Genomic Predictions’ DNA test for embryos claims it can predict diseases and alert parents – Screen Shot

Genomic Predictions DNA test for embryos claims it can predict diseases and alert parents

A New Jersey-based startup developed what it claims to be a genetic test capable of predicting a number of common diseases in embryos. The company, called Genomic Predictions, has been approached by dozens of parents-to-be from across the world in hopes of having the start-up help them weed out embryos more inclined to develop certain diseases later in life, such as cancer and diabetes. Although Genomic Predictions new test is in its infancy, the company has already come under fire by many in the academic and scientific communities, with some depicting the test as both impractical and unethical.

Genomic Predictions has been around for several years now, using various computing technologies, AI and machine learning to research genomes and discover novel ways of predicting phenotypes. Weve always thought that one of the best and earliest applications of this would be embryo selection because we can help families have a healthy child, said Stephen Hsu, the companys co-founder, in an interview for GEN.

Last month, Genomic Predictions finally unveiled a test which it claims can utilise DNA data to predict the likelihood of embryos from an IVF procedure to develop any of 11 types of diseases. As reported by MIT Review, the test, called LifeView, will measure IVF embryos DNA from hundreds of thousands of genetic positions and generate estimates regarding chances of having diseases such as diabetes, heart attacks, and five types of cancer. The test would also alert parents about how likely it is that their child will end up among the shortest 2 per cent of the population or the lowest 2 per cent in intelligence.

Genomic Predictions then hands parents report cards containing the testing results for each embryo so they could implant the ones they deem to be the healthiest out of the batch.

So far, the company reported that 12 clinics around the worldin Nigeria, Peru, Thailand, Taiwan, and the USwill order its new test. The few interested clients are mostly well-off professionals wanting to reduce their childs risk of having diseases that may run in the family. Genomic Predictions first set of clients, for instance, is a gay couple undergoing IVF with a surrogate mother who want to ensure their child wont have breast cancer. Another couple, who have two children with autism, want their third child to be neuro-typical; something they hope the LifeView test could help them achieve.

For the most part, however, clinics are extremely hesitant about ordering this new test, as many scientific experts and researchers voiced harsh criticism of it. It is irresponsible to suggest that the science is at the point where we could reliably predict which embryo to select to minimize the risk of disease. The science simply isnt there yet, tweeted Graham Coop, a geneticist at the University of California, Davis. A research by The Hebrew University of Jerusalem also concluded that attempting to predict the height and intelligence of an embryo is pretty much a futile attempt at this point in time. Others, such as Santiago Munne, an embryo testing expert and entrepreneur, suggest that the great uncertainty that comes with this type of testing would be off-putting for many doctors and client as well as a source for potential disappointment.

And lets not forget about the immense psychological strain such a test can place on children who find out theyve been selected out of a pool of embryos in order to be healthy. What if they do end up developing one of these diseases after all this money had been spent?

While a parents urge to do all in their power to prevent their child from being ill is understandable, this genetic selection process sets us on a very slippery slope. It seems that endeavours such as LifeView constitute a mere hop, skip and a jump away from genetically editing babies, and cater to our growing appetite to design what we perceive to be the perfect human. Naturally, we should support the scientific communitys efforts to find cures and solutions to prevent terrible diseases, but is phenotyping the answer? This approach all but ignores the slew of external and environmental factors that heavily impact someones chances of developing such diseases, including diet, lifestyle, stress, and someones mental state. It could be argued that no less attention should be placed on tackling the latter, as opposed to try and manufacture a flawless human being.

So far, tests like LifeView appeal only to couples using IVF, a process that is long, uncertain, invasive and prohibitively expensive. Some at Genomic Prediction, however, contend that IVF will be the future, claiming that even fertile couples would choose to undergo the process in order to reduce the chances of disease in their children. As such technologies proliferate, we must remain critical and alert of their application and the direction in which it takes our society. Crafting the perfect human and labouring to prevent any flaws in our children could cost us a great deal. Much more than an IVF treatment.

Genomic Predictions DNA test for embryos claims it can predict diseases and alert parents

See original here:
Genomic Predictions' DNA test for embryos claims it can predict diseases and alert parents - Screen Shot

INDIA Indian doctor: Medical innovation should not try to replace the Creator – AsiaNews

Dr Pascoal Carvalho addressed the 21st convention of Indias Catholic nurses in Mumbai. He spoke about the ethical aspects of genetic engineering, citing the doctrine of the Church towards human cloning and stem cells. Respect for human dignity must prevail from conception to natural death.

Mumbai (AsiaNews) Medical innovation, which increasingly uses modern technologies to improve life, should not attempt to artificially replicate creation, said Dr Pascoal Carvalho, a doctor from Mumbai and a member of the Pontifical Academy for Life, speaking at the 21st convention of Catholic nurses (8-10 November).

In his address on 9 November, he referred to therapeutic cloning, stem cells and modified human DNA before an audience of more than 200 Catholic health workers.

"[W]e can rest assured in the wisdom of the Church," he said, because for her, The dignity of a person must be recognized in every human being from conception to natural death.

Some areas of medical research that raise serious moral and ethical questions touch stem cells, embryos and DNA.

In his view, today There is a growing threat of overestimating genetic modification techniques and underestimating the repercussions of cloning and human gene therapy.

On the one hand, we have the positive results of therapeutic cloning aimed at organ and tissues reconstructed in laboratory for transplanting into patients to reduce the risk of rejection; on the other, reproductive cloning, like in the case of Dolly the sheep, seeks to reproduce living beings.

He warns against research that leads to alterations in an organisms DNA, like the famous case of the Chinese scientist who in 2018 said that he had created two twins in the laboratory immune to the HIV virus. This kind of experiment can reduce life expectancy and increase susceptibility to other, and perhaps more common, diseases.

The doctor cites the Dignitas Personae, which defines any attempt at human cloning as unacceptable, because it represents a serious offense to the dignity of the person and fundamental equality between men.

As for therapeutic cloning, To create embryos with the intention of destroying them, even with the intention of helping the sick, is completely incompatible with human dignity, because it makes the existence of a human being at the embryonic stage nothing more than a means to be used and destroyed. It is gravely immoral to sacrifice a human life for therapeutic ends.

Citing the doctrine of the Church, Dr Carvalho stresses the importance of the method with which stem cells are taken. In his view, Methods which do not cause serious harm to the subject from whom the stem cells are taken are to be considered licit.

This is generally the case when tissues are taken from: a) an adult organism; b) the blood of the umbilical cord at the time of birth; c) foetuses who have died of natural causes.

Overall, the doctor believes that modern gene technologies raise new moral questions, whilst attempts to create a new type of human being contains an ideological element in which man tries to take the place of his Creator.

Read more here:
INDIA Indian doctor: Medical innovation should not try to replace the Creator - AsiaNews

Scientists reveal the 13 dark technology scenarios that keep them up at night – Business Insider

REUTERS/Stefan Wermuth

The next generation of wireless cellular, called 5G, has started to roll out across the US, delivering speeds orders of magnitude faster than the 4G networks in use today.

For consumers, that means better video playback on mobile devices, but for businesses, 5G is expected to enable all manner of connected devices to work together more efficiently from connected cars to factory automation to smart buildings.

Joseph Cortese, associate director at the cybersecurity firm A-LIGN, said that will be a good thing.

"We will see a rush of businesses attempting to be the first-to-market with 5G enabled devices," Cortese said. "This will lead to an enormous swell in the size of the Internet of Things, with thousands of new devices joining the network." The Internet of Things is the name given to networks of connected devices in homes, business, and across cities.

But Cortese also said we need to be prepared for cyberattacks, which reliance on 5G could make unimaginably worse.

"Distributed denial of service attacks have the potential to quickly overload 5G networks and impact critical services. In the past, DDoS attacks have troubled services like Netflix and Airbnb, but in the future, the Internet of Things will be used for things like directing traffic patterns and providing emergency services workers with critical information."

In such an attack, large parts of a city's infrastructure will be rendered useless. In a smart city that depends on the Internet of Things, operations would be brought to a halt.

Cortese said, "Even a simple attack has the potential to cripple a smart city that relies on 5G networks to function."

Here is the original post:
Scientists reveal the 13 dark technology scenarios that keep them up at night - Business Insider

This wristband tells you what food to buy based on your DNA – World Economic Forum

When an undiagnosed rare genetic disease caused his young sons kidneys to fail, Professor Chris Toumazou vowed to find a way of uncovering hidden health risks.

The professor of biomedical engineering realised that, although his sons condition could not have been prevented, the family could have managed his lifestyle very differently had they known about his condition.

So, he embarked on a mission to help people change their lifestyles and avoid getting sick.

Lifestyle, he says, has a huge impact on many undiagnosed conditions such as diabetes and high blood pressure. Changing behaviour could save lives.

The result of his research is a simple wristband that uses your DNA to help you make healthy choices as you shop for groceries.

By analysing the part of your genetic code determining susceptibility to nutrition-related health conditions like diabetes, DNANudge tells you which foods are best for you, and which you should avoid.

DNANudge analyses your genetic code and tells you which foods are best for you, and which you should avoid.

Image: DNANudge

The wristband scans shop barcodes and shows a green light if a product is OK and red if it may be harmful in the long run. The wristband's linked smartphone app suggests healthier alternatives when the red light comes on.

Following his sons acute illness, Toumazou also invented a microchip that can read an individuals DNA from a simple mouth swab sample. Its now used to upload a DNA profile to the new wristband a process that takes an hour instead of up to eight weeks for a conventional DNA test.

"We're not telling people they can't eat biscuits, that they should eat grapes. No, they can eat biscuits, but eat the better biscuits based upon your DNA and lifestyle," says Toumazou.

"It's using biology to nudge and guide you to have a healthier lifestyle in the long term."

The World Economic Forum was the first to draw the worlds attention to the Fourth Industrial Revolution, the current period of unprecedented change driven by rapid technological advances. Policies, norms and regulations have not been able to keep up with the pace of innovation, creating a growing need to fill this gap.

The Forum established the Centre for the Fourth Industrial Revolution Network in 2017 to ensure that new and emerging technologies will helpnot harmhumanity in the future. Headquartered in San Francisco, the network launched centres in China, India and Japan in 2018 and is rapidly establishing locally-run Affiliate Centres in many countries around the world.

The global network is working closely with partners from government, business, academia and civil society to co-design and pilot agile frameworks for governing new and emerging technologies, including artificial intelligence (AI), autonomous vehicles, blockchain, data policy, digital trade, drones, internet of things (IoT), precision medicine and environmental innovations.

Learn more about the groundbreaking work that the Centre for the Fourth Industrial Revolution Network is doing to prepare us for the future.

Want to help us shape the Fourth Industrial Revolution? Contact us to find out how you can become a member or partner.

The device also helps to promote overall health by warning if you are inactive for too long. An orange light means it's time to get up and move about.

One in 10 people with pre-diabetes, a reversible condition, will go on to develop type 2 diabetes, which affects more than 400 million people worldwide. Early diagnosis can enable people to change their lifestyles and avoid developing the full-blown condition.

And what about Toumazous son Marcus? Well, his story has a happy ending. After months in dialysis he received a kidney transplant and is now in good health.

He even met the Queen at the opening of his fathers new lab in London. He told her his father was changing healthcare by making microchips for the human body.

License and Republishing

World Economic Forum articles may be republished in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

See more here:
This wristband tells you what food to buy based on your DNA - World Economic Forum

Societal Consequences of Human Genetic Engineering …

Section 15 of NOVAs program, Cracking the Code of Life, utilizes popular film and television scenarios to relate to its audience the potential possibilities of future genetic modification of humans. In a scene from GATTACA, the doctor explains the process of choosing simply the best of the two parents DNA to create their child in a petri dish. According to Francis Collins, former director of the National Human Genome Research Institute (NHGRI) and current director of the National Institutes of Health (NIH), that technology is right in front of us or almost in front of us.

[http://www.stumbleupon.com/su/1EdlIO/www.wickedreport.com/genetic-errors/]

The advancement of research in genetic modification raises ethical concerns of how this information technology will be used in the future. Who will regulate which genes are modified and which are not? If law prohibits genetic modification except in cases of modifying mutations that cause diseases, how will the law regulator, presumably the government, define a disease? What will be the standards for disease severity? Will the law provide genetic modification for mutated genes like BRCA but not for blindness or alcoholism? How will they decide which diseases are more important or more severe than others?

Society as a whole can generally agree that using genetic modification to help prevent incurable diseases like cancer, diabetes, and Tay Sachs disease, is highly favorable. Potential prevention of these diseases could save thousands of people pain, suffering, anxiety, and, on a more superficial level, millions of dollars. The line begins to blur when society examines the possibility of using this genetic modification technology not only to prevent disease, but to make their children genetically different to enhance their performance.

If society decides that anyone who can afford genetic modification can take advantage of its benefits, will parents begin to alter the characteristics of their future children? Program host Robert Krulwich asks, what parent wouldnt want to introduce a child that would at least be where all the other kids could be?

All parents want their children to have the best possible start to life and have the best advantages that they can provide. I wonder how far some parents would go to secure the best genetic start for their children. If genetic modification becomes a public option, it will probably only be available to those who can afford it. Because of the inevitability of its high cost, the only people who would be able to afford to create genetically perfect children would be those in the highest percentile of wealth. Therefore, if only a certain group with a specific socio-economic status could even have access to this science, the gap between social classes will increase not only because of a disparity of wealth, but also because of a disparity in gene perfection. The definition of elite will encompass human perfection through genetic modification.

The First Genetically Modified Human Embryo

Defying nature to build super-humans is not a real concern until science has proven that this is possible, and currently this technology is not perfected. Science should be allowed to progress and discoveries should not be hindered or stopped. However, it is important for society to decide now how they will deal with the ultimate results of future scientific research.

By: Elizabeth S.

Like Loading...

Related

~ by elizabethstinson on January 31, 2010.

Posted in Ethics of science, Genetic engineering, Science and humanitiesTags: Ethics of Genetics, Gattaca, Genetic engineering, genetic modification, Nova Cracking the Code of Life

Read the rest here:
Societal Consequences of Human Genetic Engineering ...

Genetic Engineering in Humans – Curing Diseases and …

Over the past few years, the field of biotechnology has advanced at a very high rate that scientists can now edit plants and animals at the genomic level. Different genetic engineering or genome-editing techniques such aszinc fingernucleases, transcription activator-like effector nucleases (TALENs), meganucleases and theCRISPR/Cas9 system have aided scientists to alter genomes to create modified organisms.

Like in plants and animals, could genome-editing be performed in humans? Yes. But a bigger question arises here, should genome editing techniques be used to create designer babies, to remove heritable diseases or to enhance the human capabilities? It is one of the most controversial topics among scientists and hence it all comes down to ethics.

In a recent research, Shoukhrat Mitalipov of Oregon Health Sciences University in Portland reported successfully repairing a genetic mutation in human embryos bringing the idea of genetic engineering in humans closer to reality.

To understand the ethical implications of genetic engineering in humans, it is important to first understand the basics.

Genetic engineering is basically manipulating or changing the DNA to alter the organisms appearance in a particular way. The human body cells contain encoded information compiled into a form called genes, which are responsible for the bodys growth, structure and functioning. Human genetic engineering decodes this information and applies it to the welfare of mankind.

For example, all over the world, several scientists have reported the singing in mice. However, the frequencies at which they sing is not audible to humans. The Alstons brown mouse or Alstons singing mouse is a famous example. It would be interesting to hear these songs too.

Japanese geneticists at the University of Osaka were conducting a research to study the mutagenic effects in a strain of mice that were genetically engineered. Among many effects, the mutation may have caused the alteration in the vocalization in the mice giving birth to an offspring which could sing at a frequency audible to humans.This genetic modification (which was actually an accident) may help in studying the communication patterns in mice as well as in comparing of similarities and differences with other mammals. Some other examples of genetic engineering are GloFish, drug-producing chickens, cows that make human-like milk, diesel-producing bacteria, banana vaccines and disease-preventing mosquitoes.

Based on their type of cell, there are two types of genetic engineering;

Human genetic engineering can further be classified into two types;

In human genetic engineering, the genes or the DNA of a person is changed. This can be used to bring about structural changes in human beings. More importantly, it can be used to introduce the genes for certain positive and desirable traits in embryos. Genetic engineering in humans can result in finding a permanent cure for many diseases.

