 test set designation) and evaluates the performance of the training model on the test set. In comparison, the K-fold-cross-validation method randomly partitions the data into K subsets and then K experiments are performed each respectively considering 1 subset for evaluation and the remaining K-1 subsets for training the model. In addition to the holdout and cross-validation methods, bootstrap, which samples n instances with replacement from the dataset, can be used to assess model accuracy.[84]

In addition to overall accuracy, investigators frequently report sensitivity and specificity meaning True Positive Rate (TPR) and True Negative Rate (TNR) respectively. Similarly, investigators sometimes report the False Positive Rate (FPR) as well as the False Negative Rate (FNR). However, these rates are ratios that fail to reveal their numerators and denominators. The Total Operating Characteristic (TOC) is an effective method to express a model's diagnostic ability. TOC shows the numerators and denominators of the previously mentioned rates, thus TOC provides more information than the commonly used Receiver Operating Characteristic (ROC) and ROC's associated Area Under the Curve (AUC).[85]

Machine learning poses a host of ethical questions. Systems which are trained on datasets collected with biases may exhibit these biases upon use (algorithmic bias), thus digitizing cultural prejudices.[86] For example, using job hiring data from a firm with racist hiring policies may lead to a machine learning system duplicating the bias by scoring job applicants against similarity to previous successful applicants.[87][88] Responsible collection of data and documentation of algorithmic rules used by a system thus is a critical part of machine learning.

Because human languages contain biases, machines trained on language corpora will necessarily also learn these biases.[89][90]

Other forms of ethical challenges, not related to personal biases, are more seen in health care. There are concerns among health care professionals that these systems might not be designed in the public's interest but as income-generating machines. This is especially true in the United States where there is a perpetual ethical dilemma of improving health care, but also increase profits. For example, the algorithms could be designed to provide patients with unnecessary tests or medication in which the algorithm's proprietary owners hold stakes in. There is huge potential for machine learning in health care to provide professionals a great tool to diagnose, medicate, and even plan recovery paths for patients, but this will not happen until the personal biases mentioned previously, and these "greed" biases are addressed.[91]

Software suites containing a variety of machine learning algorithms include the following:

Excerpt from:
Machine learning - Wikipedia

Looking at the most significant benefits of machine learning for software testing – The Burn-In

Software development is a massive part of the tech industry that is absolutely set to stay. Its importance is elemental, supporting technology from the root. Its unsurprisingly a massive industry, with lots of investment and millions of jobs that help to propel technology on its way with great force. Software testing is one of the vital cogs in the software development machine, without which faulty software would run amuck and developing and improving software products would be a much slower and much more inefficient process. Software testing as its own field has gone through several different phases, most recently landing upon the idea of using machine learning. Machine learnings importance is elemental to artificial intelligence, and is a method of freeing up the potential of computers through the use of data feeding. Effective machine learning can greatly improve software testing.

Lets take a look at how that is the case.

As well as realizing the immense power of data over the last decade, we have also reached a point in our technological, even sociological evolution in which we are producing more data than ever, proposes Carl Holding, software developer at Writinity and ResearchPapersUK. This is significant in relation to software testing. The more complex and widely adopted software becomes, the more data that is generated about its use. Under traditional software testing conditions, that amount of data would actually be unhelpful, since it would overwhelm testers. Conversely, machine learning computers hoover up vast data sets as fuel for their analysis and their learning pattern. Not only do the new data conditions only suit large machine learning computers, its also precisely what makes large machine learning computers most successful.

Everyone makes mistakes, as the old saying goes. Except, thats not true: machine learning computers dont. Machine learning goes hand in hand with automation, something which has become very important for all sorts of industries. Not only does it save time, it also gets rid of the potential for human mistakes, which can be very damaging in software testing, notes Tiffany Lee, IT expert at DraftBeyond and LastMinuteWriting. It doesnt matter how proficient a human being is at this task, they will always slip up, especially under the increased pressure put on them with the volume of data that now comes in. A software test sullied by human error can actually be even worse than if no test had been done at all, since getting misinformation is worse than no information. With that in mind, its always just better to leave it to the machines.

Business has always been about getting ahead, regardless of the era or the nature of the products and services. Machine learning is often looked to as a way to predict the future by spotting trends in data and feeding those predictions to the companies that want it most. Software is by no means an industry where this is an exception. In fact, given that it is within the tech sector, its even more important to software development than other industries. Using a machine learning computer for software testing can help to quickly identify the way things are shaping up for the future which means that you get two functions out of your testing process, for the price of one. This can give you an excellent competitive edge.

That machine learning computers save you time should be a fairly obvious point at this stage. Computers handle tasks that take humans hours in a matter of seconds. If you add the increased accuracy advantage over traditional methods then you can see that using this method of testing will get better products out more quickly, which is a surefire way to start boosting your sales figures with ease.

Overall, its a no-brainer. And, as machine learning computers become more affordable, you really have no reason to opt for any other method beyond it. Its a wonderful age for speed and accuracy in technology and with the amount that is at stake with software development, you have to be prepared to think ahead.

The rest is here:
Looking at the most significant benefits of machine learning for software testing - The Burn-In

Limits of machine learning – Deccan Herald

Suppose you are driving a hybrid car with a personalised Alexa prototype and happen to witness a road accident. Will your Alexa automatically stop the car to help the victim or call an ambulance? Probably,it would act according tothe algorithmprogrammed into itthat demands the users command.

But as a fellow traveller with Alexa, what would you do? If you areanempathetic human being, you would try to administer first aid and take the victim to a nearby hospital in your car. This empathy is what is missing in the machines, largely in the technocratic conquered education which parents are banking upon these days.

Tech-buddies

With the advancement of bots or robots teaching in our classrooms, theteachersof millennials are worried. Recently, a WhatsApp video of AI-teacher engaging class in one of the schools of Bengaluru went viral. Maybe in a decade or two, academic robots in our classrooms would teach mathematics. Or perhaps they will teach children the algorithmsthatbrings them to life and togetherthey can create another generation of tech-buddies.

