First genetic engineering therapy approved by the FDA for leukemia – Ars Technica

Enlarge / Scanning electron micrograph of a human T cell.

For the first time, the Food and Drug Administration has approved a therapy that involves genetically engineering a patients own cells, the agency announced Wednesday.

The therapy, called Kymriah (tisagenlecleucel) by Novartis, will be used to reprogram the immune cells of pediatric and young adult patients with a certain type of leukemia, called B-cell acute lymphoblastic leukemia. During a 22-day out-of-body retraining, patients immune cellsspecifically T cells that patrol the body and destroy enemiesget a new gene that allows them to identify and attack the leukemia cells.

Such therapies, called CAR-T therapies, have shown potential for effectively knocking back cancers in several trials, raising hopes of researchers and patients alike. But they come with severe safety concernsplus potentially hefty price tags.

Nevertheless, the FDA announced its approval with fanfare and optimism, calling it a historic action. In the announcement, FDA Commissioner Scott Gottlieb said:

Were entering a new frontier in medical innovation with the ability to reprogram a patients own cells to attack a deadly cancer. New technologies such as gene and cell therapies hold out the potential to transform medicine and create an inflection point in our ability to treat and even cure many intractable illnesses. At the FDA, were committed to helping expedite the development and review of groundbreaking treatments that have the potential to be life-saving.

Like all CAR-T therapies, Kymriah involves reprograming body-guard T cells to contain a gene that codes for a protein called chimeric antigen receptor or CAR. This protein allows the T cells to recognize and attack cells that have a protein called CD19 hanging off themwhich leukemia cells do.

In the Kymriah procedure, researchers first harvest T cells from a patient and then send them to a manufacturing center. There, researchers insert the CAR gene into the immune cells using a virus. The process takes 22 days, Nature reported.

In an earlier trial, 52 of 63 participants (82.5 percent) achieved overall remission after undergoing the therapy. The trial is unpublished and lacked controls, so its not possible to determine Kymriahs influence. But trials of other CAR-T therapies have shown similarly high rates of remission. And the early results were enough to sway an external panel of FDA scientific advisors in July. In a unanimous vote on July 12, the panel recommended that the FDA approve Kymriah.

This is a major advance and is ushering in a new era, panel member Malcolm Smith, a pediatric oncologist at the US National Institutes of Health in Bethesda, Maryland, told Nature at the time.

But, the story isnt all rosy. CAR-T therapies are known to cause life-threatening immune responses called cytokine storms or cytokine release syndrome (CRS). This can lead to systemic full body inflammation, with organ failure, seizures, delirium, and brain swelling. Several trials of therapies similar to Kymriah have reported deaths.

In the Kymriah trial, 47 percent of patients experienced some level of CRS, but none died. Novartis reported that it was able to manage all the cases of CRS.

The FDA noted the risk in todays announcement and also revealed that it had expanded the approved use of a drug called Actemra, which treats CRS, so it can be used in patients who receive CAR-T therapy. The FDA also approved Kymriah with a risk evaluation and mitigation strategy or (REMS). This involves additional safeguards such as extra training and protocols for healthcare providers.

For now, though, Kymriah is only approved for use in patients aged 25 or younger who have failed conventional therapies or relapsed since undergoing those therapies. Of the roughly 3,100 patients aged 20 or younger who are diagnosed each year with acute lymphoblastic leukemia, about 15 to 20 percent will fail treatment. For these patients, Kymriah may be a literal life-saver, as there are few alternatives.

But along with the frightening side effects, gene therapy may also come with a hefty price tag. UK experts have appraised one round of therapy at $649,000. Its still unclear what the actual cost will be and what patients will end up having to pay.

In a press release, Novartis announced that its working with Centers for Medicare and Medicaid Services to come up with outcomes-based pricing. Also in the release, Bruno Strigini, CEO of Novartis Oncology, added:

We are so proud to be part of this historic moment in cancer treatment and are deeply grateful to our researchers, collaborators, and the patients and families who participated in the Kymriah clinical program. As a breakthrough immunocellular therapy for children and young adults who desperately need new options, Kymriah truly embodies our mission to discover new ways to improve patient outcomes and the way cancer is treated.

See the original post:
First genetic engineering therapy approved by the FDA for leukemia - Ars Technica

Writing the human genome – The Biological SCENE

[+]Enlarge

Credit: Will Ludwig/C&EN/Shutterstock

In brief

Synthetic biologists have been creating the genomes of organisms such as viruses and bacteria for the past 15 years. They aim to use these designer genetic codes to make cells capable of producing novel therapeutics and fuels. Now, some of these scientists have set their sights on synthesizing the human genomea vastly more complex genetic blueprint. Read on to learn about this initiative, called Genome Project-write, and the challenges researchers will faceboth technical and ethicalto achieve success.