Some people are born with or acquire exceptional qualities. If the genes responsible for these qualities can be identified, they can be introduced in the early embryos. The embryo develops into a baby called Designer baby or customized baby. Human genetic engineering is advancing at an increasing rate and might evolve to such an extent discovering new genes and implanting them into human embryos will be possible.

Let us take an example of bacteria to understand how genetic engineering works. Insulin is aprotein produced in the pancreasthat helps in the regulation of the sugar levels in our blood. People with type 1diabetes eithercannot produce insulin or produce insufficient insulin in the body. They have to acquire insulin from external sources to control their blood sugar levels. In 1982, Genetic engineering was used to produce a type of insulin which is similar to the human insulin, called the Humulin frombacteria which was then approved and licensed for human use.

An illustration showing how genetic engineering is used to produce insulin in bacteriaCourtesy: Genome Research Limited

Using this process, Chinese scientists have edited the genome of the human embryo for the first time. According to Nature News report, Researchers at Sun Yat-sen University in Guangzhou, China, were partially successful in using a genetic engineering technique to modify a gene in non-viable human embryos which was responsible for the fatal blood disorder.

The technique used, called CRISPR (short for clustered regularly interspaced short palindromic repeats) technology involves an enzyme complex known as CRISPR/Cas9, originating in bacteria as a defence system. CRISPR is a short, repeated DNA sequence that matches the genetic sequence of interest to be modified by the researchers. CRISPR works along with the Cas9 enzyme that acts like molecular scissors and cuts the DNA at a specific site.

As explained by John Reidhaar-Olson, a biochemist at Albert Einstein College of Medicine in New York First, in a simple explanation, the CRISPR/Cas9 complex navigates through the cells DNA, searching for the sequence that matches the CRISPR and binds to the sequence once found. The Cas9 then cuts the DNA which, in this case, is repaired by inserting a piece of DNA desired by the researcher.

Since 2013, CRISPR system has been to edit genes in adult human cells and animal embryos but for the first time has been used for modification in human embryos.

Junjiu Huang, a genetics researcher at Sun Yat-sen University, injected the CRISPR/Cas9 complex into human embryos with the aim of repairing a gene responsible for Beta thalassaemia which is a fatal blood disorder that reduces the production of haemoglobin. The non-viable embryos were obtained from local fertility clinics. These embryos would have been unable to survive independently after birth or develop properly as they had been fertilized by two sperms. The procedure was performed on 86 embryos and gene editing was allowed to take place in four days. Out of 86, 71 of the embryos survived and 54 of them were tested.

Splicing (removal of introns and joining of exonsineukaryotic mRNA) only occurred in 28 embryos successfully indicating the removal of faulty gene and the incorporation of the healthy gene in its place. However, in order for the technique to be used in viable human embryos, the success rate would need to be closer to 100%.

While partial success was achieved, certain worrisome mutations responsible for the detrimental effect on cells during gene-editing were also observed and at a much higher rate in mouse embryos or adult human cells undergoing the same procedure.

One of the most beneficial applications of genetic engineering is gene therapy. Gene therapy is one of the most important benefits of human genetic engineering. Over the last few years, gene therapy has successfully treated certain heart diseases. Driven by this success, researchers are working to find cures for all the genetic diseases. This will eventually lead to a healthier and more evolved human race.Inspired by the recent success of gene therapy trialsin human children and infants, researchers are now moving towards the treatment of genetic disorders before birth. The idea of using fetal gene therapy to treat genetic disorders that cant be treated after birth has generated hype among some of the scientists. Parents will be able to look forward to a healthy baby. Genetic engineering can be done in embryos prior to implantation into the mother.However, some are also questioning the feasibility and practicality of the therapy in humans.

While genetic engineering or modification may seem easy to cure diseases, it may produce certain side effects. While focusing on and treating one defect, there is a possibility it may cause another. A cell is responsible for various functions in the body and manipulating its genes without any counter effect or side effect may not be that easy.

Other than side effects, Cloning, for instance, can lead to an ethical disturbance among the humans risking the
individuality and the diversity of human beings. Ironically, man will become just another man-made thing!

Among the social aspects of human genetic engineering, it can impose a heavy financial burden on the society, which may cause a rift between the rich and the poor in the society. Its feasibility and most importantly its affordability will also be a determinant of its popularity.

Human genetic engineering is a widely and rapidly advancing field. It can lead to miracles. But when assessing its benefits, its threats need to be assessed carefully too. Human genetic engineering can be beneficial to human beings and its potential advantages can come into reality only if it is handled with responsibility.

Like Loading...

Related

Read the original here:
Genetic Engineering in Humans - Curing Diseases and ...

Scientists from Russia and China have been creating ‘genetic pathogens’ for years | London Business News – London Loves Business

Questions have been asked over China in recent days over how the coronavirus was made and transmitted from animal to human.

The US and the UK have both started investigations into China, with President Donald Trump questioning whether it was a mistake that got out of control or was it started deliberately.

Russia has taken advantage of the situation and had excess supplies of 60 tonnes of medical supplies which were sent to the US.

The Russian state of defence giant Rostec delivered ventilators, via the Kremlin to New York two weeks ago, despite Russia having severe health implications across the country.

The US President Donald Trump said, this is a very nice gesture and he is not worried about Russian propaganda, not even a little bit.

During the 70s the former Soviet Union (FSU) were creating genetic engineering for the next generation of Biological weapons as were the Chinese.

The FSU were accused of making a clandestine and illegal offensive biological weapons program. The Soviet Bioweapons (BW) research and development program also sought out the most contagious and lethal bacteria such as plague, and viruses like smallpox.

Biopreparat was a huge military program with civilian cover, which was organised to develop and weaponise biological agents for BW.

Biopreparat and other Soviet BW research facilities operated under the highest security classification of Special Importance which is higher than Top Secret.

The US intelligence community did not even know it existed until 1989 when a top-ranking scientist from the BW program defected to the UK.

In October 1989, Dr Vladimir Pasechnik, the first primary source from inside the Soviet program, defected to the UK.

Pasechnik disclosed that the Soviets had genetically engineered bacteria and viruses, weaponised the microbes in a powder form, loaded them onto various munitions, and integrated BW into their doctrine and had specific plans for use of BW.

In the spring of 1992, a lower-level bench scientist who had worked on plague research in Pasechniks lab also defected to the UK, he has remained undercover and is referred to by code name Temple Fortune.

He fully corroborated Pasechniks previous account and informed the British government on Russias genetic engineering.

A decade later, after becoming President of Russia, Boris Yeltsen visited Britain in 1992. In a public speech, discussing biological warfare research.

Yeltsin stated that the Russians had undertaken research on the influence of various substances on human genes.

The revolution in molecular biology may have incidentally unleashed a new threat to mankind, the development of deadly bioweapons.

The Centers for Disease Control and Prevention (CDC) in Atlanta, is the lead agency for disease epidemics and tracks naturally occurring emerging infectious diseases worldwide.

The CDC have travelled all over the world and investigated outbreaks of Ebola hemorrhagic fever, Marburg virus, hantavirus, and other emerging diseases, more recently coronavirus.

The US Office of the Secretary of Defense have identified countries that maintain various levels of offensive biological warfare capabilities or research facilities, this includes Russia and China.

Both Russia and China have been genetically engineering pathogens for Biological warfare for decades.

A pathogen may be released clandestinely so there will be a delay between exposure and onset of symptoms, such as coronavirus.

Days to weeks later, when people do develop symptoms, they could immediately start spreading contagious diseases, as the world has witnessed since January 2020 with Covid-19.

A paper, released in 2002 entitled, Next Generation Bioweapons for the USAF Counterproliferation Center which provided information and analysis to assist the understanding of bioweapons.

Colonel Dr Michael Ainscough, USAF and a diplomat of American Board of Preventive Medicine in Aerospace Medicine, said in the paper that entire viruses may similarly be created, analogous to the natural mutation of the influenza virus.

A new strain of influenza could be created by induced hybridisation of viral strains, simply swapping out variant or synthetic genes.

Slightly altering a common virus like influenza to make it deadlier might be easier than manipulating rarer or other biologically complicated pathogens.

Some animal viruses, such as those found in bats, are so small that their entire genome could be stitched together, to from machine-synthesised fragments using current technology.

Adding, Mycoplasma, an organism that causes pneumonia in humans, has the smallest known bacterial genome.

An existing pathogen would be subtly genetically modified to be more difficult to detect, more virulent, or more resistant to drugs, all within the capabilities of todays biotechnology, according to the paper.

China has also been developing such Mycoplasma bacterial genomes, and both Russia and China have been closely working with each other for decades.

The Chinese Army has a role at the Wuhan Institute for Biological Products and at the Wuhan Centre for Disease Control & Prevention.

The report by South Chinas university revealed the theory of the origin of coronavirus.

Surgery was performed on the caged animals and the tissue samples were collected for DNA and RNA extraction and sequencing.

They were only 280metresfrom the seafood market and the WHCDC was also adjacent to the Union Hospital where the first group of doctors were infected during this epidemic.

It is plausible that the virus leaked around and some of them contaminated the initial patients in this epidemic, though solid proof is needed in future studies.

Conservative MP, Tobias Elwood the chairman of the British Defence Select Committee expressed concerns in Febraury over the Chinese Armys role at the Wuhan Institute for Biological Products and called, for the greater transparency over the origins of the coronavirus.

See original here:
Scientists from Russia and China have been creating 'genetic pathogens' for years | London Business News - London Loves Business

US agencies launch initiative to boost understanding of GMOs – World Grain

WASHINGTON, DC, US The US Food and Drug Administration, the Environmental Protection Agency and the US Department of Agriculture launched a $7.5 million consumer education initiative focused on highlighting the science behind genetically modified organisms.

The goal of the effort, called Feed Your Mind, is to answer the most common questions consumers have about GMOs, including how they are regulated and whether they are safe and healthy.

Less than a dozen genetically modified crops are grown in the United States, but they often make up an overwhelming majority of the crop grown. More than 90% of soybeans, corn and sugar beets planted in 2018 were genetically modified.

Genetic engineering has created new plants that are resistant to insects and diseases, led to products with improved nutritional profiles, as well as certain produce that dont brown or bruise as easily, said Stephen M. Hahn, MD, commissioner of the FDA.

One educational video from the FDA points out that genetically modified soybeans have healthier oils that may be used to replace oils that contain trans fats. Other materials highlight how reduced bruising and browning may help combat food waste.

Consumers, however, remain uncertain. Concerns that GMOs are unhealthy and harmful are widespread. The number of shoppers avoiding GMOs tripled over the past decade, according to The Hartman Group. Close to half of consumers surveyed last year said they avoid bioengineered ingredients, compared to 15% in 2007.

A study published last year in Nature Human Behavior found more than 90% of participants had some level of opposition to GMO foods. It also found that consumers with the strongest opposition to GMO foods thought they were more knowledgeable about the topic than other participants, despite scoring lower on an actual knowledge test.

While foods from genetically engineered plants have been available to consumers since the early 1990s and are a common part of todays food supply, there are a lot of misconceptions about them, Hahn said. This initiative is intended to help people better understand what these products are and how they are made.

The Feed Your Mind initiative will launch in phases. Materials already released include a new website, fact sheets, infographics and videos. Supplementary science curriculum for high schools, resources for health professionals and additional consumer materials will be released later this year and in 2021.

Read more from the original source:
US agencies launch initiative to boost understanding of GMOs - World Grain

It’s time to talk about the ethics of CRISPR-edited human embryos – Genetic Literacy Project

The announcement by researchers in Portland, Oregon that theyve successfully modified the genetic materialof a human embryotook some people by surprise.

With headlines referring to groundbreaking research and designer babies, you might wonder what the scientists actually accomplished. This was a big step forward, but hardly unexpected. As this kind of work proceeds, it continues to raise questions about ethical issues and how we should we react.

For a number of years now we have had the ability to alter genetic material in a cell, using a technique called CRISPR.

The DNA that makes up our genome comprises long sequences of base pairs, each base indicated by one of four letters. These letters form a genetic alphabet, and the words or sentences created from a particular order of letters are the genes that determine our characteristics.

Sometimes words can be misspelled or sentences slightly garbled, resulting in a disease or disorder. Genetic engineering is designed to correct those mistakes. CRISPR is a tool that enables scientists to target a specific area of a gene, working like the search-and-replace function in Microsoft Word, to remove a section and insert the correct sequence.

In the last decade, CRISPR has been the primary tool for those seeking to modify genes human and otherwise. Among other things, it has been used in experiments to makemosquitoes resistant to malaria, geneticallymodify plants to be resistant to disease, explore the possibility ofengineered petsandlivestock, and potentially treat some human diseases (includingHIV,hemophiliaandleukemia).

Up until recently, the focus in humans has been on changing the cells of a single individual, and not changing eggs, sperm and early embryos what are called the germline cells that pass traits along to offspring. The theory is that focusing on non-germline cells would limit any unexpected long-term impact of genetic changes on descendants. At the same time, this limitation means that we would have to use the technique in every generation, which affects its potential therapeutic benefit.

Earlier this year, an international committee convened by the National Academy of Sciencesissued a re

portthat, while highlighting the concerns with human germline genetic engineering, laid out a series ofsafeguards and recommended oversight. The report was widely regarded as opening the door to embryo-editing research.

That is exactly what happened in Oregon. Although this is the first study reported in the United States, similar research has beenconducted in China. This new study, however, apparently avoided previous errors weve seen with CRISPR such as changes in other, untargeted parts of the genome, or the desired change not occurring in all cells. Both of these problems had made scientists wary of using CRISPR to make changes in embryos that might eventually be used in a human pregnancy. Evidence of more successful (and thus safer) CRISPR use may lead to additional studies involving human embryos.

We have a ways to go before ordering up desired traits in a future baby. Researchers at Oregon Health and Science University say they worked with single-cell embryos, inserting CRISPR chemicals at the time of fertilization.lunar caustic,CC BY

First, this study did not entail the creation of designer babies, despite some news headlines. The research involved only early stage embryos, outside the womb, none of which was allowed to develop beyond a few days.

In fact, there are a number of existing limits both policy-based and scientific that will create barriers to implanting an edited embryo to achieve the birth of a child. There is afederal ban on fundinggene editing research in embryos; in some states, there are alsototal bans on embryo research, regardless of how funded. In addition, the implantation of an edited human embryos would be regulated under thefederal human research regulations, theFood, Drug and Cosmetic Actand potentially the federal rules regardingclinical laboratory testing.

Beyond the regulatory barriers, we are a long way from having the scientific knowledge necessary to design our children. While the Oregon experiment focused on a single gene correction to inherited diseases, there are few human traits that are controlled by one gene. Anything that involves multiple genes or a gene/environment interaction will be less amenable to this type of engineering. Most characteristics we might be interested in designing such as intelligence, personality, athletic or artistic or musical ability are much more complex.

Second, while this is a significant step forward in the science regarding the use of the CRISPR technique, it is only one step. There is a long way to go between this and a cure for various disease and disorders. This is not to say that there arent concerns. But we have some time to consider the issues before the use of the technique becomes a mainstream medical practice.

Taking into account the cautions above, we do need to decide when and how we should use this technique.

Should there be limits on the types of things you can edit in an embryo? If so, what should they entail? These questions also involve deciding who gets to set the limits and control access to the technology.

Who should be able to use this technology? And who should decide?Johnathan D. Anderson,CC BY-ND

We may also be concerned about who gets to control the subsequent research using this technology. Should there be state or federal oversight? Keep in mind that we cannot control what happens in other countries. Even in this country it can be difficult to craft guidelines that restrict only the research someone finds objectionable, while allowing other important research to continue. Additionally, the use of assisted reproductive technologies (IVF, for example) islargely unregulated in the U.S., and the decision to put in place restrictions will certainly raise objections from both potential parents and IVF providers.

Moreover, there are important questions about cost and access. Right now most assisted reproductive technologies are available only to higher-income individuals. A handful ofstates mandate infertility treatment coverage, but it is very limited. How should we regulate access to embryo editing for serious diseases? We are in the midst of awidespread debate about health care, access and cost. If it becomes established and safe, should this technique be part of a basic package of health care services when used to help create a child who does not suffer from a specific genetic problem? What about editing for nonhealth issues or less serious problems are there fairness concerns if only people with sufficient wealth can access?

So far the promise of genetic engineering for disease eradication has not lived up to its hype. Nor have many other milestones, like the 1996cloning of Dolly the sheep, resulted in the feared apocalypse. The announcement of the Oregon study is only the next step in a long line of research. Nonetheless, it is sure to bring many of the issues about embryos, stem cell research, genetic engineering and reproductive technologies back into the spotlight. Now is the time to figure out how we want to see this gene-editing path unfold.