I was informed by a friend that coding is taught atprimary level now which was indeed a surprise for me. Then what about other skills? Maybe life skills like swimming, cooking could also be taught by a combination of YouTube and personal robots. However, we have the edge over the machines in at least one area and thats basic human values. This is where human intervention cant be eliminated at all.

The values are not taught; rather they are ingrained at every phase of life by various people who we meet including parents, teachers, peers, and anyone around us alongside practising them. Say for example, how does one teach kids to care for the elderly at home?

Unless one feels the same emotional turmoilas the elderly before them as they are raised and apply the compassionate values, they wouldnt be motivated to take care of them.

The missing link in academia

The discussions on trans-disciplinary or interdisciplinary courses often put forward multiple subjects as well as unconventional subjects to study together. Like engineering and terracotta designs or literature and agriculture. However, the objection comes within academia citing a lack of career prospects.

We tend to forget the fact that the best mathematicians were also musicians and the best medicinal practitioners were botanists or farmers too. Interest in one subject might trigger gaining expertise in others and connect the discreet dots to create a completely new concept.

Life skills like agriculture, pottery, animal care, gardening, andhousing are essentialskills that have many benefits.Every rural person is equipped with these skills through surrounding experiences. Rather than in a classroom session, these learning takes place by seeing, interacting as well as making mistakes.

A friend who homeschooled both her kids had similar concerns. She was firmly against the formalised education which teaches a limited amount of information mostly based on memorisation taking out the natural interest of the child. Several such institutes are functioning to serve the same goals of lifelong learning. Such schools aiming at understanding human-nature, emotional wellbeing, artistic and critical thinking are fundamentally guided on the idea of learning in a fear-free environment.

When scrolling on the admissions page in these schools, I was surprised that the admissions for the 2021 academic year were already completed.This reflects the eagerness of many parents looking for such alternative education systems.

These analogies bring back the basic question of why education? If it is merely for technology-driven jobs, probably by the time your kids grow there wouldnt be many jobs as themachines would have snatched them.

Also, the country is moving towards a technology-driven economy and may not need many skilled labourers. Surely, a few post-millennials would survive in any condition if they are extremely smart and adoptive butthey may need to stop and reboot if theireducation has not prepared them for uncertainties to come.

(The writer is with Christ, Bengaluru)

Read the original post:
Limits of machine learning - Deccan Herald

Doctor’s Hospital focused on incorporation of AI and machine learning – EyeWitness News

NASSAU, BAHAMAS Doctors Hospital has depriortized its medical tourism program and is now more keenly focused on incorporating artificial intelligence and machine learning in healthcare services.

Dr Charles Diggiss, Doctors Hospital Health System president, revealed the shift during a press conference to promote the 2020 Bahamas Business Outlook conference at Baha Mar next Thursday.

When you look at whats happening around us globally with the advances in technology its no surprise that the way companies leverage data becomes a game changer if they are able to leverage the data using artificial intelligence or machine learning, Diggiss said.

In healthcare, what makes it tremendously exciting for us is we are able to sensorize all of the devices in the healthcare space, get much more information, use that information to tell us a lot more about what we should be doing and considering in your diagnosis.

He continued: How can we get information real time that would influence the way we manage your conditions, how can we have on the backend the assimilation of this information so that the best outcome occurs in our patient care environment.

Diggiss noted while the BISX-listed healthcare provider is still involved in medical tourism, that no longer is a primary focus.

We still have a business line of medical tourism but one of the things we do know pretty quickly in Doctors Hospital is to deprioritize if its apparent that that is not a successful ay to go, he said.

We have looked more at taking our specialities up a notch and investing in the technology support of the specialities with the leadership of some significant Bahamian specialists abroad, inviting them to come back home.

He added: We have depriortized medical tourism even though we still have a fairly robust programme going on at our Blake Road facility featuring two lines, a stem cell line a fecal microbiotic line.

They are both doing quite well but we are not putting a lot of effort into that right now compared to the aforementioned.

Go here to read the rest:
Doctor's Hospital focused on incorporation of AI and machine learning - EyeWitness News

How machine learning and automation can modernize the network edge – SiliconANGLE

If you want to know the future of networking, follow the money right to the edge.

Applications are expected to move from data centers to edge facilities in record numbers, opening up a huge new market opportunity. The edge computing market is expected to grow at a compound annual growth rate of 36.3 percent between now and 2022, fueled by rapid adoption of the internet of things, autonomous vehicles, high-speed trading, content streaming and multiplayer games.

What these applications have in common is a need for near zero-latency data transfer, usually defined as less than five milliseconds, although even that figure is far too high for many emerging technologies.

The specific factors driving the need for low latency vary. In IoT applications, sensors and other devices capture enormous quantities of data, the value of which degrades by the millisecond. Autonomous vehicles require information in real-time to navigate effectively and avoid collisions. The best way to support such latency-sensitive applications is to move applications and data as close as possible to the data ingestion point, therefore reducing the overall round-trip time. Financial transactions now occur at sub-millisecond cycle times, leading one brokerage firm to invest more than $100 million to overhaul its stock trading platform in a quest for faster and faster trades.

As edge computing grows, so do the operational challenges for telecommunications service provider such as Verizon Communications Inc., AT&T Corp. and T-Mobile USA Inc. For one thing, moving to the edge essentially disaggregates the traditional data center. Instead of massive numbers of servers located in a few centralized data centers, the provider edge infrastructure consists of thousands of small sites, most with just a handful of servers. All of those sites require support to ensure peak performance, which strains the resources of the typical information technology group to the breaking point and sometimes beyond.

Another complicating factor is network functions moving toward cloud-native applications deployed on virtualized, shared and elastic infrastructure, a trend that has been accelerating in recent years. In a virtualized environment, each physical server hosts dozens of virtual machines and/or containers that are constantly being created and destroyed at rates far faster than humans can effectively manage. Orchestration tools automatically manage the dynamic virtual environment in normal operation, but when it comes to troubleshooting, humans are still in the drivers seat.