Nineteenth-century novels are typically fodder for literature conferences, not scientific gatherings. Still, at a high-profile meeting of about 200 synthetic biologists in May, one presenter highlighted Mary Shelleys gothic masterpiece Frankenstein, which turns 200 next year.

Frankensteins monster, after all, is what many people think of when the possibility of human genetic engineering is raised, said University of Pennsylvania ethicist and historian Jonathan Moreno. The initiative being discussed at the New York City meetingGenome Project-write (GP-write)has been dogged by worries over creating unnatural beings. True, part of GP-write aims to synthesize from scratch all 23 chromosomes of the human genome and insert them into cells in the lab. But proponents of the project say theyre focused on decreasing the cost of synthesizing and assembling large amounts of DNA rather than on creating designer babies.

The overall project is still under development, and the projects members have not yet agreed on a specific road map for moving forward. Its also unclear where funding will come from.

What the members of GP-write do agree on is that creating a human genome from scratch is a tremendous scientific and engineering challenge that will hinge on developing new methods for synthesizing and delivering DNA. They will also need to get better at designing large groups of genes that work together in a predictable way, not to mention making sure that even larger assembliesgenomescan function.

GP-write consortium members argue that these challenges are the very thing that should move scientists to pick up the DNA pen and turn from sequence readers to writers. They believe writing the entire human genome is the only way to truly understand how it works. Many researchers quoted Richard Feynman during the meeting in May. The statement What I cannot create, I do not understand was found on the famed physicists California Institute of Technology blackboard after his death. I want to know the rules that make a genome tick, said Jef Boeke, one of GP-writes four coleaders, at the meeting.

To that end, Boeke and other GP-write supporters say the initiative will spur the development of new technologies for designing genomes with software and for synthesizing DNA. In turn, being better at designing and assembling genomes will yield synthetic cells capable of producing valuable fuels and drugs more efficiently. And turning to human genome synthesis will enable new cell therapies and other medical advances.

In 2010, researchers at the Venter Institute, including Gibson, demonstrated that a bacterial cell controlled by a synthetic genome was able to reproduce. Colonies formed by it and its sibling resembled a pair of blue eyes.

Credit: Science

Genome writers have already synthesized a few complete genomes, all of them much less complex than the human genome. For instance, in 2002, researchers chemically synthesized a DNA-based equivalent of the poliovirus RNA genome, which is only about 7,500 bases long. They then showed that this DNA copy could be transcribed by RNA polymerase to recapitulate the viral genome, which replicated itselfa demonstration of synthesizing what the authors called a chemical [C332,652H492,388N98,245O131,196P7,501S2,340] with a life cycle (Science 2002, DOI: 10.1126/science.1072266).

After tinkering with a handful of other viral genomes, in 2010, researchers advanced to bacteria, painstakingly assembling a Mycoplasma genome just over about a million bases in length and then transplanting it into a host cell.

Last year, researchers upped the ante further, publishing the design for an aggressively edited Escherichia coli genome measuring 3.97 million bases long (Science, DOI: 10.1126/science.aaf3639). GP-write coleader George Church and coworkers at Harvard used DNA-editing softwarea kind of Google Docs for writing genomesto make radical systematic changes. The so-called rE.coli-57 sequence, which the team is currently synthesizing, lacks seven codons (the three-base DNA words that code for particular amino acids) compared with the normal E. coli genome. The researchers replaced all 62,214 instances of those codons with DNA base synonyms to eliminate redundancy in the code.

Status report International teams of researchers have already synthesized six of yeast's 16 chromosomes, redesigning the organism's genome as part of the Sc2.0 project.

Bacterial genomes are no-frills compared with those of creatures in our domain, the eukaryotes. Bacterial genomes typically take the form of a single circular piece of DNA that floats freely around the cell. Eukaryotic cells, from yeast to plants to insects to people, confine their larger genomes within a cells nucleus and organize them in multiple bundles called chromosomes. An ongoing collaboration is now bringing genome synthesis to the eukaryote realm: Researchers are building a fully synthetic yeast genome, containing 17 chromosomes that range from about 1,800 to about 1.5 million bases long. Overall, the genome will contain more than 11 million bases.