Jessica Berg teaches Health Policy, Food and Drug Law, Public Health Law and Ethics, Bioethics and Law, and Research Regulation at Case Western Reserve University.

A version of this article was originally published on the Conversations website as Editing human embryos with CRISPR is moving ahead nows the time to work out theethics and has been republished here with permission.

Related Stories

Read more:
It's time to talk about the ethics of CRISPR-edited human embryos - Genetic Literacy Project

UD professor working to use gene therapy to treat blood disorders – Delaware First Media

A University of Delaware professor is receiving grant funding to develop a new therapy for people with low blood platelet counts and other blood disorders.

When patients dont have enough blood platelets, they cant form clots and this can sometimes be a lethal condition. These patients rely on platelet donations as a treatment, but those are often in short supply since they cannot be frozen and are only good for a few days.

A few years ago, UDs professor of Chemical and Biomolecular Engineering Terry Papoutsakis discovered a way to get patients to produce more blood platelets in their own bloodstream by introducing microparticles made from cultured stem cells.

These microparticles can be frozen to be used on a large scale. And Papoutsakis says they could also be used to treat genetic blood disorders like primary immune deficiencies.

To be able to use those particles for applications in gene therapy for a variety of blood diseasesa lot of genetic diseases or acquired diseases for patients, said Papoutsakis. So thats a difficult problem to deal with and we think this has great promise.

Papoutsakis is being awarded $250,000 through a partnership between University City Science Center and CSL Behring meant to find new biotherapies. He says the award took a few years to secure as a result of contract negotiations around intellectual property rights.

It took a little while to do it, but that is to be understood that it would, because of the potential that this might develop into something quite bigger than we currently see, he said.

Papoutsakis says he has already had some success testing his discovery on mice. He says the award will fund a continuation of those tests, moving the therapy closer to clinical trials on human patients.

See the original post:
UD professor working to use gene therapy to treat blood disorders - Delaware First Media

Four Skills Tomorrows Innovation Workforce Will Need – MIT Sloan

The young digerati will lead innovation, but theyll need business awareness, an entrepreneurial attitude, bottom-line focus, and ethical intelligence.

This article is part of an MIT SMR initiative exploring how technology is reshaping the practice of management.

Image courtesy of Jim Frazier/theispot.com

Throughout history, new technologies have demanded step shifts in the skills that companies need. Like the First Industrial Revolutions steam-powered factories, the Second Industrial Revolutions mass-production tools and techniques, and the Third Industrial Revolutions internet-based technologies, the Fourth Industrial Revolution currently being driven by the convergence of new digital, biological, and physical technologies is changing the nature of work as we know it. Now the challenge is to hire and develop the next generation of workers who will use artificial intelligence, robotics, quantum computing, genetic engineering, 3D printing, virtual reality, and the like in their jobs.

The problem, strangely enough, appears to be two-sided. People at all levels complain bitterly about being either underqualified or overqualified for the jobs that companies advertise. In addition, local and regional imbalances among the kinds of people companies want and the skills available in labor pools are resulting in unfilled vacancies, slowing down the adoption of new technologies.

Before organizations can rethink how to design jobs, organize work, and compete for talent in a digital age, they must systematically identify the capabilities they need now, and over the next decade, to innovate and survive. For more than 10 years, weve been studying the impact of digital design and product development tools on organizations, their people, and their projects.1 Weve found that the competencies companies need most are business-oriented rather than technical. Thats true even for brick-and-mortar companies that are trying to become more digital.

And most companies are beginning to realize that they cant just hire all-new workforces; there arent enough qualified recruits, and the expense would be enormous. Instead, they need to retrain and redeploy existing employees and other members of their communities, in addition to hiring and contracting new ones to fill their needs. However, rapid technological change has rendered skill cycles shorter than ever; key competencies of even a decade ago are pass today, and most of tomorrows jobs remain unknown.

Waiting for the fog to clear isnt an option. Companies must identify and develop the core skills their employees will need going forward. Our interviews, surveys, and case studies have revealed that most companies focus on refining the skills their people already possess, which doesnt prepare existing employees or new hires for the business challenges theyll face when using emerging technologies in their jobs.

Tucker J. Marion (@inuvation) is an associate professor of technological entrepreneurship at Northeastern Universitys DAmore-McKim School of Business in Boston. Sebastian K. Fixson (@sebastianfixson) is associate dean of innovation and the Marla M. Capozzi MBA 96 Term Chair of Design Thinking, Innovation, and Entrepreneurship at Babson College in Wellesley, Massachusetts. Greg Brown is senior director of Worldwide CAD Business Development at the global software company PTC.

See the original post:
Four Skills Tomorrows Innovation Workforce Will Need - MIT Sloan

Researchers Discover Mechanism Proteins Use To Find And Control Genes | Newsroom – UC Merced University News

Bioengineering Professor Victor Muoz has answered a long-standing genetic mystery, and his research suggests that someday, bioengineers could devise ways to control gene activity manually switching off the genes that contribute to cancer, for instance.

If this mechanism turns out to be as powerful as we anticipate, engineering it will be relatively straightforward, Muoz said. Controlling the output of genes could be done in a targeted way by new genome editing technologies such as CRISPR.

In a new paper published in Nature Communications, Muoz and some of his colleagues detail how certain proteins use a smart trick to find the specific genes they need to control out of the genomic soup comprising tens of thousands of genes inside each cell of even the most complex organisms.

Turns out, they use tiny DNA antennas to track the genes.

Every process in every living system from a simple bacterium to a complex human is based on turning specific genes on or off at just the right time, in the right place and at just the right levels.

That process is called transcription, and the proteins that complete that process are called transcription factors (TF). The TF must recognize and bind themselves to specific, tiny, six-letter sequences in DNA next to their target genes. To do that, the TF must sort through the DNA sequence of the entire organism's genome thats 2.5 trillion letters in humans and find their targets quickly enough to allow cells to grow, respond to stimuli, move and multiply in real time, Muoz explained.

But how do TF track their target genes within the ocean of genomic DNA in any organism? Muoz and his lab found the answer is a surprisingly simple mechanism that acts as an antenna.

The mechanism allows the TF to recognize partial sequences of the six-letter words they need to find and to detect where in the genome those partial sequences have accumulated in numbers large enough to signify that they are near the target gene.

The accumulations themselves act as beacons for the TF.

Rather than moving around the whole cell nucleus randomly reading the genome sequence, the TF hovers around the target gene so it can quickly find it and turn it on or off on demand, Muoz said. This mechanism offers a straightforward strategy for reengineering.

Muoz, chair of the Bioengineering graduate group, director of the NSF-CREST Center for Cellular and Biomolecular Machines, an affiliate of the Health Sciences Research Institute and a faculty member in the School of Engineering, collaborated on this work with postdoctoral researcher Milagros Castellanos from his previous lab in Spainand UC Merced graduate student Nivin Mothi, both of whom are listed as authors on the paper.

We are still in the stages of understanding the mechanism as well as possible and exploring how we can change it to induce changes in phenotypes, Muoz explained. Phenotypes are the biological effects of gene change. For instance, one gene change alters the color of a pea from green to yellow that difference in color is the phenotype.

The researchers had originally thought the mechanism might be based on a structural change in the TF, but it turned out to be a combination of specific sequence patterns built into the DNA and the TFs ability to bind to the partial sequences known as binding promiscuity.

In proteins, promiscuity is typically associated with poorly evolved or primitive proteins or functions, yet here we find a perfect counterexample in which the most complex organisms exploit it to solve a problem associated with their increasing genomic size and complexity, Muoz said.

Muoz and his lab are working to get a grant to conduct the next stage of research.

We are interested in further characterizing how this mechanism works at the molecular level, and also its implications for the operation of real, living systems, he said.

He and his lab are forming a collaboration with Professor Aaron Herndays group, which looks at yeast cells, one of the worlds simplest eukaryotic organisms. The researchers are interested in manipulating the antenna mechanism in the yeast cells using genome-editing techniques. Theyll make the antennas weaker or stronger, eliminate them or add them to areas where they arent usually found, and see how the yeasts react.

Original post:
Researchers Discover Mechanism Proteins Use To Find And Control Genes | Newsroom - UC Merced University News

The Evolution of Biomimicry in Human innovation – Economic Times

Nature always has its own set of solutions for any mechanical and structural problems without generating excess wastes. Mimicking nature needs an amalgamation of biological sense and technological data together. Although both systems have a different evolutionary timescale, for instance, the biological process has been evolving for the past thousands of centuries, while technology has been escalating only for a couple of hundred years. The differences between the technology and the protocols that nature follows are immense, including the genetic codes, environment, and biological clock.

Despite these challenges, Frosch and Gallapoulous once presented a special note on developing ecosystems keeping a balance between nature and humankind. The concept is presumed to be the inception of the new terms in the twenty-first century, such as Biomimicry, biomimetic, bionic, Biodesign, biomorphic, bioutilisation, biophilia, and bioderivation. With the evolution of science, Biomimicry has taken a new direction that connects sustainability with technology and ecological frame of reference to evaluate the viability of our inventions.

The context of Biomimicry may be classified into three stages, such as the form, the process, and the ecosystem. The process is initiated with the duplication of the characteristic traits of the organism, namely, appearance, visual shape, components, materials, and morphological features. The next step is to investigate further the viability of the attributes to apply to the medium under observations. If both of these processes exhibit a positive result, the method then seeks to duplicate the form and processes of an ecosystem.

Mazzoleni and Price stated that Biomimicry surpasses an analogy and executes on diverse stages, such as organism, behavior, and ecosystem. Biomimicry ranges from architecture to material science and chemistry where it continues to provide new and innovative insights into engineering problems. The evolution of Biomimicry has escalated over the last 30 years, inspired by insects, reptiles, mammals, and other invertebrate species.

Adaptive envelopes are the first generation bio-inspired material that was mimicked from the valvulae pollination mechanism in Strelitzia reginae flower called Flectofins. The envelope employs the traits of the reversible material deformation in the presence of an external force, inducing an external shading system. The investigation of the shading stem was further attributed to the kinematic mechanism inspired by the motions of the planned movement known as FlectoFins. A shading system adapts and responds to changing sunlight conditions during the daytime. Active materials are now being prepared based on the natural phenomena of the response of the spruce cones when they come in contact with the humidity. Hygroskin uses such inspiration and uses relative humidity to sense and interact with the surroundings.

However, although efforts are being made to enact nature, stress must be laid on how these techniques may be used to develop a greener future and a sustainable future.

Here is the 5 best third-generation biomimetics developed in the field of engineering science

1. Bullet Trains Inspired by Kingfisher Birds2. Water Harvesting as Ctenocara beetle3. Cephalopod Camouflage4. Shock Absorbing mimicking the woodpeckers5. Wind Turbines analogous to humpback whales

DISCLAIMER : Views expressed above are the author's own.

Read the original:
The Evolution of Biomimicry in Human innovation - Economic Times

An Interview with Ginkgo Bioworks Reshma Shetty On Co-Founding Synthetic Biologys First Unicorn – Forbes

In co-founding Ginkgo Bioworks, Reshma Shetty has helped enable the entire synthetic biology ... [+] industry while inspiring a generation of new biological engineers. Heres what she told me about starting a biotech company.

Dr. Reshma Shetty is no stranger within the synthetic biology community. In 2008 she co-founded Ginkgo Bioworksa company youll definitely hear about if you havent alreadyalong with fellow MIT grad students Austin Che, Barry Canton, and Jason Kelly, and their graduate adviser, Professor Tom Knight. They started with a simple but revolutionary goal: help people design and build organisms. A decade later, Ginkgo achieved unicorn statusa private company valued at over $1 billionand it finds itself at the fore of the synthetic biology revolution with customers seeking to build organisms for use in fields as diverse as health, food, agriculture, cosmetics and materials.

Shetty has been through the whole journey and has been a major influence in the synthetic biology community. She had a major role in the first International Genetic Engineering Machine (iGEM) Competition with her co-founders. In 2008, she was named one of Eight People Inventing the Future by Forbes and, in 2011, one of the 100 Most Creative People in Business by Fast Company.

Shetty is an upbeat talker. If theres any stress or jadedness from navigating a company from birth to unicorn over a decade, it doesnt show. There is a sincere enthusiasm in her voice, especially when we discuss the science. When I caught up with her a few weeks back, one of things I wanted to know was: what do you do when you realize youre riding a biotech unicorn?

What was the moment when you realized that Ginkgo was going to be big?

It was when we closed our Series B financing. It was a $45 million round or roughly speaking, so that was more dollars dumped into our bank account at one instance than we ever had before.

My thought was, well pretty serious people withserious capital are choosing to take a bet on us.

This was confirmed for her in 2017 when Bayer chose to work with Ginkgo on engineering biologicals for agriculture, proving the intrinsic value of their platform and cementing Ginkgo as a platform company.

It proved three things at the time. One, that engineered microbes in the environment could be a thing, that [they] could be a product category. There are serious people taking serious bets that we're going to be able to release engineered microbes in the future. Two, that Ginkgos platform had value even in areas that we hadn't previously been in. Three, it proved to the world that Ginkgo was really a platform company, that we weren't simply going after a few products in the industrial biotech market.

It wasnt easy sailing for Gingko from the start though. Right after the company was founded, the global economy took a nosedive.

I think we incorporated in July of 2008 and, like literally, within the next month or two, the fiscal crisis hit, says Shetty.

In many ways this was not the ideal time to be starting a business and looking for investment, leading to creative thinking in getting the company going.

What did you learn in those early days that biotech companies could benefit from?

At the time everybody said that the way to start a biotech start-up is to go raise money immediately because you need some amount of money to be able to start a lab and get going. The thing I had to learn and realize was that no, actually, it is possible. If you're creative enough, savvy enough and patient enough, then you can in fact bootstrap even a biotech start-up.

Shetty stresses the importance of having the space to figure out their technology platform and business model and ask themselves how to take it forward. Having Knight and his wealth of experience on the team certainly helped.

Tom always said Oh, its a good idea to bootstrap in the early years regardless, based on his prior experience starting companies. But circumstances certainly reinforced that and I think that was really helpful that we spent the first few years bootstrapping the company.

Was it natural having your former advisor on the team?

Yeah, very natural. Tom, hes a pretty low-key guy, but he's also been very ahead of his time when it comes to thinking about the technology and technology trends. Early on it was great because Tom has started and run a company before and there were some obvious pitfalls that he could help us avoid and talk a bit about options.

And your other co-founders, what is it about them that makes them special?

I think probably for me the biggest thing is that we've now been working together for almost 20 years, says Shetty, referencing their time at MIT in the years before Ginkgo.

And even now, if I'm struggling with something or I'm trying to dig through how to solve a problem, I would want to talk to Tom, Barry, Austin, and Jason. I always come away having learned something or clarified my thinking or somehow changed how I was approaching a problem. To me, that is the real hallmark of excellence.

Despite all those shared experiences, they still learn from one another and solve problems together. Shetty considers her colleagues to be mentors too, saying shes benefitted from them as much as from her supervisors through the years.

Anybody can be a mentor, she says.

They are all engineers at heart, so the most exciting things for the Ginkgo team are around potentially world-changing technologies that can jump quickly from dream to reality.

What are the engineering challenges youre most excited about these days?

Bayer and Ginkgo, through our joint venture in Joyn, are going after nitrogen fixation. It has long been a dream of folks. Could we reduce fertilizer usage by using biological nitrogen fixation instead?

This project has been close to Shetty since her academic days, but therapeutics and Ginkgos collaboration with Synlogic, who develop bacteria as living medicines, has also piqued her interest.

There's all these areas of metabolism that lead to devastating diseases and the idea that you could engineer microbes to basically treat them is a cool idea!

Is there any particular problem youd like to solve through engineering biology?

How do you think about leveraging biology to make a positive impact on the environment? That's one I think has been on our wish list for a while.

Enabling the future of synthetic biology is a big part of how Ginkgo operates, even since the early days. The founders were involved in establishing iGEM and their platform is well suited to collaborative efforts.

How do you see Ginkgos role to give back and enable the next generation of synthetic biology?

I think one thing that has been a longstanding ask from folks in the community is how are we going to open up our cell programming platform to more people? Early on, that seemed crazy to even think about, she says, citing the skill set required to use and build it. I think we've come a long way since then so we can say actually maybe we get started thinking about opening up the platform to more folks.