And its a hot seat to be in. Poor performance and service disruptions hurt the service providers business, so the organization puts enormous pressure on the IT staff to resolve problems quickly and effectively. The information needed to identify root causes is usually there. In fact, navigating the sheer volume of telemetry data from hardware and software components is one of the challenges facing network operators today.

A data-rich, highly dynamic, dispersed infrastructure is the perfect environment for artificial intelligence, specifically machine learning. The great strength of machine learning is the ability to find meaningful patterns in massive amounts of data that far outstrip the capabilities of network operators. Machine learning-based tools can self-learn from experience, adapt to new information and perform humanlike analyses with superhuman speed and accuracy.

To realize the full power of machine learning, insights must be translated into action a significant challenge in the dynamic, disaggregated world of edge computing. Thats where automation comes in.

Using the information gained by machine learning and real-time monitoring, automated tools can provision, instantiate and configure physical and virtual network functions far faster and more accurately than a human operator. The combination of machine learning and automation saves considerable staff time, which can be redirected to more strategic initiatives that create additional operational efficiencies and speed release cycles, ultimately driving additional revenue.

Until recently, the software development process for a typical telco consisted of a lengthy sequence of discrete stages that moved from department to department and took months or even years to complete. Cloud-native development has largely made obsolete this so-called waterfall methodology in favor of a high-velocity, integrated approach based on leading-edge technologies such as microservices, containers, agile development, continuous integration/continuous deployment and DevOps. As a result, telecom providers roll out services at unheard-of velocities, often multiple releases per week.

The move to the edge poses challenges for scaling cloud-native applications. When the environment consists of a few centralized data centers, human operators can manually determine the optimum configuration needed to ensure the proper performance for the virtual network functions or VNFs that make up the application.

However, as the environment disaggregates into thousands of small sites, each with slightly different operational characteristics, machine learning is required. Unsupervised learning algorithms can run all the individual components through a pre-production cycle to evaluate how they will behave in a production site. Operations staff can use this approach to develop a high level of confidence that the VNF being tested is going to come up in the desired operational state at the edge.

AI and automation can also add significant value in troubleshooting within cloud-native environments. Take the case of a service provider running 10 instances of a voice call processing application as a cloud-native application at an edge location. A remote operator notices that one VNF is performing significantly below the other nine.

The first question is, Do we really have a problem? Some variation in performance between application instances is not unusual, so answering the question requires a determination of the normal range of VNF performance values in actual operation. A human operator could take readings of a large number of instances of the VNF over a specified time period and then calculate the acceptable key performance indicator values a time-consuming and error-prone process that must repeated frequently to account for software upgrades, component replacements, traffic pattern variations and other parameters that affect performance.

In contrast, AI can determine KPIs in a fraction of the time and adjust the KPI values as needed when parameters change, all with no outside intervention. Once AI determines the KPI values, automation takes over. An automated tool can continuously monitor performance, compare the actual value to the AI-determined KPI and identify underperforming VNFs.

That information can then be forwarded to the orchestrator for remedial action such as spinning up a new VNF or moving the VNF to a new physical server. The combination of AI and automation helps ensure compliance with service-level agreements and removes the need for human intervention a welcome change for operators weary of late-night troubleshooting sessions.

As service providers accelerate their adoption of edge-oriented architectures, IT groups must find new ways to optimize network operations, troubleshoot underperforming VNFs and ensure SLA compliance at scale. Artificial intelligence technologies such as machine learning, combined with automation, can help them do that.

In particular, there have been a number of advancements over the last few years to enable this AI-driven future. They include systems and devices to provide high-fidelity, high-frequency telemetry that can be analyzed, highly scalable message buses such as Kafka and Redis that can capture and process that telemetry, and compute capacity and AI frameworks such as TensorFlow and PyTorch to create models from the raw telemetry streams. Taken together, they can determine in real time if operations of production systems are in conformance with standards and find problems when there are disruptions in operations.

All that has the potential to streamline operations and give service providers a competitive edge at the edge.

Sumeet Singh is vice president of engineering at Juniper Networks Inc., which provides telcos AI and automation capabilities to streamline network operations and helps them use automation capabilities to take advantage of business potential at the edge. He wrote this piece for SiliconANGLE.

Show your support for our mission with our one-click subscription to our YouTube channel (below). The more subscribers we have, the more YouTube will suggest relevant enterprise and emerging technology content to you. Thanks!

Support our mission: >>>>>> SUBSCRIBE NOW >>>>>> to our YouTube channel.

Wed also like to tell you about our mission and how you can help us fulfill it. SiliconANGLE Media Inc.s business model is based on the intrinsic value of the content, not advertising. Unlike many online publications, we dont have a paywall or run banner advertising, because we want to keep our journalism open, without influence or the need to chase traffic.The journalism, reporting and commentary onSiliconANGLE along with live, unscripted video from our Silicon Valley studio and globe-trotting video teams attheCUBE take a lot of hard work, time and money. Keeping the quality high requires the support of sponsors who are aligned with our vision of ad-free journalism content.

If you like the reporting, video interviews and other ad-free content here,please take a moment to check out a sample of the video content supported by our sponsors,tweet your support, and keep coming back toSiliconANGLE.

Read the rest here:
How machine learning and automation can modernize the network edge - SiliconANGLE

Machine Learning in Automobile Market Research Provides an In-Depth Analysis on the Future Growth Prospects and Industry Trends Adopted by the…

The GlobalMachine Learning in Automobile Marketreport gives a comprehensive assessment and growth prospects of the Machine Learning in Automobile market. The report is updated with major market events, including recent trends portrayed by the market, technological improvements, growth opportunities, and market participants in the global market to help investors and industry experts make the most beneficial business decisions.

Moreover, this report emphasizes on the drivers of Machine Learning in Automobile and the factors that influence the way this market functions.

For a sample copy of the Machine Learning in Automobile research study, [emailprotected] https://www.marketexpertz.com/sample-enquiry-form/86931

The report also emphasizes the initiatives undertaken by the companies operating in the market including product innovation, product launches, and technological development to help their organization offer more effective products in the market. It also studies notable business events, including corporate deals, mergers and acquisitions, joint ventures, partnerships, product launches, and brand promotions.