The synthetic genomes and chromosomes already constructed by scientists are by no means simple, but to synthesize the human genome, scientists will have to address a whole other level of complexity. Our genome is made up of more than 3 billion bases across 23 paired chromosomes. The smallest human chromosome is number 21, at 46.7 million baseslarger than the smallest yeast chromosome. The largest, number 1, has nearly 249 million. Making a human genome will mean making much more DNA and solving a larger puzzle in terms of assembly and transfer into cells.

Today, genome-writing technology is in what Boeke, also the director for the Institute of Systems Genetics at New York University School of Medicine, calls the Gutenberg phase. (Johannes Gutenberg introduced the printing press in Europe in the 1400s.) Its still early days.

DNA synthesis companies routinely create fragments that are 100 bases long and then use enzymes to stitch them together to make sequences up to a few thousand bases long, about the size of a gene. Customers can put in orders for small bits of DNA, longer strands called oligos, and whole geneswhatever they needand companies will fabricate and mail the genetic material.

Although the technology that makes this mail-order system possible is impressive, its not prolific enough to make a human genome in a reasonable amount of time. Estimates vary on how long it would take to stitch together a more than 3 billion-base human genome and how much it would cost with todays methods. But the ballpark answer is about a decade and hundreds of millions of dollars.

Synthesis companies could help bring those figures down by moving past their current 100-base limit and creating longer DNA fragments. Some researchers and companies are moving in that direction. For example, synthesis firm Molecular Assemblies is developing an enzymatic process to write long stretches of DNA with fewer errors.

Synthesis speeds and prices have been improving rapidly, and researchers expect they will continue to do so. From my point of view, building DNA is no longer the bottleneck, says Daniel G. Gibson, vice president of DNA technology at Synthetic Genomics and an associate professor at the J. Craig Venter Institute (JCVI). Some way or another, if we need to build larger pieces of DNA, w
ell do that.

Gibson isnt involved with GP-write. But his research showcases what is possible with todays toolseven if they are equivalent to Gutenbergs movable type. He has been responsible for a few of synthetic biologys milestones, including the development of one of the most commonly used genome-assembly techniques.

The Gibson method uses chemical means to join DNA fragments, yielding pieces thousands of bases long. For two fragments to connect, one must end with a 20- to 40-base sequence thats identical to the start of the next fragment. These overlapping DNA fragments can be mixed with a solution of three enzymesan exonuclease, a DNA polymerase, and a DNA ligasethat trim the 5 end of each fragment, overlap the pieces, and seal them together.

To make the first synthetic bacterial genome in 2008, that of Mycoplasma genitalium, Gibson and his colleagues at JCVI, where he was a postdoc at the time, started with his eponymous in vitro method. They synthesized more than 100 fragments of synthetic DNA, each about 5,000 bases long, and then harnessed the prodigious DNA-processing properties of yeast, introducing these large DNA pieces to yeast three or four at a time. The yeast used its own cellular machinery to bring the pieces together into larger sequences, eventually producing the entire Mycoplasma genome.

Next, the team had to figure out how to transplant this synthetic genome into a bacterial cell to create what the researchers called the first synthetic cell. The process is involved and requires getting the bacterial genome out of the yeast, then storing the huge, fragile piece of circular DNA in a protective agarose gel before melting it and mixing it with another species of Mycoplasma. As the bacterial cells fuse, some of them take in the synthetic genomes floating in solution. Then they divide to create three daughter cells, two containing the native genomes, and one containing the synthetic genome: the synthetic cell.

When Gibsons group at JCVI started building the synthetic cell in 2004, we didnt know what the limitations were, he says. So the scientists were cautious about overwhelming the yeast with too many DNA fragments, or pieces that were too long. Today, Gibson says he can bring together about 25 overlapping DNA fragments that are about 25,000 bases long, rather than three or four 5,000-base segments at a time.

Gibson expects that existing DNA synthesis and assembly methods havent yet been pushed to their limits. Yeast might be able to assemble millions of bases, not just hundreds of thousands, he says. Still, Gibson believes it would be a stretch to make a human genome with this technique.

One of the most ambitious projects in genome writing so far centers on that master DNA assembler, yeast. As part of the project, called Sc2.0 (a riff on the funguss scientific name, Saccharomyces cerevisiae), an international group of scientists is redesigning and building yeast one synthetic chromosome at a time. The yeast genome is far simpler than ours. But like us, yeasts are eukaryotes and have multiple chromosomes within their nuclei.