Shetty says initial collaborations like Joyn, (Ginkgo spin-out) Motif, and Synlogic mean they can learn how to open their platform better. Relationships with accelerators like YCombinator and Petri are the next steps. They acknowledge that opening their platform will only benefit and accelerate biological engineering.

Our conversation then moves onto a more human element of running a company, a reminder that its never all about the science.

Do you have any mistakes or regrets in how youve done things?

The biggest regret I have is actually not thinking consciously about diversity and inclusion issues earlier in Ginkgos history. We started thinking about them seriously in about 2015 or so, when we were still relatively small, about 30 people. But we could have thought about diversity and inclusion even earlier.

Shetty reveals its easier to change the balance in a company when i
ts just a handful of people.

Can we be doing better on diversity as a whole?

I would say that synthetic biology as a field has always been pretty good in that it thought about issues outside of just the science and engineering itself. I think the field always fosters that broader perspective. So I think it's been more natural and more normal to think about diversity and inclusion issues in the synthetic biology community as a result, says Shetty, We're by no means beyond reproach but there's more of a willingness to talk about these issues and really try to take proactive steps.

Do you have any advice for those starting a company?

The thing I like to tell people is that, if you're going to start a company, don't do it for the money. There are a lot of easier ways to make money in the world. Start a company because you think a company is really the best way to go tackle a problem that you're passionate about.

Any final thoughts?

I think that we've come a long way in terms of our ability to engineer biology, but we still have a long way to go. Fundamentally, biology is still not yet a predictable engineering discipline and its important to remember that. Because its still not yet predictable, we have to iterate through different designs and search for a functional design whenever we're trying to engineer a GMO. We have more work to yet do to bring down the cost of doing genetic engineering so that we can explore more and more of design space.

Follow me on twitter at @johncumbers and @synbiobeta. Subscribe to my weekly newsletters in synthetic biology and space settlement.

Thank you to David Kirk and Kevin Costa for additional research and reporting in this article. Im the founder of SynBioBeta, and some of the companies that I write about including Ginkgo Bioworks are sponsors of the SynBioBeta conference and weekly digest heres the full list of SynBioBeta sponsors.

More:
An Interview with Ginkgo Bioworks Reshma Shetty On Co-Founding Synthetic Biologys First Unicorn - Forbes

The 5 most dystopian technologies of 2020 and beyond – Fast Company

Tech is always both good and bad. But we live in a time when everything gets weaponizedideas, images, ancient texts, biases, and even people. And technology provides the tools to do it easier, faster, and with less resources.

Older threats like atomic warheads are still a serious danger, but theyre hard to deliver and take time and money to build. Delivering toxic images or malware to millions or billions of people, or even badly edited genes to future generations, is easy by comparison. Other technologies like artificial intelligence could have gradual, long-term effects that we do not or can not understand at present.

Were living in a period of technological wonderment, but many of the shiniest new technologies come with their own built-in potential for harm. These are five of the most dystopian technologies of 2020and beyond.

This summer, the Cybersecurity and Infrastructure Security Agency (CISA) called ransomware the most visible cybersecurity risk playing out across our nations networks. CISA says that many attacksin which a cybercriminal seizes and encrypts a persons or organizations data and then extorts the victim for cashare never reported because the victim organization pays off the cybercriminals and doesnt want to publicize its insecure systems.

Cybercriminals often target older people who have trouble differentiating honest from dishonest content online through malware embedded in an email attachment, or a pop-up at an infected website. But the scale of attacks on large corporations, hospitals, and state governments and agencies has been growing. Governments in particular have become prime targets because of the sensitive data they hold and their ability to pay high ransoms, with 70 state and local governments hit with ransomware attacks in 2019.

Some data, like health information, is far more valuable to the owner and can yield a bigger payoff if held for ransom. Thieves can capture or quarantine large blocks of clinical information thats critical for patient care, like test results or medication data. When lives are at stake, a hospital is in a poor position to negotiate. One hospital actually shut down permanently in November after a ransomware attack in August.

It will probably get worse. The Department of Homeland Security said in 2017 that ransomware attacks could be aimed a critical infrastructure like water utilities. And the tools needed to carry out ransomware attacks are becoming more available to smaller operators, with criminal organizations like Cerber and Petya selling ransomware toolkits as a service and taking a cut of the ransom in successful attacks.

Today, scientists use software tools like CRISPR to edit genes, and some of this work has been controversial. Chinese scientist He Jiankui was widely criticized for editing the genes in human embryos to make them resistant to the AIDS virus, because the changes he made could be passed down through generations with unpredictable consequences.

Its these long-term generational impacts that make the young science of gene editing so dangerous. One of the scarier examples of this is something called a gene drive. In the natural world, a gene has a 50% chance of passing on to the next generation. But a gene drive is passed on to the next generation 100% of the time, and increases the trait it carries every time until the whole population of an organism carries the gene and the trait. Scientists have suggested that gene drives could carry a trait found in an invasive species of weeds that would eradicate the plants resistance to pesticides.

Introducing an immunity to the AIDS virus in humans might sound like a good idea. But things can go wrong, and the implications could range from harmful to horrific, according to Stanford synthetic biologist Christina Smolkes comments during a panel on genetic engineering in 2016. A gene drive could mutate as it makes its way down through the generations and begin to allow genetic disorders like hemophilia or sickle cell anemiato ride along to affect future generations.

Even if the gene drive works as planned in one population of an organism, the same inherited trait could be harmful if its somehow introduced into another population of the same species, according to a paper published in Nature Reviews by University of California Riverside researchers Jackson Champer, Anna Buchman, and Omar Akbari. According to Akbari, the danger is scientists creating gene drives behind closed doors and without peer review. If someone intentionally or unintentionally introduced a harmful gene drive into humans, perhaps one that destroyed our resistance to the flu, it could mean the end of the species.

In the political realm, misinformation is nothing new. Earlier in our history it was called dirty tricks, and later, ratfuckingand referred to publishing a libelous story about an opponent or hammering up a closed sign outside a polling place in enemy territory.

Technology has turned this type of thing into a far darker art. Algorithms that can identify and analyze images have developed to a point where its possible to create convincing video or audio footage depicting a person doing or saying something they really didnt. Such deepfake content, skillfully created and deployed with the right subject matter at the right time, could cause serious harm to individuals, or even calamitous damage to whole nations. Imagine a deepfaked President Trump taking to Facebook to declare war on North Korea. Or a deepfake of Trumps 2020 opponent saying something disparaging about black voters.

The anxiety over high-tech interference in the 2020 presidential election is already high. It could come in many forms, from hacks on voting systems to social media ads specifically designed to keep target groups from voting. Due to the threats that deepfakes pose, Facebook and other tech companies are trying to develop detection tools that quickly find these videos on social networks before they spread.

Deepfakes are partially so dangerous because social networks naturally propagate the most dramatic political messages. This model creates more page views, engagement, and ad revenue, while amplifying and legitimizing the opinions of people and groups that earlier in history would have been considered fringe. Combine this with political advertisers ability to narrowly target political messages at audiences that are already inclined to believe them. The advertisements arent meant to persuade so much as they are to inflame voters to take some action, like organize a rally, vote, or just click share.

These factors have helped make social media platforms powerful political polarization machines where confirmation bias is the primary operator. Theyre far from the public square for free speech, meaningful political discourse, and debate that Facebook CEO Mark Zuckerberg likes to talk about. Facebook is a place to trade news and memes you agree with, and to become more entrenched in the political worldview you already keep.

If politics in a democracy is the process of guiding a society through discourse and compromise, tech companies like Facebook are hurting more than helping. Worse still, Facebook refusing to ensure the truthfulness of its political ads signals that conspiracy theories and alternative facts are legitimate and normal. When the basic facts of the world are constantly in dispute, theres no baseline for discussion.

When you talk about artificial intelligence, theres almost always someone there to offer calming words about how AI will work with humans and not against them. That may be perfectly true now, but the scale and complexity of neural networks is growing quickly. Elon Musk has said that AI is the biggest danger facing humankind.

Why? The creation and training of deep neural networks is a bit of a dark art, with secrets hidden within a black box thats too complex for most people to understand. Neural networks are designed in a long and convoluted process to create a desired result. The choices made during that process owe m
ore to the experience and instinct of the designer than to established standards and principles, consolidating the power of creating AI within the hands of a relatively small number of people.

Human biases have already been trained into neural networks, but that might seem trivial compared to what could happen. A computer scientist with bad intentions could introduce dangerous possibilities. According to data scientist and Snips.ai founder Rand Hindi, it might be possible for a bad actor to insert images into the training data used for autonomous driving systemswhich could lead, for instance, to the AI deciding a crowded sidewalk is a good place to drive.

The bigger fear is that neural networks, given enough compute power, can learn from data far faster than humans can. Not only can they make inferences faster than the human brain, but theyre far more scalable. Hundreds of machines can work together on the same complex problem. By comparison, the way humans share information with each other is woefully slow and bandwidth-constrained. Big tech companies are already working on generative neural networks that process mountains of data to create completely new and novel outputs, like chatbots that can carry on conversations with humans, or original musical compositions.

Where this is all leading, and whether humans can keep up, is a subject for debate. Musk believes that as AIs begin to learn and reason at larger and larger scale, an intelligence may develop somewhere deep within the layers of the network. The thing that is the most dangerousand it is the hardest to . . . get your arms around because it is not a physical thingis a deep intelligence in the network, Musk said during a July speech to the National Governors Association.

The kind of sentience that Musk describes does not presently exist, and were probably decades away from it. But most experts believe its coming in this century. According to the aggregate response of 352 AI researchers in a 2016 survey, AI is projected to have a 50% chance of exceeding human capability in all tasks in 45 years.

These examples are just the most sensational of the tech threats facing us today and in the future. There are many other near-term threats to worry about. In many ways, our technology, and our technology companies, are still a threat to the environment. Some of our biggest tech companies, like Seagate, Intel, and the Chinese company Hikvision, the worlds largest surveillance camera vendor, are enabling a growing tide of surveillance around the world. The ad-tech industry has normalized the destruction of personal privacy online. The U.S. government is sitting on its hands when it comes to securing the voting technology that will be used in the 2020 election.

Its going to take a much improved partnership between the tech community and government regulators to ensure we stay on the good side of our most promising technology.

Visit link:
The 5 most dystopian technologies of 2020 and beyond - Fast Company

The Next Olympics Mascot Might Have Been a Mutant Morning Glory – The Atlantic

The 12th-floor apartment of one of Long Island Citys waterfront towers features both spectacular views of Manhattan and a small yet state-of-the-art bioengineering lab, tucked into the spare bedroom. Sebastian Cocioba, a 29-year-old college dropout and self-styled plant hacker, has lived there with his parents for the past decade. And, for the past three years, the condo has also been home to a top secret, gloriously quixotic enterprise: the project to genetically engineer a flower that would serve as the official mascot for the 2020 Tokyo Olympic Games.

When I first visited, on a bright-blue morning in January, Cocioba led me into the kitchen. There, he used the baked-potato setting on the microwave to warm a flask filled with a gelatinous goop of agar, sugar, and fertilizer. Once heated, the mixture loosened up into a free-flowing, straw-colored liquid that smelled, coincidentally, of potato. Meanwhile, Cocioba opened the fridge, reaching into a drawer divided in halfdeli meats and cheese on the left, hotel-shampoo-size bottles of chemicals on the rightto retrieve two vials of plant hormones. Look, we eat these in pretty decent amounts in salad, Cocioba said, in response to my raised eyebrows. My parents have kind of gotten used to the whole concept of this by now.

Down the hall, in the lab, Cocioba assumed the role of patient tutor, while I switched on the laminar flow hood, gloved up, and used a pipette to transfer each hormone, in a carefully measured ratio, to the agar jelly. My task for the day was to insert a small genetic sequence into a white petuniaa small but important step toward the larger goal. Our tool was a plant pathogen known as Agrobacterium tumefaciens, which hijacks its hosts by sending out small packages of membrane-wrapped DNA capable of inserting themselves into the other plants genome.

Cocioba and I prepared the petunia for infection: he by stripping off some leaves the day before and leaving them to sterilize overnight in a weak bleach solution, I by using a hole punch to cut out dozens of neat circles of leaf tissue that I then tweezered gently into petri dishes filled with our cooled, yellow jelly. The freshly injured leaves emitted a chemical distress signal that was undetectable to me but that Cocioba assured me would act as a red rag to the bullish Agrobacterium.

The genetic sequence we were hoping to infect them with was a probe, capable of finding and binding to a target sequence in the petunias DNA, and it held a tail of green fluorescent protein that would only unfold enough to glow once a successful bond had formed. Cocioba had ordered the probe online and stored the vial, containing a single clear droplet filled with enough genetic material for 50-odd experiments, in the freezer, beneath a bottle of vodka and some tater tots, until he was ready to add it to our batch of Agrobacterium.

Dosing the plant tissue with hormones was a warm-up for the main event: Together, the chemicals would return chunks of adult planttissue that had already become root, stalk, or leafback to an embryonic state. Post-infection, Cocioba would use the same hormones, in different ratios, to organize the cells in each proto-plant disc back into the constituent parts of a seedling that he could cultivate, and that, if our experiment was a success, would emit an eerie greenish glow under a fluorescent microscope.

In October 2015, the interaction designer Kevin Slavin was in Tokyo, meeting with senior executives at Mori Building Company, Japans largest commercial landlord. Slavin is a skinny geek who trained as an artist; developed one of the first location-based phone games, Pokmon Gos predecessor; and then founded the Playful Systems lab at MITs Media Lab. He was in town to present the results of a successful collaboration with Mori that had used bees housed atop the companys properties to map the citys microbiome. (The bees functioned as distributed surface-sampling devices, and by collecting their waste from the hive every week and sequencing the DNA found within it, Slavin was able to conduct a microbial census on a neighborhood-by-neighborhood basis.)

The conversation turned to the future. Masa Ogasawara, Moris sphinxlike executive managing officer, asked whether Slavin had any ideas for a project for the Tokyo Olympics.

Slavin, who had spent a considerable amount of time in Tokyo for the bee project, had noticed the citys preparations, and found them vaguely depressing. I actually love the Olympics, he told me. But I love what they are intended to be, and I really respond badly to the crass commercial qualities of it. Meanwhile, to sequence the microbial DNA collected by his bees, he had also been spending time with the computational biologist Elizabeth Hnaff, and as he began to learn about new gene-editing techniques such as CRISPR, he realized that engineering life was no longer science fictionit was the imminent future.

As he reflected on what he disliked about the Olympicsthe tchotchke-choked monetization that accompanies an otherwise stirring display of human effort, teamwork, and excellenceSlavin wondered what its opposite would be. A true Olympic mascot, he felt, should be a source of delight and wonder and beauty, and actually add something to the planet instead of just ending up in a landfill somewhere.

Slavin imagined designing a new form of life, to be collectively grown and given awayperhaps a tree, genetically modified so that its leaves expressed Olympic colors. He told Ogasawara that he had an idea, but that there was no way Mori would be bold enough to do it. This, unsurprisingly, was like catnip to the powerful executive, and the company quickly signed on to support the creation of the worlds first genetically modified Olympic mascot.

When Slavin got back to New York and described his vision to actual biologists, including Hnaff, they gently pointed out that any plan that involved growing a tree from an embryo in five years, let alone engineering an entirely new variety and then propagating it, was hopelessly ambitious. A genetically modified flower, on the other handwell, that might just work.

The first Olympic mascot was Waldi, a striped cartoon dachshund who made his debut in Munich, at the Summer Games of 1972. Designed by Otl Aicher, better known for the Lufthansa logo, it is also the most tasteful mascot to date. Londons 2012 one-eyed Mr. Blobby lookalike, Wenlock, is probably the fields nadir, but the brief to represent the host countrys cultural heritage in a festive way and appeal to a younger audience has rarely resulted in design excellence. The problem is that all these things are done by consensus, says Paola Antonelli, a senior curator of architecture and design at New York Citys Museum of Modern Art. Did you see the overweight bald eagle from Los Angeles?

The Tokyo Games, by contrast, were off to an aesthetically pleasing start. The official logo, unveiled in April 2016, consisted of 45 dark-blue rhomboids arranged into a wreath. Officially named Harmonized Checkered Emblem, it is a minimal masterpiece designed by the artist Asao Tokolo, who uses a ruler and compass to create repeating patterns. In his studio in Tokyo, Tokolo sketched a quick diagram to show me how the logos color was derived from the angles of three rectangular forms100, 86, and 50, which, when translated to the cyan, magenta, and black of a printing press, produce the same deep indigo traditionally worn by samurai.