Our team of experts has conducted extensive studies on the Machine Learning in Automobile market, including a competitive analysis highlighting the key players.

In market segmentation by manufacturers, the report covers the following companies-

AllerinIntellias LtdNVIDIA CorporationXevoKopernikus AutomotiveBlipparAlphabet IncIntelIBMMicrosoftOthers

The Machine Learning in Automobile market report provides the milestone policy changes, beneficial circumstances, industry-related news, and developing trends. These factors combined can accomplish the goal of giving the user information to enhance their market survival, and it packs various parts of information accumulated from secondary sources, including press releases, web, magazines, and journals as pie-charts, graphs, numbers, and tables. The information is verified and confirmed using primary interactions and surveys. The data on growth and development focuses on new technologies, market capacities, CAPEX cycle, markets and materials, and the integrated structure of the Machine Learning in Automobile market.

Buy this informative [emailprotected] https://www.marketexpertz.com/checkout-form/86931

In market segmentation by types of Machine Learning in Automobile, the report covers-

Supervised LearningUnsupervised LearningSemi Supervised LearningReinforced LeaningOthers

In market segmentation by applications of the Machine Learning in Automobile, the report covers the following uses-

AI Cloud ServicesAutomotive InsuranceCar ManufacturingDriver MonitoringOthers

This study examines the progress of the Machine Learning in Automobile sector based on the present and past information and forecast to provide extensive information about the Machine Learning in Automobile industry and the dominant industry players that will guide the Machine Learning in Automobile market through the forecast years. These participants are examined minutely to get information regarding their recent deals, partnerships, investment strategies, and products/services, among others.

For any other queries, please contact [emailprotected] https://www.marketexpertz.com/customization-form/86931

Prominent Topics under the Machine Learning in Automobile market study:

Sales Speculation:

The report contains past sales that facilitate the study about the market capacity, and it helps to evaluate the key areas in the Machine Learning in Automobile market. Additionally, it includes contributions of all the segments of the market, giving meticulously derived results about types and applications of Machine Learning in Automobile.

Industrial Investigation:

The Machine Learning in Automobile market report is carefully categorized into different product types and applications. The report also has a section focused on crucial information about the raw materials and manufacturing process currently employed in the market.

Competitive Landscape:

Machine Learning in Automobile market report specifically highlights the key players of the market in order to provide a clearer view of the competing participants in the market. The profiling of the companies involves recent business advancements, organization profile, item portfolio, and key strategies, overview.

The report includes accurately drawn facts and figures, along with graphical representations of vital market data. The research report sheds light on the emerging market segments and significant factors influencing the growth of the industry to help investors capitalize on the existing growth opportunities.

!!! Limited Time DISCOUNT Available!!! Get Your Copy at Discounted [emailprotected] https://www.marketexpertz.com/discount-enquiry-form/86931

What does the Machine Learning in Automobile market report provide

Overall, the Machine Learning in Automobile market is examined for revenue, price, sales, and profitability. These points are studied according to companies, types, applications, and regions.

Browse Complete Report Description and Full [emailprotected] https://www.marketexpertz.com/industry-overview/machine-learning-in-automobile-marketThank you for reading this report. If you wish to customize the report, please contact our team. You can get research that encompasses all the factors affecting the market according to your specific requirements.

Well-versed in economics and mergers and acquisitions, Jashi writes about companies and their corporate stratagem. She has been recognized for her near-accurate predictions by the business world, garnering trust in her written word.

Read this article:
Machine Learning in Automobile Market Research Provides an In-Depth Analysis on the Future Growth Prospects and Industry Trends Adopted by the...

What Researches says on Machine learning with COVID-19 – Techiexpert.com – TechiExpert.com

COVID-19 will change how most of us live and work, at any rate temporarily. Its additionally making a test for tech organizations, for example, Facebook, Twitter, and Google, that usually depend on parcels and heaps of personal work to direct substance. Are AI furthermore, AI propelled enough to enable these organizations to deal with the interruption?

Its essential that, even though Facebook has initiated ageneral work-from-home strategy to ensure its laborers (alongside Google and arising number of different firms), it at first required its contractual workerswho moderate substance to keep on coming into the workplace. That circumstancejust changed after fights, as per The Intercept.

Presently, Facebook is paying those contractual workers. At thesame time, they sit at home since the idea of their work (examining peoplegroups posts for content that damages Facebooks terms of administration) isamazingly security delicate. Heres Facebooks announcement:

For both our full-time representatives and agreementworkforce, there is some work that is impossible from home because ofwellbeing, security, and legitimate reasons. We have played it safe to secureour laborers by chopping down the number of individuals in some random office,executing prescribed work from home all-inclusive, truly spreading individualsout at some random office, and doing extra cleaning. Given the quicklydeveloping general wellbeing concerns, we are finding a way to ensure ourgroups. We will be working with our accomplices throughout this week to sendall contractors who perform content survey home, until further notification.Well guarantee the payment of all employees during this time.

Facebook, Twitter, Reddit, and different organizations are inthe equivalent world-renowned pontoon: Theres an expanding need to politicizetheir stages, just to take out counterfeit news about COVID-19. Yetthe volunteers who handle such assignments cant do as such from home,particularly on their workstations. The potential arrangement? Human-madereasoning (AI) and AI calculations intended to examine the flawed substance andsettle on a choice about whether to dispense with it.

Heres Googles announcement on the issue, using its YouTube Creator Blog.

Our Community Guidelines requirement today depends on ablend of individuals and innovation: Machine learning recognizes possiblydestructive substance and afterward sends it to human analysts for evaluation.Because of the new estimates were taking, we will incidentally begin dependingmore on innovation to help with a portion of the work regularly done bycommentators. This implies computerized frameworks will begin evacuating somesubstance without human audit, so we can keep on acting rapidly to expelviolative substances and ensure our environment. At the same time, we have aworking environment assurances set up.

Also, the tech business has been traveling right now sometime.Depending on the multitudes of individuals to peruse each bit of substance onthe web is costly, tedious, and inclined to mistake. Be that as it may, AI,whats more, AI is as yet early, despite the promotion. Google itself, in thepreviously mentioned blog posting, brought up how its computerized frameworksmay hail inappropriate recordings. Facebook is additionally getting analysisthat its robotized against spam framework is whacking inappropriate posts,remembering those that offer essential data for the spread of COVID-19.

In the case of the COVID-19 emergency delay, more organizationswill not surely turn to machine learning as a potential answer forinterruptions in their work process and different procedures. That will drive aprecarious expectation to absorb information; over and over, the rollout of AIstages has exhibited that, while the capability of the innovation is there,execution is regularly an unpleasant and costly proceduresimply see GoogleDuplex.

In any case, a forceful grasp of AI will likewise make more opendoors for those technologists who have aced AI, whats more, AI aptitudes ofany kind; these people may wind up entrusted with making sense of how tomechanize center procedures to keep organizations running.

Before the infection developed, Burning Glass (which breaks downa great many activity postings from over the US), evaluated that employmentsthat include AI would grow 40.1 percent throughout the following decade. Thatrate could increase considerably higher if the emergency on a fundamental levelchanges how individuals over the world live and work. (The average compensationfor these positions is $105,007; for those with a Ph.D., it floats up to$112,300.)

With regards to irresistible illnesses, counteraction, surveillance,and fast reaction endeavors can go far toward easing back or slowing downflare-ups. At the point when a pandemic, for example, the ongoing coronavirusepisode occurs, it can make enormous difficulties for the administration andgeneral wellbeing authorities to accumulate data rapidly and facilitate areaction.

In such a circumstance, machine learning can assume an immensejob in foreseeing a flare-up and limiting or slowing down its spread.

Human-made intelligence calculations can help mine through newsreports and online substances from around the globe, assisting specialists inperceiving oddities even before it arrives at pestilence extents. The crownepisode itself is an extraordinary model where specialists applied AI toexamine flight voyager information to anticipate where the novel coronaviruscould spring up straightaway. A National Geographic report shows how checkingthe web or online life can help identify the beginning periods.

Practical usage of prescient demonstrating could speak to asignificant jump forward in the battle to free the universe of probably themost irresistible maladies. Substantial information examination can enablede-to to concentrate the procedure and empower the convenient investigation offar-reaching informational collections created through the Internet of Things(IoT) and cell phones progressively.

Artificial intelligence and colossal information examination have a significant task to carry out in current genome sequencing techniques. High.

As of late, weve all observed great pictures of medicinalservices experts over the globe working vigorously to treat COVID-19 patients,frequently putting their own lives in danger. Computer-based intelligence couldassume a critical job in relieving their burden while guaranteeing that thenature of care doesnt endure. For example, the Tampa General Hospital inFlorida is utilizing AI to recognize fever in guests with a primary facialoutput. Human-made intelligence is additionally helping specialists at theSheba Medical Center.

The job of AI and massive information in treating worldwidepandemics and other social insurance challenges is just set to develop. Hence,it does not shock anyone that interest for experts with AI aptitudes hasdramatically increased in recent years. Experts working in social insuranceinnovations, getting taught on the uses of AI in medicinal services, andbuilding the correct ranges of abilities will end up being critical.

As AI rapidly becomes standard, medicinal services isundoubtedly a territory where it will assume a significant job in keeping usmore secure and more advantageous.

The subject of how machine learning can add to controlling theCOVID-19 pandemic is being presented to specialists in human-made consciousness(AI) everywhere throughout the world.

Artificial intelligence instruments can help from multiplepoints of view. They are being utilized to foresee the spread of thecoronavirus, map its hereditary advancement as it transmits from human tohuman, accelerate analysis, and in the improvement of potential medications,while additionally helping policymakers adapt to related issues, for example,the effect on transport, nourishment supplies, and travel.

In any case, in every one of these cases, AI is just potent onthe off chance that it has adequate guides. As COVID-19 has brought the worldinto the unchartered domain, the profound learning frameworks,which PCs use to obtain new capacities, dont have the information they have todeliver helpful yields.

Machine leaning is acceptable at anticipating nonexclusiveconduct, yet isnt truly adept at extrapolating that to an emergencycircumstance when nearly everything that happens is new, alerts LeoKrkkinen, a teacher at the Department of Electrical Engineering andAutomation in Aalto University, Helsinki and an individual with Nokias BellLabs. On the off chance that individuals respond in new manners, at thatpoint AI cant foresee it. Until you have seen it, you cant gain fromit.

Regardless of this clause, Krkkinen says powerful AI-basednumerical models are assuming a significant job in helping policymakers see howCOVID-19 is spreading and when the pace of diseases is set to top. Bydrawing on information from the field, for example, the number of passings, AImodels can assist with identifying what number of contaminations areuninformed, he includes, alluding to undetected cases that are as yetirresistible. That information would then be able to be utilized to advise thefoundation regarding isolate zones and other social removing measures.

It is likewise the situation that AI-based diagnostics that arebeing applied in related zones can rapidly be repurposed for diagnosingCOVID-19 contaminations. Behold.ai, which has a calculation for consequentlyrecognizing both malignant lung growth and fallen lungs from X-beams, provideddetails regarding Monday that the count can rapidly distinguish chest X-beamsfrom COVID-19 patients as unusual. Right now, triage might accelerate findingand guarantee assets are dispensed appropriately.

The dire need to comprehend what sorts of approach intercessionsare powerful against COVID-19 has driven different governments to grant awardsto outfit AI rapidly. One beneficiary is David Buckeridge, a teacher in theDepartment of Epidemiology, Biostatistics and Occupational Health at McGillUniversity in Montreal. Equipped with an award of C$500,000 (323,000), hisgroup is joining ordinary language preparing innovation with AI devices, forexample, neural systems (a lot of calculations intended to perceive designs),to break down more than 2,000,000 customary media and internet-based lifereports regarding the spread of the coronavirus from everywhere throughout theworld. This is unstructured free content traditional techniques cantmanage it, Buckeridge said. We need to remove a timetable fromonline media, that shows whats working where, accurately.