This checkerboard pattern is called ichimatsu in Japanese, after an Edo-era kabuki heartthrob, Sanogawa Ichimatsu, who habitually performed in a patterned costume. Mathematicians have calculated that the logos rhomboids can be rearranged into half a million new patterns, Tokolo said. He showed me a printout of a paper analyzing his logo, titled On the Enumeration of Chequered Tilings in Polygons. This combination of rule-bound repetition and near-infinite variation makes the logo into a universal code, he told me, opening his laptop to play Pachelbels Canon as an illustration. This way, he said
, its shareable, transferrable, and transformablelike music, math, and, I couldnt help but think, DNA.

As soon as he saw Tokolos logo, in early 2016, Slavin knew that the Olympic-mascot flower should be engineered to have an indigo-and-white ichimatsu pattern on its petals. At the same time, Hnaff suggested using the morning glory, a flower she lovesshe has a tattoo of a purple morning-glory vine covering the entire side of her bodyand that she knew, from time spent working in Japan, held a particular significance in the country. You see it growing in little postage-stamp gardens in the older neighborhoods of Tokyo, she told me. And then you realize theres morning glories everywhere, in illustrations and artwork and all the lovely printed fabrics.

In much of the rest of the world, the twining vine is seen as a weed, even a nuisanceits touch-sensitive tendrils help it climb walls and facades, hooking into tiny cracks and turning them into fissures. But in Japan, asagao, which translates to morning face, is a cultural icon, its imperial-blue, trumpet-shaped flowers symbolizing high summer in the same way that cherry blossoms signify the arrival of spring.

The species is thought to be native to Central America, where the psychoactive alkaloids found in the seeds of some varieties were used in Aztec rituals, but according to Reiji Iwabuchi, a scholar who has curated a series of exhibitions on morning glories at the National Museum of Japanese History, the flowers were brought to Japan from China in the ninth century. The earliest Japanese mentions of the plant cite its usefulness as a laxative, he told me, and it is pictured in a set of scrolls from 1164, preserved at the Itsukushima Shrine.

In his dark, book-lined office on the campus of Gakushuin University, just steps from the neon excess of Shinjuku in Tokyo, Iwabuchi showed me a series of reproductions illustrating the next phase in the morning glorys rise to popularity. By the early 1700s, Japans doors had been closed to the world for nearly a century. In Tokyo, then known as Edo, but already one of the largest cities in the world, culture flourished and a distinctly Japanese relationship with nature, as well as the craft of expressing its essence in miniature, was refined. Bonsai trees became popular, as did suiseki, or the art of selecting and displaying stones that represent larger landscapes, such as mountains, canyons, or coastlines. Flower vendors walked the streets, selling chrysanthemums and camelias, while feudal lords rewarded their favored retainers with potted plants.

Iwabuchi pulled out a print of a gorgeous gilded screen from the mid-18th century. The artist, Jakuchu Ito, is known for his depictions of chickens, and this print showed a rooster perched on one leg, head turned to face his own dazzling black-and-white tail feathers. In the background are a handful of sunflowers and, woven through them, a spatter of morning glories. Instead of the standard solid blue-purple, the flowers are as variegated as the roosters own plumagethere are solid white flowers, but also white flowers speckled with blue, or sporting a series of blue wedges of different sizes. This, Iwabuchi told me, is the first record of a floral phenomenon that was soon to sweep the city: the cultivation of henka asagao, or mutant morning glories.

The first morning-glory craze lasted 30 years, beginning in 1800, and infected all levels of society. The trend was for differently colored and patterned flowersspeckled, striped, albino, half-and-half, pink, maroon, and even a creamy-yellow phantom morning glory that modern breeders are still unable to reproduce. Monks and samurai raised thousands of morning glories in their gardens as a side hustle, selling regular purplish-blue flowers to the common people and sought-after mutants to wealthy collectors. Anthologies cataloged the varieties, naming each mutation after literary characters; woodcuts depicted shoppers carrying potted morning glories back from shrines, as well as morning-glory viewing parties in late summer. One kabuki actor, who dressed in a morning-glory print and went by the stage name Asagao Senbei, or Morning Glory Rice Cracker, had an entire routine that involved starting vigorous fights, then quickly fading and losing, in the same way that a morning glory blooms at dawn, only to shrivel up by the time lunch is over. But then, Iwabuchi said, for reasons that remain hard to discern, public interest shifted, and the Japanese sacred lily and painted fern were suddenly all the rage.

In the 1850s, another chance mutation birthed a second, mini-boom: This time, growers competed to produce morning glories with curling, ribbonlike petals as opposed to the standard trumpet, or with leaves that forked like a snakes tongue. Mutant morning glories became a status symbol, Iwabuchi explained, and flower nerdsmorning-glory maniacscompeted between themselves to select and maintain the most spectacular deformations.

The final wave of morning-glory popularity came in the 1870s, after the arrival of American gunboats had forced the country to open up. In a wave of nostalgic, nationalistic sentiment, social clubs devoted to raising mutant morning glories formed, keeping many rare strains alive. Iwabuchi showed me a black-and-white photo from 1910, showing what he called a nerd gardenthousands of seedlings, growing in pots under netting in preparation for the annual morning-glory fair in the Tokyo suburb of Iriya.

Since his first exhibition on the subject, 15 years ago, Iwabuchi has seen a renewal of interest in the flower. Japanese schoolchildren grow the basic morning glory as a summer project in elementary school, making it a piece of nature that all the countrys citizens have some connection to, but mutant sales have recently become a major source of revenue for the museum. I believe we are at the start of the fourth boom, he said.

At this point, the idea of a mutant morning glory, engineered to express the recombinant code of the official Olympic logo, began to assume an almost unbearable rightness. It blended Japans unique culture and history with the latest technology. The fleeting symbolism of the flower even embodied something of the magic of the Olympicsan event that briefly captures the worlds attention every four years, before disappearing again.

Meanwhile, those involved in the project found something that spoke to their own, deeper desires. For Slavin, it was this idea that designers could make a living organism rather than a product, something that would add to the world rather than extract more of its resources. For Hnaff, the projects almost whimsical goal created an opportunity for a more meaningful conversation about the rights and wrongs of genetic engineeringa less fraught way to think through what it means for humans to have user-level privileges over other species genetic identity. In a world where proponents of genetically modified organisms say they are needed to solve world hunger, and their critics say they are being used by corporations to perpetuate inequality, she explained, oftentimes, the conversation about the technique and the conversation about the goals get kind of muddied.

For Mori, the project captured something of the subtle Japanese conception of the relationship between humans and nature. Japan is the largest industrialized country that still actively practices an indigenous, animist religion, in which nature does not belong to humans, but vice versa. We have always designed life, Jun Fujiwara, Moris director of special projects, told me, pointing out that the foods and drinks most central to Japans identitysake, miso, nattorely on microbial communities that are a hybrid of nature and culture. From this perspective, perhaps a genetically modified morning-glory Olympic mascot could be a kind of Shinto GMOan organism that embodied not only deep respect for the astonishing ingenuity and beauty of the natural world, but also a sense of necessary awe at the craft with which humans can shape it.

And, finally, for Sebastian Cocioba, the plant hacker that
Hnaff brought in to work on the project full-time, the morning glory offered a step toward his life goal of becoming a flower designer. As a teenager, Cocioba funded his studies by flipping Home Depot orchids: When his local store threw out plants that had ceased to flower, Cocioba retrieved them, dosed them with blue light and hormones, and sold them back. He built his lab by buying broken equipment on eBay and fixing it. This project promised a salary and a chance to make something that would be seen on the world stage.

In early 2016, with the flower and pattern decided and Mori funding secured, the teamSlavin, Hnaff, and Cociobagathered around Cociobas parents dining table to brainstorm. In their excitement, they used a blue whiteboard marker to scrawl diagrams, sketches, and chemical formulas all over the white kitchen cabinets, where the drawings remain to this day.

As Hnaff and Cocioba broke it down for Slavin, the flower presented two distinct challenges: making a white morning glory with the ability to produce indigo blue, and then manipulating the expression of that color over time. As it turns out, true blue is actually quite rare in flowers, for evolutionary reasons: Pigments initially evolved to protect organisms by absorbing ultraviolet light, and tweaking those metabolic pathways to reflect more blue and absorb reds at the other end of the spectrum presents an almost insurmountable biochemical challenge. Most blue flowers are purple-tinged, and even hydrangeas and cornflowers cannot achieve a true blue without some additional help from acidic or magnesium-rich soil.

Whats more, the genetically modified version of the multistep process by which plants naturally transform pigments from red to purplish-blue has been patented by Suntory, a Japanese whiskey company. In 2004, Suntory partnered with Florigene, an Australian genetic-engineering firm, to create what it claimed was the worlds first true-blue rose. It drives me nuts, because its purple, Cocioba told me. (The rose technically contains blue pigments, but appears indisputably lavender-colored in press images.) Cociobas proposed solution was to avoid the nine genes required to produce purplish-blue in plants altogether. Instead, he planned to engineer a white morning glory into which he would insert a single gene borrowed from coral, where it would express an intense ultramarine protein.

Typically, a petals cells grow in an unbroken line outward, which is why two-tone flowers usually feature either landing strips or radial, halo effectsthe color that each cell expresses at the center is the color it will express along its entire arc of growth. To create a checkerboard pattern, Cocioba and Hnaff would have to engineer a switch of some sort, so that they could flick the blue protein on and off at regular intervals within the four-hour window during which morning-glory petals develop from bud to flower.

Luckily, the morning glory had already mastered that trick on its own: Think of the blue-speckled white flowers in the background of Jakuchu Itos rooster painting. Such mutations are due to transposons, mobile DNA sequences capable of hopping into, say, the genes that synthesize blue pigment, temporarily disrupting their ability to function and creating a white patch, before jumping out again, at which point the color returns. Every living thing has these jumping genes, but they are particularly active in morning glories, where scientists theorize that selection, both by pollinators and, latterly, humans, has favored the resulting diversity.

Hnaffs earlier research had focused on transposable elements, and on Cociobas parents freezer drawer, shed illustrated the idea of a built-in on/off mechanism using a series of arrows and squiggles. The idea was, Well, you know, if this switch already exists, then maybe we can just tweak its activity and decide when it goes on and off, she said. Not all the natural triggers for a gene jump are known, but some are well described, including an insect attack, water stress, and temperature change. Standing in front of the fridge, pen in hand, Hnaff suggested putting their prototype plants in an oven and setting the thermostat to oscillate as the flower developed. That way, they could figure out the exact pigment on/off sequence needed to make a checkerboard, and then find a way to genetically hard code that timing into the final flower, Hnaff explained.

The science seemed ambitious but not impossible. Hnaff did a literature review, and saw that morning glories had been successfully engineered using Agrobacterium and cultured in a lab. She even found descriptions of engineered pigment transformations, although none included the rapid on/off oscillation this design would require. She consulted with other biologists, who agreed: feasible, potentially even in a quick time frame. Slavin emailed a photo of his kitchen-cabinet flower sketch to a friend and asked him to render it in Photoshop, then built a Keynote presentation. Cocioba ordered DNA, reagents, and a packet of imperial-blue morning glory seeds from Japan. Through an intermediary, Mori helped set up a series of meetings with representatives from the Office for the Promotion of the Tokyo 2020 Olympic and Paralympic Games, as well as other government officials.

The enthusiasm for the flower was palpable. Slavin, who does not speak Japanese, remembers one man turning to the guy next to him and muttering something that included the words fast money. They were like, We understand that this is speculative and we respect that, Slavin said. We know you might not make it. So well give you a year. Is that fair? And were like, Yep, totally fair, totally doable.

A few months in, the team confronted an issue. Cocioba had never worked with morning glories, so his first step was just to get it to grow in tissue culture, like our hole-punched petunia leaves. For the first two months, I did all of the things, he said. I threw the entire book at it, trying to get it to regenerateand no dice.

Hnaff went back to the papers that described morning-glory cultivation in tissue culture and discovered a note explaining that the morning glory was missing the one gene that would allow its leaves and stem to return to an embryonic state in response to plant hormones. Instead, the authors wrote, the only morning-glory tissue that will regenerate in culture is an actual immature embryo. Suddenly, Cocioba had an urgent need for seed.

So I started growing morning glory like it was weed, Cocioba said. He rented an artists studio a few blocks from his parents condo in Long Island City, bought grow lamps and metal racks from IKEA, and threw all the chemicals he could at the baby plants to get them to flower fast. And then, nearly three months later, once they had flowered, Cocioba had to figure out how to pollinate his morning glories so that they would set seed. I found a company online that sells dead bees on sticks, he said. They work wonderfully, but let me tell you, manually pollinating thousands of flowers took for...ever.

When Cocioba finally harvested a seedpod, it took him two hours of surgery to get an embryo out. It was half a millimeter long, he said, showing me a photo on his phone of a greenish dot. If you pinch it, it dies; if you look at it funny, it dies; if a butterfly farts in Russia, it dies.

The morning glory was not the only recalcitrant player. Later that year, Kevin Slavin left his faculty position at the Media Lab, and the accounts-payable department at MIT proved reluctant to funnel Moris funds to a 20-something in Long Island City. Back in Tokyo, Mori was handling the project as it might manage any business initiative: with an insistence on timelines, check-ins, reports, and deliverables. It was planned like a construction project and funded like a government project, meaning the money came in a year later, Cocioba saidleaving him wrestling with an uncooperative flower, working on other projects to pay bills, and missing deadlines left and right.

He and Hnaff made an executive decision: They would prototype usi
ng petunia, which grows happily in culture and flowers faster. To try to speed things up, Hnaff spent weeks sequencing a white and a purple petunia and assembling their genomes, so that Cocioba would have an accurate road map to work with. Its borderline biblical, the level of precision that we have on these two plants, Cocioba said.

In spring 2017, with no flower in sight, the Japanese Olympic Committee announced a mascot design competition. Schoolchildren were invited to vote for their favorites, in a bid to make the Tokyo Games seem participatory and transparent following repeated accusations of graft. The resulting mascot, Miraitowa, is a big-eyed cartoon character that looks like a blue-and-white-checked cartoon kitten. According to the mascot-selection panel, he is imbued with energy that will cheer up and cheer on the athletes, although critics have described him as a Pokmon refugee. Just as Slavin had hoped to avoid, factories in China are already churning out Miraitowa plushies by the million. Miraitowa T-shirts, baseball caps, collectible pins, and stuffed dolls are expected to bring in about 14 billion yen in revenue for the Games organizers.

With the mascot decided, Takeo Hirata, head of the Office for the Promotion of the Tokyo 2020 Olympic and Paralympic Games, told Slavin that his genetically modified morning glory could instead become an Olympic emblema new category of Olympic symbol. Hirata suggested that the checkerboard flower could replace posters and banners in some places, and that the Japanese government could still distribute it to all public primary schools in spring 2020. Which meant that the pressure from Mori continued, with the company sending Jun Fujiwara to New York City to visit Cociobas apartment lab on a regular basis.

By now, Slavin was distracted by the demands of a new job. Meanwhile, after finding that, for months, Fujiwara had removed her name from reports shed prepared and left her off update emails, Hnaff had distanced herself from the project. The final straw came when Mori arranged to bring Cocioba and Chris Mason, the Cornell geneticist in whose lab Hnaff had been a postdoctoral student when the project began, to Tokyo to present the groups research. Though both Cocioba and Mason considered Hnaff the projects principal scientist, she didnt hear about the trip until Cocioba called her to see where she was staying. I wasnt even contacted about it, she said. At that point, disgusted and demoralized, she was done. (Fujiwara, when asked about his reasoning, blamed limitations of time and space.)

In October 2017, after their presentation in Tokyo, Mason and Cocioba were drinking beer at the Park Hyatt bar, better known as the setting for a scene in the movie Lost in Translation, when Mason received an email from Fujiwara requesting that he present an update on the flower project to Moris president the next day.

Until that point, Masons involvement in the project had largely been limited to providing access to computing power, as well as managing funds following Slavins departure from the Media Lab. Scrambling, Mason did something no one on the team had done before: a Google Image search for checkerboard-pattern flower. Astonishingly, one came upthe snakes head fritillary. Cocioba then entered the plants scientific name, Fritillaria meleagris, into a scientific database and told Mason that it has one of the largest genomes on the planet, at about 156 billion base pairs to the human genomes paltry 3 billion.