The group at McGill is utilizing a blend of managed and solo AI techniques to distill the key snippets of data from the online media reports. Directed learning includes taking care of a neural system with information that has been commented on, though solo adapting just utilizes crude information. We need a structure for predisposition various media sources have an alternate point of view, and there are distinctive government controls, says Buckeridge. People are acceptable at recognizing that, yet it should be incorporated with the AI models.

The data obtained from the news reports will be joined withother information, for example, COVID-19 case answers, to give policymakers andwellbeing specialists a significantly more complete image of how and why theinfection is spreading distinctively in various nations. This is appliedresearch in which we will hope to find significant solutions quick,Buckeridge noted. We ought to have a few consequences of significance togeneral wellbeing in April.

Simulated intelligence can likewise be utilized to helprecognize people who may be accidentally tainted with COVID-19. Chinese techorganization Baidu says its new AI-empowered infrared sensor framework canscreen the temperature of individuals in the nearness and rapidly decide ifthey may have a fever, one of the indications of the coronavirus. In an 11March article in the MIT Technology Review, Baidu said the innovation is beingutilized in Beijings Qinghe Railway Station to recognize travelers who areconceivably contaminated, where it can look at up to 200 individuals in asingle moment without upsetting traveler stream. A report given out fromthe World Health Organization on how China has reacted to the coronavirus saysthe nation has additionally utilized essential information and AI to reinforcecontact following and the administration of need populaces.

Human-made intelligence apparatuses are additionally being sent to all the more likely comprehend the science and science of the coronavirus and prepare for the advancement of viable medicines and an immunization. For instance, fire up Benevolent AI says its man-made intelligence determined information diagram of organized clinical data has empowered the recognizable proof of a potential restorative. In a letter to The Lancet, the organization depicted how its calculations questioned this chart to recognize a gathering of affirmed sedates that could restrain the viral disease of cells. Generous AI inferred that the medication baricitinib, which is endorsed for the treatment of rheumatoid joint inflammation, could be useful in countering COVID-19 diseases, subject to fitting clinical testing.

So also, US biotech Insilico Medicine is utilizing AI calculations to structure new particles that could restrict COVID-19s capacity to duplicate in cells. In a paper distributed in February, the organization says it has exploited late advances in profound figuring out how to expel the need to physically configuration includes and learn nonlinear mappings between sub-atomic structures and their natural and pharmacological properties. An aggregate of 28 AI models created atomic structures and upgraded them with fortification getting the hang of utilizing a scoring framework that mirrored the ideal attributes, the analysts said.

A portion of the worlds best-resourced programmingorganizations is likewise thinking about this test. DeepMind, the London-basedAI pro possessed by Googles parent organization Alphabet, accepts its neuralsystems that can accelerate the regularly painful procedure of settling thestructures of viral proteins. It has created two strategies for preparingneural networks to foresee the properties of a protein from its hereditaryarrangement. We would like to add to the logical exertion bydischarging structure forecasts of a few under-contemplated proteins related toSARS-CoV-2, the infection that causes COVID-19, the organization said.These can assist scientists with building comprehension of how the infectioncapacities and be utilized in medicate revelation.

The pandemic has driven endeavor programming organizationSalesforce to differentiate into life sciences, in an investigation showingthat AI models can gain proficiency with the language of science, similarly asthey can do discourse and picture acknowledgment. The thought is that the AIframework will, at that point, have the option to plan proteins, or recognizecomplex proteins, that have specific properties, which could be utilized totreat COVID-19.

Salesforce took care of the corrosive amino arrangements ofproteins and their related metadata into its ProGen AI framework. The frameworktakes each preparation test and details a game where it attempts to foresee thefollowing amino corrosive in succession.

Before the finish of preparing, ProGen has gotten aspecialist at foreseeing the following amino corrosive by playing this gameroughly one trillion times, said Ali Madani, an analyst at Salesforce.ProGen would then be able to be utilized practically speaking for proteinage by iteratively anticipating the following doubtlessly amino corrosive andproducing new proteins it has never observed. Salesforce is presentlylooking to collaborate with scholars to apply the innovation.

As governments and wellbeing associations scramble to containthe spread of coronavirus, they need all the assistance they with canning get,including from machine learning. Even though present AI innovations are a longway from recreating human knowledge, they are ending up being useful infollowing the episode, diagnosing patients, sanitizing regions, andaccelerating the way toward finding a remedy for COVID-19.

Information science and AI maybe two of the best weapons we havein the battle against the coronavirus episode.

Not long before the turn of the year, BlueDot, a human-madeconsciousness stage that tracks irresistible illnesses around the globe, haileda group of bizarre pneumonia cases occurring around a market inWuhan, China. After nine days, the World Health Organization (WHO) dischargedan announcement proclaiming the disclosure of a novel coronavirusin a hospitalized individual with pneumonia in Wuhan.

BlueDot utilizes everyday language preparation and AIcalculations to scrutinize data from many hotspots for early indications ofirresistible pestilences. The AI takes a gander at articulations from wellbeingassociations, business flights, animal wellbeing reports, atmosphere informationfrom satellites, and news reports. With so much information being created oncoronavirus consistently, the AI calculations can help home in on the bits thatcan give appropriate data on the spread of the infection. It can likewisediscover significant connections betweens information focuses, for example,the development examples of the individuals who are living in the zonesgenerally influenced by the infection.

The organization additionally utilizes many specialists who havesome expertise in the scope of orders, including geographic data frameworks,spatial examination, information perception, PC sciences, just as clinicalspecialists in irresistible clinical ailments, travel and tropical medication,and general wellbeing. The specialists audit the data that has been hailed bythe AI and convey writes about their discoveries.

Joined with the help of human specialists, BlueDots AI cananticipate the beginning of a pandemic, yet additionally, conjecture how itwill spread. On account of COVID-19, the AI effectively recognized the urbancommunities where the infection would be moved to after it surfaced in Wuhan.AI calculations considering make a trip design had the option to foresee wherethe individuals who had contracted coronavirus were probably going to travel.