As soon as I told Chris that, his eyes lit up, because he loves superlatives, Cocioba said. Hes like, now I have a purposewell sequence it! A chunk of the Mason Labs funding comes from NASA, and somehow, over the course of that evening, Masona creative thinker who has also written a short volume of genetic poetrydecided that the process that produced a checkerboard pattern in the snakes head fritillary could serve as a model for the mechanisms that cause changes to an astronauts DNA in space.

The next day, Masons PowerPoint contained NASAs logo and a photo of the flower, grabbed from the Brooklyn Botanic Gardens website. Slavin received a copy in an email update from Mason, in which the projects goal is described as astronaut protection, and Slavin is listed simply as an adviser. This is out of nowhere, Slavin recalled. NASA? What? Im like, How far up the river has this been sold, by how many people?

A few hours west of Tokyo by bullet train lies the Japanese National Institute for Basic Biology. When I visited, one morning in March, a slight, baby-faced scientist named Atsushi Hoshino loaned me a pair of orange Crocs and led me into his greenhouse. Inside, spilling over wire racks and tangling together, was a jungle of mutant morning gloriesnearly 200 in total, he told me, each one unique. An enormous deep-burgundy flower with a white center almost sparkled, its petals velvety under the lamps; in the corner were white flowers, each with one or two wedges of pink, and on the rack above, deep-blue flowers with rays of purple.

I screen 4,000 baby plants each year to discover new mutants, he told me. The normal morning glories end up in the incinerator; the mutants go into the greenhouse. In his lab, next door, 800 seedlings were growing in trays under lights, each just a couple of inches tall and too young to flower. Hoshino showed me his only hope from this latest batch; its sole leaf was split down the middle, half lime green and half emerald. A transposon has disrupted the gene for chlorophyll, he explained, with a shy smile.

Mutant morning glories have been at the center of Japanese genetic research for more than a century, Hoshino told me. The 19th-century samurai and monks who competed to breed the most spectacular new mutations had no idea what a gene was, let alone one that jumped. But morning glories were the topic of the first bulletin of the Japan Breeders Association, in 1916, and after the Second World War, the Japanese government collected all the mutants it could find from hobbyists and founded a national research center. Since then, by analyzing these mutants, Japanese researchers have discovered many of the genes that determine flower and leaf shape, color, and pattern.

As a doctoral student, Hoshino wanted to study rice, in order to develop useful improvements for Japanese farmers. In my lab, there was a better student, and she chose the rice project, he told me. So my boss gave me mutant morning glories for my thesis topic. Decades later, Hoshino feels that he was the lucky one. There are hundreds of possibilities for patterns, he said. We only fully understand a few. He pointed to a blue flower with a white halo at its edge. Why is the silencing expressed only at the margin? he asked. No one knows. Although he used to think of genes as stable, heritable sets of instructions, morning glory has taught him to see them as a dynamic system, whose shifts we have yet to comprehend. We need mutant morning glories to teach us how this works, he said.

Back in New York City, Cocioba unknowingly echoed Hoshinos words. In the end, morning glory taught us that we know nothing about morning glory, he said. In October 2018, in an abrupt email, Mori pulled the plug on the project, but Cocioba continued working on his petunia prototype on evenings and weekends. The experiment we did together was a test of his genetic guide; it was the final step before he attempted to insert his new blue gene from coral. With Mori out of the picture, Hnaff was once again involved, and together they were looking for funding.

The morning-glory mascot had taught Hnaff something, too: how not to manage a project. Really, the tragic flaw was the hubris of thinking that we could deliver a new plant on a human schedule, she told me. Already, she said, the project had yielded enough in the way of new knowledge for at least a couple of papers. If, in the future, Cocioba succeeds in turning his white petunia blue, the economic reward could be substantial: Experts have estimated the value of a true-blue rose at many millions of dollars. If they ma
nage to design a switch to turn the gene producing that color on and off during the buds development, the impact will go far beyond horticulturealthough Cocioba warned me that, once humans have the ability to create petal patterns on demand, we should expect to see Nike swooshes and McDonalds arches on our flowers shortly thereafter.

The morning-glory mascot project was, unquestionably, a failure. Kevin Slavins ambitious vision of a beautifully designed plant, whose seeds could be given away to visitors and raised in pots by schoolchildren on the balconies and in the alleyways of Tokyo, will not become realityif it ever could have, given the constraints on releasing gene-edited organisms. From a cultural perspective, it was a clusterfuck, Slavin concluded. From a scientific perspective, it may yield something thats more important than anything we could have ever imagined.

And then Slavin told me another story, about the poet John Giorno. In 1970, Giorno worked with MoMA to create an installation called Dial-a-Poem, in which visitors were invited to call a number to hear one of 50 poems. They had to figure out how to do itthey had to hook up tape recorders and solve a bunch of difficult problems, Slavin said. And they did, and that idea led to a multibillion-dollar industry of 1-800 numbers.

Slavins point was that when designers and artists flirt with science and technology, they can unlock new ways of thinking, from which new ways of being and doing emerge. In the case of Dial-a-Poem, the unexpected consequences were rather banal, Slavin said. But, in this case, it might be something great.

Go here to read the rest:
The Next Olympics Mascot Might Have Been a Mutant Morning Glory - The Atlantic

This Year’s 4 Most Mind-Boggling Stories About the Brain – Singularity Hub

2019 was nuts for neuroscience. I said this last year too, but thats the nature of accelerating technologies: the advances just keep coming.

Therere the theoretical showdowns: a mano a mano battle of where consciousness arises in the brain, wildly creative theories of why our brains are so powerful, and the first complete brain wiring diagram of any species. This year also saw the the birth of hybrid brain atlases that seek to interrogate brain function from multiple levelsgenetic, molecular, and wiring, synthesizing individual maps into multiple comprehensive layers.

Brain organoids also had a wild year. These lab-grown nuggets of brain tissue, not much larger than a lentil, sparked with activity similar to preterm babies, made isolated muscles twitch, and can now be cloned into armies of near-identical siblings for experimentationprompting a new round of debate on whether theyll ever gain consciousness.

Then of course, theres the boom in neurotech. Fostered by insight into how neurons and circuits communicate with each other through a complex neural code, weve gotten ever closer to decoding the brain. Mind-controlled prosthetics are old news; the frontier now is engineering robotic limbs that can truly feel. Insight into our sensory cortices are inspiring light-based nervous systems that give robots multitudes of sensations. Elon Musks Neuralink finally came out after years of speculation, and a Wild West of brain-computer interfaces have sprung up, with the hope of one day restoring broken brain circuits without the need for surgery.

Thats already achievement-a-plenty. But as we wrap up the year, there are four mind-bending stories that still stick with meby asking about the nature of death, the promise of mind-reading, and new paths that may finally help us beat Alzheimers. These are the ones Ill leave you with.

The brain is a powerful but ultra-sensitive organ thats prone to injury. Once deprived of oxygen and nutrients, cells can begin to die within the hour. Thats why, zombie lore aside, scientists once thought its near impossible to resuscitate a brain to any sort of function hours after death.

Not true. In April, a team at Yale University reported that they successfully detected electrical activity in pig brains four hours after death. The results were a surprise: the team originally set out to develop a system that helps the brain maintain its integrity after removal for experimental purposes. How well it worked went beyond the teams expectations. Its impossible to say if the brains were conscious; that is, whether they were aware of being revived, though its highly (and I mean highly) unlikely. When the team saw signs of widespread, coordinated electrical activitywhich underlies consciousnessin their initial experiments, they anesthetized future experimental brains to block this sort of united firing, drastically reducing the chance consciousness could emerge in these brains.

Nevertheless, the study suggests that the brain is much more resilient to injuries such as stroke or trauma than previously thought. In the long term, it asks whether we might one day have a sort of CPR for the brain. And if so, how long can brains maintain their health after being separated from the body? We might have just taken the first step into the uncharted territories of death.

A few years ago, Dr. Miguel Nicolelis linked up animals brains into an internet that allowed each member to work collaboratively on a common problem. When connected to each other through implanted electrodes, the animals synced up their brains electrical activity in a way reminiscent of a single hive brain.

Nicolelis has now done the same experiment in humans, minus surgery. In a feat of neural engineering, the team used non-invasive electroencephalographs (EEGs) to read brain waves from two individuals and sent these signals to a third person by zapping their brain with magnetic pulsesa technology called transcranial magnetic stimulation, or TMS. Together, five triad groups solved a Tetris-like game using their brain waves alone, with an accuracy of over 80 percent, even when the researchers introduced noise.

One caveat: the system was rigged so that the neurotech wasnt detecting thought, for example, rotate the block or dont rotate. That decision was encoded as the presence or absence of light flashes, which are much easier for the EEG to read and for the TMS to deliver to the visual cortex. But its still a powerful proof-of-concept, in that even with our rudimentary brain reading and writing tech, its possible to link up human minds into a hive mind to solve problems. Nicolelis imagines a biological supercomputer made from networked human brains, which could conceivably cross language barriers and even enhance cognitive performance. The question is, if we open the sanctuary of our minds to others for gains in computing power, what do we stand to lose in privacy and autonomy?

Playing a collaborative game of Tetris isnt the only way scientists advanced mind reading technology. In January, one team combined deep learning with speech synthesis technology to translate what a person is hearing into reconstructed speech. The system captured electrical signals from the auditory cortex while a person listened to recordings of people speaking. These activity patterns were then decoded by an AI-based speech synthesizer and produced intelligible, if somewhat robotic, speech. Unfortunately, the system couldnt decode someones own internal thoughts.

But that changed three months later.

Another team engineered a neural decoder that decodes electrical signals measured from the cortex, the outermost layer of the brain. Rather than containing information about semantics, these signals represent movement of the lips, tongue, larynx, and jaw. Different movement patterns are associated with different sounds, which the decoder can identify and synthesize into actual comprehensible sentences. For the first time, its possible to know what someone is trying to say by reading their brain activity alone, and the tech was further validated in a Q&A conversation. Earlier this month, yet another team found its possible to decode words and syllables based on recordings from the brains motor cortexthe part usually responsible for hand and arm movements. This opens another avenue of reading speech directly from the brain.

Not to be outdone, a team at Russian firm Neurobotics found they could use AI to decode what video clips people are watching based on their brainwaves alone. In contrast to the speech-decoding studies, which use implanted electrodes, here non-invasive EEG was sufficient to reconstruct nature scenes, sports, and human faces.

For now, our private thoughts are still private, and the tech mainly helps those who cant speak reconnect with the world. But think about this: if someday a tech giant offers you the ability to text or post using your mind only, would (and should) you go for it?

Dementia is one of the most frustrating neurological disorders of our time. Despite decades of research, nearly every single Alzheimers drug that targets toxic protein clumpscalled beta-amyloidthought responsible for the disease has failed. Generally, these drugs are proteins that break up clumps or neutralize their toxic effects.

This year saw an explosion in alternative potential treatments and theories.

One that especially gained steam suggests flashing lights and clicking sound could potentially break up toxic protein clumps and improve brain function, at least in mice. The treatment, cheap, non-invasive, and dramatically effective, offers new hope to the long-struggling field. Others suggest that mutations to DNA in brain cells scrambles certain genes and could be a root cause. Yet others are taking a gene therapy approach to the Alzheimers dilemma, adding in a dose of a protective gene variant in high-risk individuals.

Although its impossible to say if any of these new routes will lead anywhere, one thing is clear: the more scientific treatment ideas we ha
ve, the higher the chance well finally tame Alzheimers in the near future.

Image Credit: Gerd Altman / Pixabay

See the original post:
This Year's 4 Most Mind-Boggling Stories About the Brain - Singularity Hub

Genetic Engineering Will Change Everything Forever …

Designer babies, the end of diseases, genetically modified humans that never age. Outrageous things that used to be science fiction are suddenly becoming reality. The only thing we know for sure is that things will change irreversibly.

Support us on Patreon so we can make more videos (and get cool stuff in return): https://www.patreon.com/Kurzgesagt?ty=h

Kurzgesagt merch here: http://bit.ly/1P1hQIH

Get the music of the video here:

soundcloud: http://bit.ly/2aRxNZdbandcamp: http://bit.ly/2berrSWhttp://www.epic-mountain.com

Thanks to Volker Henn, James Gurney and (prefers anonymity) for help with this video!

THANKS A LOT TO OUR LOVELY PATRONS FOR SUPPORTING US:

Jeffrey Schneider, Konstantin Kaganovich, Tom Leiser, Archie Castillo, Russell Eishard, Ben Kershaw, Marius Stollen, Henry Bowman, Ben Johns, Bogdan Radu, Sam Toland, Pierre Thalamy, Christopher Morgan, Rocks Arent People, Ross Devereux, Pascal Michaud, Derek DuBreuil, Sofia Quintero, Robert Swiniarski, Merkt Kzlrmak, Michelle Rowley, Andy Dong, Saphir Patel, Harris Rotto, Thomas Huzij, Ryan James Burke, NTRX, Chaz Lewis, Amir Resali, The War on Stupid, John Pestana, Lucien Delbert, iaDRM, Jacob Edwards, Lauritz Klaus, Jason Hunt, Marcus : ), Taylor Lau, Rhett H Eisenberg, Mr.Z, Jeremy Dumet, Fatman13, Kasturi Raghavan, Kousora, Rich Sekmistrz, Mozart Peter, Gaby Germanos, Andreas Hertle, Alena Vlachova, Zdravko aek

SOURCES AND FURTHER READING:

The best book we read about the topic: GMO Sapiens

https://goo.gl/NxFmk8

(affiliate link, we get a cut if buy the book!)

Good Overview by Wired:http://bit.ly/1DuM4zq

timeline of computer development:http://bit.ly/1VtiJ0N

Selective breeding: http://bit.ly/29GaPVS

DNA:http://bit.ly/1rQs8Yk

Radiation research:http://bit.ly/2ad6wT1

inserting DNA snippets into organisms:http://bit.ly/2apyqbj

First genetically modified animal:http://bit.ly/2abkfYO

First GM patent:http://bit.ly/2a5cCox

chemicals produced by GMOs:http://bit.ly/29UvTbhhttp://bit.ly/2abeHwUhttp://bit.ly/2a86sBy

Flavr Savr Tomato:http://bit.ly/29YPVwN

First Human Engineering:http://bit.ly/29ZTfsf

glowing fish:http://bit.ly/29UwuJU

CRISPR:http://go.nature.com/24Nhykm

HIV cut from cells and rats with CRISPR:http://go.nature.com/1RwR1xIhttp://ti.me/1TlADSi

first human CRISPR trials fighting cancer:http://go.nature.com/28PW40r

first human CRISPR trial approved by Chinese for August 2016:http://go.nature.com/29RYNnK

genetic diseases:http://go.nature.com/2a8f7ny

pregnancies with Down Syndrome terminated:http://bit.ly/2acVyvg( 1999 European study)

CRISPR and aging:http://bit.ly/2a3NYAVhttp://bit.ly/SuomTyhttp://go.nature.com/29WpDj1http://ti.me/1R7Vus9

Help us caption & translate this video!

http://www.youtube.com/timedtext_cs_p...

See the original post:
Genetic Engineering Will Change Everything Forever ...

Human genome – Wikipedia

The human genome is the complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome, and the mitochondrial genome.[1] Human genomes include both protein-coding DNA genes and noncoding DNA. Haploid human genomes, which are contained in germ cells (the egg and sperm gamete cells created in the meiosis phase of sexual reproduction before fertilization creates a zygote) consist of three billion DNA base pairs, while diploid genomes (found in somatic cells) have twice the DNA content. While there are significant differences among the genomes of human individuals (on the order of 0.1%),[2] these are considerably smaller than the differences between humans and their closest living relatives, the chimpanzees (approximately 4%[3]) and bonobos.

The first human genome sequences were published in nearly complete draft form in February 2001 by the Human Genome Project[4] and Celera Corporation.[5] Completion of the Human Genome Project Sequence was published in 2004.[6] The human genome was the first of all vertebrates to be completely sequenced. As of 2012, thousands of human genomes have been completely sequenced, and many more have been mapped at lower levels of resolution. This data is used worldwide in biomedical science, anthropology, forensics and other branches of science. There is a widely held expectation that genomic studies will lead to advances in the diagnosis and treatment of diseases, and to new insights in many fields of biology, including human evolution.