Presently, AI calculations can play out the equivalenteverywhere scale. An AI framework created by Chinese tech monster Baiduutilizes cameras furnished with PC vision and infrared sensors to foreseeindividuals temperatures in open territories. The frame can screen up to 200individuals for every moment and distinguish their temperature inside the scopeof 0.5 degrees Celsius. The AI banners any individual who has a temperatureabove 37.3 degrees. The innovation is currently being used in Beijings QingheRailway Station.

Alibaba, another Chinese tech monster, has built up an AI framework that can recognize coronavirus in chest CT filters. As indicated by the analysts who built up the structure, the AI has a 96-percent exactness. The AI was prepared on information from 5,000 coronavirus cases and can play out the test in 20 seconds instead of the 15 minutes it takes a human master to analyze patients. It can likewise differentiate among coronavirus and common viral pneumonia. The calculation can give a lift to the clinical focuses that are as of now under a ton of strain to screen patients for COVID-19 disease. The framework is supposedly being embraced in 100 clinics in China.

A different AI created by specialists from Renmin Hospital ofWuhan University, Wuhan EndoAngel Medical Technology Company, and the ChinaUniversity of Geosciences purportedly shows 95-percent precision ondistinguishing COVID-19 in chest CT checks. The framework is a profoundlearning calculation prepared on 45,000 anonymized CT checks. As per a preprintpaper distributed on medRxiv, the AIs exhibition is practically identical tomaster radiologists.

One of the fundamental approaches to forestall the spread of thenovel coronavirus is to decrease contact between tainted patients andindividuals who have not gotten the infection. To this end, a few organizationsand associations have occupied with endeavors to robotize a portion of themethods that recently required wellbeing laborers and clinical staff tocooperate with patients.

Chinese firms are utilizing automatons and robots to performcontactless conveyance and to splash disinfectants in open zones to limit thedanger of cross-contamination. Different robots are checking individuals forfever and other COVID-19 manifestations and administering free hand sanitizerfoam and gel.

Inside emergency clinics, robots are conveying nourishment andmedication to patients and purifying their rooms to hinder the requirement forthe nearness of attendants. Different robots are caught up with cooking ricewithout human supervision, decreasing the quantity of staff required to run theoffice.

In Seattle, specialists utilized a robot to speak with and treatpatients remotely to limit the introduction of clinical staff to contaminatedindividuals.

By the days end, the war on the novel coronavirus isnt overuntil we build up an immunization that can vaccinate everybody against theinfection. Be that as it may, growing new medications and medication is anexceptionally protracted and expensive procedure. It can cost more than abillion dollars and take as long as 12 years. That is the sort of period wedont have as the infection keeps on spreading at a quickening pace.

Luckily, AI can assist speed with increasing the procedure.DeepMind, the AI investigate lab procured by Google in 2014, as of lateannounced that it has utilized profound figuring out how to discover new dataabout the structure of proteins related to COVID-19. This is a procedure thatcould have taken a lot more months.

Understanding protein structures can give significant insightsinto the coronavirus immunization recipe. DeepMind is one of a few associationsthat are occupied with the race to open the coronavirus immunization. It hasutilized the consequence of many years of AI progress, just as research onprotein collapsing.

Its imperative to take note of that our structureforecast framework is still being developed, and we cant be sure of theprecision of the structures we are giving, even though we are sure that theframework is more exact than our prior CASP13 framework, DeepMindsscientists composed on the AI labs site. We affirmed that our frameworkgave an exact forecast to the tentatively decided SARS-CoV-2 spike proteinstructure partook in the Protein Data Bank, and this gave us the certainty thatour model expectations on different proteins might be valuable.

Even though it might be too soon to tell whether were going thecorrect way, the endeavors are excellent. Consistently spared in finding thecoronavirus antibody can save hundredsor thousandsof lives.

Read more:
What Researches says on Machine learning with COVID-19 - Techiexpert.com - TechiExpert.com

Research report covers the AI/Machine Learning Market share and Growth, 2019-2025 – Packaging News 24

With having published myriads of reports, AI/Machine Learning Market Research imparts its stalwartness to clients existing all over the globe. Our dedicated team of experts deliver reports with accurate data extracted from trusted sources. We ride the wave of digitalization facilitate clients with the changing trends in various industries, regions and consumers. As customer satisfaction is our top priority, our analysts are available 24/7 to provide tailored business solutions to the clients.

In this new business intelligence report, AI/Machine Learning Market Research serves a platter of market forecast, structure, potential, and socioeconomic impacts associated with the global AI/Machine Learning market. With Porters Five Forces and DROT analyses, the research study incorporates a comprehensive evaluation of the positive and negative factors, as well as the opportunities regarding the AI/Machine Learning market.

Request Sample Report @ https://www.researchmoz.com/enquiry.php?type=S&repid=2279818&source=atm

The AI/Machine Learning market report has been fragmented into important regions that showcase worthwhile growth to the vendors Region 1 (Country 1, Country 2), region 2 (Country 1, Country 2) and region 3 (Country 1, Country 2). Each geographic segment has been assessed based on supply-demand status, distribution, and pricing. Further, the study provides information about the local distributors with which the market players could create collaborations in a bid to sustain production footprint.

The key players covered in this studyGOOGLEIBMBAIDUSOUNDHOUNDZEBRA MEDICAL VISIONPRISMAIRIS AIPINTERESTTRADEMARKVISIONDESCARTES LABSAmazon

Market segment by Type, the product can be split intoTensorFlowCaffe2Apache MXNet

Market segment by Application, split intoAutomotiveSantific ResearchBig DateOther

Market segment by Regions/Countries, this report coversUnited StatesEuropeChinaJapanSoutheast AsiaIndiaCentral & South America

The study objectives of this report are:To analyze global AI/Machine Learning status, future forecast, growth opportunity, key market and key players.To present the AI/Machine Learning development in United States, Europe and China.To strategically profile the key players and comprehensively analyze their development plan and strategies.To define, describe and forecast the market by product type, market and key regions.

In this study, the years considered to estimate the market size of AI/Machine Learning are as follows:History Year: 2014-2018Base Year: 2018Estimated Year: 2019Forecast Year 2019 to 2025For the data information by region, company, type and application, 2018 is considered as the base year. Whenever data information was unavailable for the base year, the prior year has been considered.