Although the sequence of the human genome has been (almost) completely determined by DNA sequencing, it is not yet fully understood. Most (though probably not all) genes have been identified by a combination of high throughput experimental and bioinformatics approaches, yet much work still needs to be done to further elucidate the biological functions of their protein and RNA products. Recent results suggest that most of the vast quantities of noncoding DNA within the genome have associated biochemical activities, including regulation of gene expression, organization of chromosome architecture, and signals controlling epigenetic inheritance.

There are an estimated 19,000-20,000 human protein-coding genes.[7] The estimate of the number of human genes has been repeatedly revised down from initial predictions of 100,000 or more as genome sequence quality and gene finding methods have improved, and could continue to drop further.[6][8] Protein-coding sequences account for only a very small fraction of the genome (approximately 1.5%), and the rest is associated with non-coding RNA molecules, regulatory DNA sequences, LINEs, SINEs, introns, and sequences for which as yet no function has been determined.[9]

In June 2016, scientists formally announced HGP-Write, a plan to synthesize the human genome.[10][11]

The total length of the human genome is over 3 billion base pairs. The genome is organized into 22 paired chromosomes, plus the X chromosome (one in males, two in females) and, in males only, one Y chromosome. These are all large linear DNA molecules contained within the cell nucleus. The genome also includes the mitochondrial DNA, a comparatively small circular molecule present in each mitochondrion. Basic information about these molecules and their gene content, based on a reference genome that does not represent the sequence of any specific individual, are provided in the following table. (Data source: Ensembl genome browser release 87, December 2016 for most values; Ensembl genome browser release 68, July 2012 for miRNA, rRNA, snRNA, snoRNA.)

Table 1 (above) summarizes the physical organization and gene content of the human reference genome, with links to the original analysis, as published in the Ensembl database at the European Bioinformatics Institute (EBI) and Wellcome Trust Sanger Institute. Chromosome lengths were estimated by multiplying the number of base pairs by 0.34 nanometers, the distance between base pairs in the DNA double helix. A recent estimation of human chromosome lengths based on updated data reports 205.00 cm for the diploid male genome and 208.23 cm for female, corresponding to weights of 6.41 and 6.51 picograms (pg), respectively.[12] The number of proteins is based on the number of initial precursor mRNA transcripts, and does not include products of alternative pre-mRNA splicing, or modifications to protein structure that occur after translation.

Variations are unique DNA sequence differences that have been identified in the individual human genome sequences analyzed by Ensembl as of December, 2016. The number of identified variations is expected to increase as further personal genomes are sequenced and analyzed. In addition to the gene content shown in this table, a large number of non-expressed functional sequences have been identified throughout the human genome (see below). Links open windows to the reference chromosome sequences in the EBI genome browser.

Small non-coding RNAs are RNAs of as many as 200 bases that do not have protein-coding potential. These include: microRNAs, or miRNAs (post-transcriptional regulators of gene expression), small nuclear RNAs, or snRNAs (the RNA components of spliceosomes), and small nucleolar RNAs, or snoRNA (involved in guiding chemical modifications to other RNA molecules). Long non-coding RNAs are RNA molecules longer than 200 bases that do not have protein-coding potential. These include: ribosomal RNAs, or rRNAs (the RNA components of ribosomes), and a variety of other long RNAs that are involved in regulation of gene expression, epigenetic modifications of DNA nucleotides and histone proteins, and regulation of the activity of protein-coding genes. Small discrepancies between total-small-ncRNA numbers and the numbers of specific types of small ncNRAs result from the former values being sourced from Ensembl release 87 and the latter from Ensembl release 68.

Although the human genome has been completely sequenced for all practical purposes, there are still hundreds of gaps in the sequence. A recent study noted more than 160 euchromatic gaps of which 50 gaps were closed.[13] However, there are still numerous gaps in the heterochromatic parts of the genome which is much harder to sequence due to numerous repeats and other intractable sequence features.

The human reference genome (GRC v38) has been successfully compressed to ~5.2-fold (marginally less than 550 MB) in 155 minutes using a desktop computer with 6.4 GB of RAM.[14]

The haploid human genome (23 chromosomes) is about 3 billion base pairs long and contains around 30,000 genes.[15] Since every base pair can be coded by 2 bits, this is about 750 megabytes of data. An individual somatic (diploid) cell contains twice this amount, that is, about 6 billion base pairs. Men have fewer than women because the Y chromosome is about 57 million base pairs whereas the X is about 156 million, but in terms of information men have more because the second X contains almost the same information as the first[citation needed]. Since individual genomes vary in sequence by less than 1% from each other, the variations of a given human's genome from a common reference can be losslessly compressed to roughly 4 megabytes.[16]

The entropy rate of the genome differs significantly between coding and non-coding sequences. It is close to the maximum of 2 bits per base pair for the coding sequences (about 45 million base pairs), but less for the non-coding parts. It ranges between 1.5 and 1.9 bits per base pair for the individual chromosome, except for the Y-chromosome, which has an entropy rate below 0.9 bits per base pair.[17]

The content of the human genome is commonly divided into coding and noncoding DNA sequences. Coding DNA is defined as those sequences that can be transcribed into mRNA and translated into proteins during the human life cycle; these sequences occupy only a small fraction
of the genome (<2%). Noncoding DNA is made up of all of those sequences (ca. 98% of the genome) that are not used to encode proteins.

Some noncoding DNA contains genes for RNA molecules with important biological functions (noncoding RNA, for example ribosomal RNA and transfer RNA). The exploration of the function and evolutionary origin of noncoding DNA is an important goal of contemporary genome research, including the ENCODE (Encyclopedia of DNA Elements) project, which aims to survey the entire human genome, using a variety of experimental tools whose results are indicative of molecular activity.

Because non-coding DNA greatly outnumbers coding DNA, the concept of the sequenced genome has become a more focused analytical concept than the classical concept of the DNA-coding gene.[18][19]

Protein-coding sequences represent the most widely studied and best understood component of the human genome. These sequences ultimately lead to the production of all human proteins, although several biological processes (e.g. DNA rearrangements and alternative pre-mRNA splicing) can lead to the production of many more unique proteins than the number of protein-coding genes.

The complete modular protein-coding capacity of the genome is contained within the exome, and consists of DNA sequences encoded by exons that can be translated into proteins. Because of its biological importance, and the fact that it constitutes less than 2% of the genome, sequencing of the exome was the first major milepost of the Human Genome Project.

Number of protein-coding genes. About 20,000 human proteins have been annotated in databases such as Uniprot.[21] Historically, estimates for the number of protein genes have varied widely, ranging up to 2,000,000 in the late 1960s,[22] but several researchers pointed out in the early 1970s that the estimated mutational load from deleterious mutations placed an upper limit of approximately 40,000 for the total number of functional loci (this includes protein-coding and functional non-coding genes).[23]

The number of human protein-coding genes is not significantly larger than that of many less complex organisms, such as the roundworm and the fruit fly. This difference may result from the extensive use of alternative pre-mRNA splicing in humans, which provides the ability to build a very large number of modular proteins through the selective incorporation of exons.

Protein-coding capacity per chromosome. Protein-coding genes are distributed unevenly across the chromosomes, ranging from a few dozen to more than 2000, with an especially high gene density within chromosomes 19, 11, and 1 (Table 1). Each chromosome contains various gene-rich and gene-poor regions, which may be correlated with chromosome bands and GC-content.[24] The significance of these nonrandom patterns of gene density is not well understood[25]

Size of protein-coding genes. The size of protein-coding genes within the human genome shows enormous variability (Table 2). The median size of a protein-coding gene is 26,288 bp (mean = 66,577 bp; Table 2 in [26]). For example, the gene for histone H1a (HIST1HIA) is relatively small and simple, lacking introns and encoding mRNA sequences of 781 nt and a 215 amino acid protein (648 nt open reading frame). Dystrophin (DMD) is the largest protein-coding gene in the human reference genome, spanning a total of 2.2 MB, while Titin (TTN) has the longest coding sequence (114,414 bp), the largest number of exons (363),[27] and the longest single exon (17,106 bp). Over the whole genome, the median size of an exon is 122 bp (mean = 145 bp), the median number of exons is 7 (mean = 8.8), and the median coding sequence encodes 367 amino acids (mean = 447 amino acids; Table 21 in[9] ).

Table 2. Examples of human protein-coding genes. Chrom, chromosome. Alt splicing, alternative pre-mRNA splicing. (Data source: Ensembl genome browser release 68, July 2012)

Recently, a systematic meta-analysis of updated data of the human genome [26] found that the largest protein-coding gene in the human reference genome is RBFOX1 (RNA binding protein, fox-1 homolog 1), spanning a total of 2.47 MB. Over the whole genome, considering a curated set of protein-coding genes, the median size of an exon is currently estimated to be 133 bp (mean = 309 bp), the median number of exons is currently estimated to be 8 (mean = 11), and the median coding sequence is currently estimated to encode 425 amino acids (mean = 553 amino acids; Tables 2 and 5 in[26]).

Noncoding DNA is defined as all of the DNA sequences within a genome that are not found within protein-coding exons, and so are never represented within the amino acid sequence of expressed proteins. By this definition, more than 98% of the human genomes is composed of ncDNA.

Numerous classes of noncoding DNA have been identified, including genes for noncoding RNA (e.g. tRNA and rRNA), pseudogenes, introns, untranslated regions of mRNA, regulatory DNA sequences, repetitive DNA sequences, and sequences related to mobile genetic elements.

Numerous sequences that are included within genes are also defined as noncoding DNA. These include genes for noncoding RNA (e.g. tRNA, rRNA), and untranslated components of protein-coding genes (e.g. introns, and 5' and 3' untranslated regions of mRNA).

Protein-coding sequences (specifically, coding exons) constitute less than 1.5% of the human genome.[9] In addition, about 26% of the human genome is introns.[28] Aside from genes (exons and introns) and known regulatory sequences (820%), the human genome contains regions of noncoding DNA. The exact amount of noncoding DNA that plays a role in cell physiology has been hotly debated. Recent analysis by the ENCODE project indicates that 80% of the entire human genome is either transcribed, binds to regulatory proteins, or is associated with some other biochemical activity.[8]

It however remains controversial whether all of this biochemical activity contributes to cell physiology, or whether a substantial portion of this is the result transcriptional and biochemical noise, which must be actively filtered out by the organism.[29] Excluding protein-coding sequences, introns, and regulatory regions, much of the non-coding DNA is composed of:Many DNA sequences that do not play a role in gene expression have important biological functions. Comparative genomics studies indicate that about 5% of the genome contains sequences of noncoding DNA that are highly conserved, sometimes on time-scales representing hundreds of millions of years, implying that these noncoding regions are under strong evolutionary pressure and positive selection.[30]

Many of these sequences regulate the structure of chromosomes by limiting the regions of heterochromatin formation and regulating structural features of the chromosomes, such as the telomeres and centromeres. Other noncoding regions serve as origins of DNA replication. Finally several regions are transcribed into functional noncoding RNA that regulate the expression of protein-coding genes (for example[31] ), mRNA translation and stability (see miRNA), chromatin structure (including histone modifications, for example[32] ), DNA methylation (for example[33] ), DNA recombination (for example[34] ), and cross-regulate other noncoding RNAs (for example[35] ). It is also likely that many transcribed noncoding regions do not serve any role and that this transcription is the product of non-specific RNA Polymerase activity.[29]

Pseudogenes are inactive copies of protein-coding genes, often generated by gene duplication, that have become nonfunctional through the accumulation of inactivating mutations. Table 1 shows that the number of pseudogenes in the human genome is on the order of 13,000,[36] and in some chromosomes is nearly the same as the number of functional protein-coding genes. Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution.

For example, the olfactory receptor gene family is one of the best-documented examples of pseudogenes in the human
genome. More than 60 percent of the genes in this family are non-functional pseudogenes in humans. By comparison, only 20 percent of genes in the mouse olfactory receptor gene family are pseudogenes. Research suggests that this is a species-specific characteristic, as the most closely related primates all have proportionally fewer pseudogenes. This genetic discovery helps to explain the less acute sense of smell in humans relative to other mammals.[37]

Noncoding RNA molecules play many essential roles in cells, especially in the many reactions of protein synthesis and RNA processing. Noncoding RNA include tRNA, ribosomal RNA, microRNA, snRNA and other non-coding RNA genes including about 60,000 long non coding RNAs (lncRNAs).[8][38][39][40] Although the number of reported lncRNA genes continues to rise and the exact number in the human genome is yet to be defined, many of them are argued to be non-functional.[41]

Many ncRNAs are critical elements in gene regulation and expression. Noncoding RNA also contributes to epigenetics, transcription, RNA splicing, and the translational machinery. The role of RNA in genetic regulation and disease offers a new potential level of unexplored genomic complexity.[42]

In addition to the ncRNA molecules that are encoded by discrete genes, the initial transcripts of protein coding genes usually contain extensive noncoding sequences, in the form of introns, 5'-untranslated regions (5'-UTR), and 3'-untranslated regions (3'-UTR). Within most protein-coding genes of the human genome, the length of intron sequences is 10- to 100-times the length of exon sequences (Table 2).

The human genome has many different regulatory sequences which are crucial to controlling gene expression. Conservative estimates indicate that these sequences make up 8% of the genome,[43] however extrapolations from the ENCODE project give that 20[44]-40%[45] of the genome is gene regulatory sequence. Some types of non-coding DNA are genetic "switches" that do not encode proteins, but do regulate when and where genes are expressed (called enhancers).[46]

Regulatory sequences have been known since the late 1960s.[47] The first identification of regulatory sequences in the human genome relied on recombinant DNA technology.[48] Later with the advent of genomic sequencing, the identification of these sequences could be inferred by evolutionary conservation. The evolutionary branch between the primates and mouse, for example, occurred 7090 million years ago.[49] So computer comparisons of gene sequences that identify conserved non-coding sequences will be an indication of their importance in duties such as gene regulation.[50]

Other genomes have been sequenced with the same intention of aiding conservation-guided methods, for exampled the pufferfish genome.[51] However, regulatory sequences disappear and re-evolve during evolution at a high rate.[52][53][54]

As of 2012, the efforts have shifted toward finding interactions between DNA and regulatory proteins by the technique ChIP-Seq, or gaps where the DNA is not packaged by histones (DNase hypersensitive sites), both of which tell where there are active regulatory sequences in the investigated cell type.[43]

Repetitive DNA sequences comprise approximately 50% of the human genome.[55]

About 8% of the human genome consists of tandem DNA arrays or tandem repeats, low complexity repeat sequences that have multiple adjacent copies (e.g. "CAGCAGCAG...").[56]The tandem sequences may be of variable lengths, from two nucleotides to tens of nucleotides. These sequences are highly variable, even among closely related individuals, and so are used for genealogical DNA testing and forensic DNA analysis.[57]

Repeated sequences of fewer than ten nucleotides (e.g. the dinucleotide repeat (AC)n) are termed microsatellite sequences. Among the microsatellite sequences, trinucleotide repeats are of particular importance, as sometimes occur within coding regions of genes for proteins and may lead to genetic disorders. For example, Huntington's disease results from an expansion of the trinucleotide repeat (CAG)n within the Huntingtin gene on human chromosome 4. Telomeres (the ends of linear chromosomes) end with a microsatellite hexanucleotide repeat of the sequence (TTAGGG)n.

Tandem repeats of longer sequences (arrays of repeated sequences 1060 nucleotides long) are termed minisatellites.

Transposable genetic elements, DNA sequences that can replicate and insert copies of themselves at other locations within a host genome, are an abundant component in the human genome. The most abundant transposon lineage, Alu, has about 50,000 active copies,[58] and can be inserted into intragenic and intergenic regions.[59] One other lineage, LINE-1, has about 100 active copies per genome (the number varies between people).[60] Together with non-functional relics of old transposons, they account for over half of total human DNA.[61] Sometimes called "jumping genes", transposons have played a major role in sculpting the human genome. Some of these sequences represent endogenous retroviruses, DNA copies of viral sequences that have become permanently integrated into the genome and are now passed on to succeeding generations.

Mobile elements within the human genome can be classified into LTR retrotransposons (8.3% of total genome), SINEs (13.1% of total genome) including Alu elements, LINEs (20.4% of total genome), SVAs and Class II DNA transposons (2.9% of total genome).

With the exception of identical twins, all humans show significant variation in genomic DNA sequences. The human reference genome (HRG) is used as a standard sequence reference.