Make An EnquiryAbout This Report @ https://www.researchmoz.com/enquiry.php?type=E&repid=2279818&source=atm

What does the AI/Machine Learning market report contain?

Readers can get the answers of the following questions while going through the AI/Machine Learning market report:

And many more

You can Buy This Report from Here @ https://www.researchmoz.com/checkout?rep_id=2279818&licType=S&source=atm

For More Information Kindly Contact:

ResearchMoz.com

Mr. Nachiket Ghumare,

90 State Street,

Albany NY,

United States 12207

Tel: +1-518-621-2074

USA-Canada Toll Free: 866-997-4948

Email: [emailprotected]

Read more here:
Research report covers the AI/Machine Learning Market share and Growth, 2019-2025 - Packaging News 24

Neural networks facilitate optimization in the search for new materials – MIT News

When searching through theoretical lists of possible new materials for particular applications, such as batteries or other energy-related devices, there are often millions of potential materials that could be considered, and multiple criteria that need to be met and optimized at once. Now, researchers at MIT have found a way to dramatically streamline the discovery process, using a machine learning system.

As a demonstration, the team arrived at a set of the eight most promising materials, out of nearly 3 million candidates, for an energy storage system called a flow battery. This culling process would have taken 50 years by conventional analytical methods, they say, but they accomplished it in five weeks.

The findings are reported in the journal ACS Central Science, in a paper by MIT professor of chemical engineering Heather Kulik, Jon Paul Janet PhD 19, Sahasrajit Ramesh, and graduate student Chenru Duan.

The study looked at a set of materials called transition metal complexes. These can exist in a vast number of different forms, and Kulik says they are really fascinating, functional materials that are unlike a lot of other material phases. The only way to understand why they work the way they do is to study them using quantum mechanics.

To predict the properties of any one of millions of these materials would require either time-consuming and resource-intensive spectroscopy and other lab work, or time-consuming, highly complex physics-based computer modeling for each possible candidate material or combination of materials. Each such study could consume hours to days of work.

Instead, Kulik and her team took a small number of different possible materials and used them to teach an advanced machine-learning neural network about the relationship between the materials chemical compositions and their physical properties. That knowledge was then applied to generate suggestions for the next generation of possible materials to be used for the next round of training of the neural network. Through four successive iterations of this process, the neural network improved significantly each time, until reaching a point where it was clear that further iterations would not yield any further improvements.

This iterative optimization system greatly streamlined the process of arriving at potential solutions that satisfied the two conflicting criteria being sought. This kind of process of finding the best solutions in situations, where improving one factor tends to worsen the other, is known as a Pareto front, representing a graph of the points such that any further improvement of one factor would make the other worse. In other words, the graph represents the best possible compromise points, depending on the relative importance assigned to each factor.

Training typical neural networks requires very large data sets, ranging from thousands to millions of examples, but Kulik and her team were able to use this iterative process, based on the Pareto front model, to streamline the process and provide reliable results using only the few hundred samples.

In the case of screening for the flow battery materials, the desired characteristics were in conflict, as is often the case: The optimum material would have high solubility and a high energy density (the ability to store energy for a given weight). But increasing solubility tends to decrease the energy density, and vice versa.

Not only was the neural network able to rapidly come up with promising candidates, it also was able to assign levels of confidence to its different predictions through each iteration, which helped to allow the refinement of the sample selection at each step. We developed a better than best-in-class uncertainty quantification technique for really knowing when these models were going to fail, Kulik says.

The challenge they chose for the proof-of-concept trial was materials for use in redox flow batteries, a type of battery that holds promise for large, grid-scale batteries that could play a significant role in enabling clean, renewable energy. Transition metal complexes are the preferred category of materials for such batteries, Kulik says, but there are too many possibilities to evaluate by conventional means. They started out with a list of 3 million such complexes before ultimately whittling that down to the eight good candidates, along with a set of design rules that should enable experimentalists to explore the potential of these candidates and their variations.

Through that process, the neural net both gets increasingly smarter about the [design] space, but also increasingly pessimistic that anything beyond what weve already characterized can further improve on what we already know, she says.

Apart from the specific transition metal complexes suggested for further investigation using this system, she says, the method itself could have much broader applications. We do view it as the framework that can be applied to any materials design challenge where you're really trying to address multiple objectives at once. You know, all of the most interesting materials design challenges are ones where you have one thing you're trying to improve, but improving that worsens another. And for us, the redox flow battery redox couple was just a good demonstration of where we think we can go with this machine learning and accelerated materials discovery.

For example, optimizing catalysts for various chemical and industrial processes is another kind of such complex materials search, Kulik says. Presently used catalysts often involve rare and expensive elements, so finding similarly effective compounds based on abundant and inexpensive materials could be a significant advantage.

This paper represents, I believe, the first application of multidimensional directed improvement in the chemical sciences, she says. But the long-term significance of the work is in the methodology itself, because of things that might not be possible at all otherwise. You start to realize that even with parallel computations, these are cases where we wouldn't have come up with a design principle in any other way. And these leads that are coming out of our work, these are not necessarily at all ideas that were already known from the literature or that an expert would have been able to point you to.

This is a beautiful combination of concepts in statistics, applied math, and physical science that is going to be extremely useful in engineering applications, says George Schatz, a professor of chemistry and of chemical and biological engineering at Northwestern University, who was not associated with this work. He says this research addresses how to do machine learning when there are multiple objectives. Kuliks approach uses leading edge methods to train an artificial neural network that is used to predict which combination of transition metal ions and organic ligands will be best for redox flow battery electrolytes.

Schatz says this method can be used in many different contexts, so it has the potential to transform machine learning, which is a major activity around the world.

The work was supported by the Office of Naval Research, the Defense Advanced Research Projects Agency (DARPA), the U.S. Department of Energy, the Burroughs Wellcome Fund, and the AAAS Mar ion Milligan Mason Award.

Visit link:
Neural networks facilitate optimization in the search for new materials - MIT News