There are several important points concerning the human reference genome:

The Genome Reference Consortium is responsible for updating the HRG. Version 38 was released in December 2013.[62]

Most studies of human genetic variation have focused on single-nucleotide polymorphisms (SNPs), which are substitutions in individual bases along a chromosome. Most analyses estimate that SNPs occur 1 in 1000 base pairs, on average, in the euchromatic human genome, although they do not occur at a uniform density. Thus follows the popular statement that "we are all, regardless of race, genetically 99.9% the same",[63] although this would be somewhat qualified by most geneticists. For example, a much larger fraction of the genome is now thought to be involved in copy number variation.[64] A large-scale collaborative effort to catalog SNP variations in the human genome is being undertaken by the International HapMap Project.

The genomic loci and length of certain types of small repetitive sequences are highly variable from person to person, which is the basis of DNA fingerprinting and DNA paternity testing technologies. The heterochromatic portions of the human genome, which total several hundred million base pairs, are also thought to be quite variable within the human population (they are so repetitive and so long that they cannot be accurately sequenced with current technology). These regions contain few genes, and it is unclear whether any significant phenotypic effect results from typical variation in repeats or heterochromatin.

Most gross genomic mutations in gamete germ cells probably result in inviable embryos; however, a number of human diseases are related to large-scale genomic abnormalities. Down syndrome, Turner Syndrome, and a number of other diseases result from nondisjunction of entire chromosomes. Cancer cells frequently have aneuploidy of chromosomes and chromosome arms, although a cause and effect relationship between aneuploidy and cancer has not been established.

Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome.[65][66]

An example of a variation map is the HapMap being developed by the International HapMap Project. The HapMap is a haplotype map of the human genome, "which will describe the common patterns
of human DNA sequence variation."[67] It catalogs the patterns of small-scale variations in the genome that involve single DNA letters, or bases.

Researchers published the first sequence-based map of large-scale structural variation across the human genome in the journal Nature in May 2008.[68][69] Large-scale structural variations are differences in the genome among people that range from a few thousand to a few million DNA bases; some are gains or losses of stretches of genome sequence and others appear as re-arrangements of stretches of sequence. These variations include differences in the number of copies individuals have of a particular gene, deletions, translocations and inversions.

Single-nucleotide polymorphisms (SNPs) do not occur homogeneously across the human genome. In fact, there is enormous diversity in SNP frequency between genes, reflecting different selective pressures on each gene as well as different mutation and recombination rates across the genome. However, studies on SNPs are biased towards coding regions, the data generated from them are unlikely to reflect the overall distribution of SNPs throughout the genome. Therefore, the SNP Consortium protocol was designed to identify SNPs with no bias towards coding regions and the Consortium's 100,000 SNPs generally reflect sequence diversity across the human chromosomes.The SNP Consortium aims to expand the number of SNPs identified across the genome to 300 000 by the end of the first quarter of 2001.[70]

Changes in non-coding sequence and synonymous changes in coding sequence are generally more common than non-synonymous changes, reflecting greater selective pressure reducing diversity at positions dictating amino acid identity. Transitional changes are more common than transversions, with CpG dinucleotides showing the highest mutation rate, presumably due to deamination.

A personal genome sequence is a (nearly) complete sequence of the chemical base pairs that make up the DNA of a single person. Because medical treatments have different effects on different people due to genetic variations such as single-nucleotide polymorphisms (SNPs), the analysis of personal genomes may lead to personalized medical treatment based on individual genotypes.[71]

The first personal genome sequence to be determined was that of Craig Venter in 2007. Personal genomes had not been sequenced in the public Human Genome Project to protect the identity of volunteers who provided DNA samples. That sequence was derived from the DNA of several volunteers from a diverse population.[72] However, early in the Venter-led Celera Genomics genome sequencing effort the decision was made to switch from sequencing a composite sample to using DNA from a single individual, later revealed to have been Venter himself. Thus the Celera human genome sequence released in 2000 was largely that of one man. Subsequent replacement of the early composite-derived data and determination of the diploid sequence, representing both sets of chromosomes, rather than a haploid sequence originally reported, allowed the release of the first personal genome.[73] In April 2008, that of James Watson was also completed. Since then hundreds of personal genome sequences have been released,[74] including those of Desmond Tutu,[75][76] and of a Paleo-Eskimo.[77] In November 2013, a Spanish family made their personal genomics data publicly available under a Creative Commons public domain license. The work was led by Manuel Corpas and the data obtained by direct-to-consumer genetic testing with 23andMe and the Beijing Genomics Institute). This is believed to be the first such public genomics dataset for a whole family.[78]

The sequencing of individual genomes further unveiled levels of genetic complexity that had not been appreciated before. Personal genomics helped reveal the significant level of diversity in the human genome attributed not only to SNPs but structural variations as well. However, the application of such knowledge to the treatment of disease and in the medical field is only in its very beginnings.[79] Exome sequencing has become increasingly popular as a tool to aid in diagnosis of genetic disease because the exome contributes only 1% of the genomic sequence but accounts for roughly 85% of mutations that contribute significantly to disease.[80]

In humans, gene knockouts naturally occur as heterozygous or homozygous loss-of-function gene knockouts. These knockouts are often difficult to distinguish, especially within heterogeneous genetic backgrounds. They are also difficult to find as they occur in low frequencies.

Populations with high rates of consanguinity, such as countries with high rates of first-cousin marriages, display the highest frequencies of homozygous gene knockouts. Such populations include Pakistan, Iceland, and Amish populations. These populations with a high level of parental-relatedness have been subjects of human knock out research which has helped to determine the function of specific genes in humans. By distinguishing specific knockouts, researchers are able to use phenotypic analyses of these individuals to help characterize the gene that has been knocked out.

Knockouts in specific genes can cause genetic diseases, potentially have beneficial effects, or even result in no phenotypic effect at all. However, determining a knockouts phenotypic effect and in humans can be challenging. Challenges to characterizing and clinically interpreting knockouts include difficulty calling of DNA variants, determining disruption of protein function (annotation), and considering the amount of influence mosaicism has on the phenotype. [82]

One major study that investigated human knockouts is the Pakistan Risk of Myocardial Infarction study. It was found that individuals possessing a heterozygous loss-of-function gene knockout for the APOC3 gene had lower triglycerides in the blood after consuming a high fat meal as compared to individuals without the mutation. However, individuals possessing homozygous loss-of-function gene knockouts of the APOC3 gene displayed the lowest level of triglycerides in the blood after the fat load test, as they produce no functional APOC3 protein. [83]

Most aspects of human biology involve both genetic (inherited) and non-genetic (environmental) factors. Some inherited variation influences aspects of our biology that are not medical in nature (height, eye color, ability to taste or smell certain compounds, etc.). Moreover, some genetic disorders only cause disease in combination with the appropriate environmental factors (such as diet). With these caveats, genetic disorders may be described as clinically defined diseases caused by genomic DNA sequence variation. In the most straightforward cases, the disorder can be associated with variation in a single gene. For example, cystic fibrosis is caused by mutations in the CFTR gene, and is the most common recessive disorder in caucasian populations with over 1,300 different mutations known.[84]

Disease-causing mutations in specific genes are usually severe in terms of gene function, and are fortunately rare, thus genetic disorders are similarly individually rare. However, since there are many genes that can vary to cause genetic disorders, in aggregate they constitute a significant component of known medical conditions, especially in pediatric medicine. Molecularly characterized genetic disorders are those for which the underlying causal gene has been identified, currently there are approximately 2,200 such disorders annotated in the OMIM database.[84]

Studies of genetic disorders are often performed by means of family-based studies. In some instances population based approaches are employed, particularly in the case of so-called founder populations such as those in Finland, French-Canada, Utah, Sardinia, etc. Diagnosis and treatment of genetic disorders are usually performed by a geneticist-physician trained in clinical/medical genetics. The results of the Human Genome Project are likely to provide increased availability of genetic testing for gene-relate
d disorders, and eventually improved treatment. Parents can be screened for hereditary conditions and counselled on the consequences, the probability it will be inherited, and how to avoid or ameliorate it in their offspring.

As noted above, there are many different kinds of DNA sequence variation, ranging from complete extra or missing chromosomes down to single nucleotide changes. It is generally presumed that much naturally occurring genetic variation in human populations is phenotypically neutral, i.e. has little or no detectable effect on the physiology of the individual (although there may be fractional differences in fitness defined over evolutionary time frames). Genetic disorders can be caused by any or all known types of sequence variation. To molecularly characterize a new genetic disorder, it is necessary to establish a causal link between a particular genomic sequence variant and the clinical disease under investigation. Such studies constitute the realm of human molecular genetics.

With the advent of the Human Genome and International HapMap Project, it has become feasible to explore subtle genetic influences on many common disease conditions such as diabetes, asthma, migraine, schizophrenia, etc. Although some causal links have been made between genomic sequence variants in particular genes and some of these diseases, often with much publicity in the general media, these are usually not considered to be genetic disorders per se as their causes are complex, involving many different genetic and environmental factors. Thus there may be disagreement in particular cases whether a specific medical condition should be termed a genetic disorder. The categorized table below provides the prevalence as well as the genes or chromosomes associated with some human genetic disorders.

Human development over the last 10 million years

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Comparative genomics studies of mammalian genomes suggest that approximately 5% of the human genome has been conserved by evolution since the divergence of extant lineages approximately 200 million years ago, containing the vast majority of genes.[86][87] The published chimpanzee genome differs from that of the human genome by 1.23% in direct sequence comparisons.[88] Around 20% of this figure is accounted for by variation within each species, leaving only ~1.06% consistent sequence divergence between humans and chimps at shared genes.[89] This nucleotide by nucleotide difference is dwarfed, however, by the portion of each genome that is not shared, including around 6% of functional genes that are unique to either humans or chimps.[90]

In other words, the considerable observable differences between humans and chimps may be due as much or more to genome level variation in the number, function and expression of genes rather than DNA sequence changes in shared genes. Indeed, even within humans, there has been found to be a previously unappreciated amount of copy number variation (CNV) which can make up as much as 5 15% of the human genome. In other words, between humans, there could be +/- 500,000,000 base pairs of DNA, some being active genes, others inactivated, or active at different levels. The full significance of this finding remains to be seen. On average, a typical human protein-coding gene differs from its chimpanzee ortholog by only two amino acid substitutions; nearly one third of human genes have exactly the same protein translation as their chimpanzee orthologs. A major difference between the two genomes is human chromosome 2, which is equivalent to a fusion product of chimpanzee chromosomes 12 and 13.[91] (later renamed to chromosomes 2A and 2B, respectively).

Humans have undergone an extraordinary loss of olfactory receptor genes during our recent evolution, which explains our relatively crude sense of smell compared to most other mammals. Evolutionary evidence suggests that the emergence of color vision in humans and several other primate species has diminished the need for the sense of smell.[92]

In September 2016, scientists reported that, based on human DNA genetic studies, all non-Africans in the world today can be traced to a single population that exited Africa between 50,000 and 80,000 years ago.[93]

The human mitochondrial DNA is of tremendous interest to geneticists, since it undoubtedly plays a role in mitochondrial disease. It also sheds light on human evolution; for example, analysis of variation in the human mitochondrial genome has led to the postulation of a recent common ancestor for all humans on the maternal line of descent (see Mitochondrial Eve).

Due to the lack of a system for checking for copying errors, mitochondrial DNA (mtDNA) has a more rapid rate of variation than nuclear DNA. This 20-fold higher mutation rate allows mtDNA to be used for more accurate tracing of maternal ancestry. Studies of mtDNA in populations have allowed ancient migration paths to be traced, such as the migration of Native Americans from Siberia or Polynesians from southeastern Asia. It has also been used to show that there is no trace of Neanderthal DNA in the European gene mixture inherited through purely maternal lineage.[94] Due to the restrictive all or none manner of mtDNA inheritance, this result (no trace of Neanderthal mtDNA) would be likely unless there were a large percentage of Neanderthal ancestry, or there was strong positive selection for that mtDNA (for example, going back 5 generations, only 1 of your 32 ancestors contributed to your mtDNA, so if one of these 32 was pure Neanderthal you would expect that ~3% of your autosomal DNA would be of Neanderthal origin, yet you would have a ~97% chance to have no trace of Neanderthal mtDNA).

Epigenetics describes a variety of features of the human genome that transcend its primary DNA sequence, such as chromatin packaging, histone modifications and DNA methylation, and which are important in regulating gene expression, genome replication and other cellular processes. Epigenetic markers strengthen and weaken transcription of certain genes but do not affect the actual sequence of DNA nucleotides. DNA methylation is a major form of epigenetic control over gene expression and one of the most highly studied topics in epigenetics. During development, the human DNA methylation profile experiences dramatic changes. In early germ line cells, the genome has very low methylation levels. These low levels generally describe active genes. As development progresses, parental imprinting tags lead to increased methylation activity.[95][96]

Epigenetic patterns can be identified between tissues within an individual as well as between individuals themselves. Identical genes that have differences only in their epigenetic state are called epialleles. Epialleles can be placed into three categories: those directly determined by an individuals genotype, those influenced by genotype, and those entirely independent of genotype. The epigenome is also influenced significantly by environmental factors. Diet, toxins, and hormones impact the epigenetic state. Studies in dietary manipulation have demonstrated that methyl-deficient diets are associated with hypomethylation of the epigenome. Such studies establish epigenetics as an important interface between the environment and the genome.[97]

See the original post:
Human genome - Wikipedia

Pros and Cons of Genetic Engineering – Humans, Animals, Plants

Genetic engineering offers enormous benefits to humans. It has the potential to fulfil the humans needs to a larger extent. For many years it is under practice to modify the organisms genetic makeup.

However, it also causes the number of harmful effects. So, we must weigh the Pros and Cons of Genetic Engineering.

Genetic engineering benefits to cure diseases by the use of gene therapy, by organ transplant, and tissue transplant. It also helps to diagnose the diseases by the use of sensors or nano-chips. It also contributes to the production of designer babies with parents desired features, intelligence characters. In animals, genetic engineering produces transgenic animals to satisfy the requirement of meat by humans. The clone animals are being used as the test organism in the laboratory in order to test the drug in clinical trials. It also increases milk production in animals also to produce therapeutic important compounds.

Making transgenic animals or human clone is unethical as said by most of the opponents. Genetic diversity, which is important, in different species it will be no more because of genetic engineering. Instead of curing diseases via gene therapy, organ transplant it may result in causing more genetic deformities in both animals as well as humans. Though these experiments or treatment as not easy to be done it needs a large amount of funding. It also needs model organisms in large amount on which experiments can be done. Creating designer babies is also not a process with any errors. The huge number of genetic defects can occur in making designer babies.

Pros

Cons

Increasing the number of population day by day needs more food for human. To supply the food to the huge population genetic engineering is the solution. Genetic engineering fulfils the food demand. It makes the plant resistant to pest, insects etc. Genetic engineering to increase the food quantity. It also enhances the crop productivity. As plants are resistant to pesticide, insecticide it will limit the use of pesticide spray. This will affect to reduce the environmental pollution. It is also important to increase the shelf life of food so that it can stay fresh for a longer period of time. Plants are going to have the property to be able to grow in poorer environmental conditions.

Genetic engineering can also affect the wild type of crops. As it transfers the gene to wild plant. It can also target the undesirable gene. Allergens in plants produced as a result of genetic engineering can be transferred to human as if humans eat that allergic food. Cross specie barriers can cause harmful effects. With increasing quantity of food, it is possible that food can have less nutritional properties as compared to wild type.

Pros

Cons

Genetic engineering in microorganism produces the large number of pharmaceutically important compounds such as insulin, clotting factors. CRISPR (clustered regulatory interspaced short palindromic repeats) system found in prokaryotes can be used to cure diseases by genetic manipulation. Genetic engineering can also enhance biofuel production. Microbes after genetic engineering with improved properties can be used as a vector for plant improvement, and to facilitate the crop growth. Genetic engineering halts the microorganisms ability to cause diseases. Microorganism those are not thermophile via genetic modification they will have the ability to survive high temperature.

Genetic manipulation of microorganisms that are non-pathogenic may develop the pathogenic form of these non-pathogenic strains. Similarly in genetic manipulation of pathogenic strains to less or non-pathogenic strains during drug development may develop its toxic form. Genetically engineered microorganism poses risk to the human health as well as to the environment.

Pros

Cons

So far, due to lack of public understanding about genetic engineering and regulatory bodies. It is not being perceived as safe by masses. Both International and national laws are needed. Certain limits need to be drawn which can only be done by scientists, lawmakers and activists can sit together.

Like Loading...

Related

View original post here:
Pros and Cons of Genetic Engineering - Humans, Animals, Plants