Synthetic biologists arent interested in rebuilding existing genomes by rote; they want to make changes so they can probe how genomes work and make them easier to build and reengineer for practical use. The main lesson learned from Sc2.0 so far, project scientists say, is how much the yeast chromosomes can be altered in the writing, with no apparent ill effects. Indeed, the Sc2.0 sequence is not a direct copy of the original. The synthetic genome has been reduced by about 8%. Overall, the research group will make 1.1 million bases worth of insertions, deletions, and changes to the yeast genome (Science 2017, DOI: 10.1126/science.aaf4557).

So far, says Boeke, whos also coleader of Sc2.0, teams have finished or almost finished the first draft of the organisms 16 chromosomes. Theyre also working on a neochromosome, one not found in normal yeast. In this chromosome, the designers have relocated all DNA coding for transfer RNA, which plays a critical role in protein assembly. The Sc2.0 group isolated these sequences because scientists predicted they would cause structural instability in the synthetic chromosomes, says Joel Bader, a computational biologist at Johns Hopkins University who leads the projects software and design efforts.

The team is making yeast cells with a new chromosome one at a time. The ultimate goal is to create a yeast cell that contains no native chromosomes and all 17 synthetic ones. To get there, the scientists are taking a relatively old-fashioned approach: breeding. So far, theyve made a yeast cell with three synthetic chromosomes and are continuing to breed it with strains containing the remaining ones. Once a new chromosome is in place, it requires some patching up because of recombination with the native chromosomes. Its a process, but it doesnt look like there are any significant barriers, Bader says. He estimates it will take another two to three years to produce cells with the entire Sc2.0 genome.

So far, even with these significant changes to the chromosomes, the yeast lives at no apparent disadvantage compared with yeast that has its original chromosomes. Its surprising how much you can torture the genome with no effect, Boeke says.

Boeke and Bader have founded a start-up company called Neochromosome that will eventually use Sc2.0 strains to produce large protein drugs, chemical precursors, and other biomolecules that are currently impossible to make in yeast or E. coli because the genetic pathways used to create them are too complex. With synthetic chromosomes well be able to make these large supportive pathways in yeast, Bader predicts.

Whether existing genome-engineering methods like those used in Sc2.0 will translate to humans is an open question.

Bader believes that yeast, so willing to take up and assemble large amounts of DNA, might serve as future human-chromosome producers, assembling genetic material that could then be transferred to other organisms, perhaps human cells. Transplanting large human chromosomes would be tricky, Synthetic Genomics Gibson says. First, the recipient cell must be prepped by somehow removing its native chromosome. Gibson expects physically moving the synthetic chromosome would also be difficult: Stretches of DNA larger than about 50,000 bases are fragile. You have to be very gentle so the chromosome doesnt breakonce its broken, its not going to be useful, he says. Some researchers are working on more direct methods for cell-to-cell DNA transfer, such as getting cells to fuse with one another.

Once the scientists solve the delivery challenge, the next question is whether the transplanted chromosome will function. Our genomes are patterned with methyl groups that silence regions of the genome and are wrapped around histone proteins that pack the long strands into a three-dimensional order in cells nuclei. If the synthetic chromosome doesnt have the appropriate methylation patterns, the right structure, it might not be recognized by the cell, Gibson says.

Biologists might sidestep these epigenetic and other issues by doing large-scale DNA assembly in human cells from the get-go. Ron Weiss, a synthetic biologist at Massachusetts Institute of Technology, is pushing the upper limits on this sort of approach. He has designed methods for inserting large amounts of DNA directly into human cells. Weiss endows human cells with large circuits, which are packages of engineered DNA containing groups of genes and regulatory machinery that will change a cells behavior.

In 2014, Weiss developed a landing pad method to insert about 64,000-base stretches of DNA into human and other mammalian cells. First, researchers use gene editing to create the landing pad, which is a set of markers at a designated spot on a particular chromosome where an enzyme called a recombinase will insert the synthetic genetic material. Then they string together the genes for a given pathway, along with their regulatory elements, add a matching
recombinase site, and fashion this strand into a circular piece of DNA called a plasmid. The target cells are then incubated with the plasmid, take it up, and incorporate it at the landing site (Nucleic Acids Res. 2014, DOI: 10.1093/nar/gku1082).

This works, but its tedious. It takes about two weeks to generate these cell lines if youre doing well, and the payload only goes into a few of the cells, Weiss explains. Since his initial publication, he says, his team has been able to generate cells with three landing pads; that means they could incorporate a genetic circuit thats about 200,000 bases long.

Weiss doesnt see simple scale-up of the landing pad method as the way forward, though, even setting aside the tedium. He doesnt think the supersized circuits would even function in a human cell because he doesnt yet know how to design them.

The limiting factor in the size of the circuit is not the construction of DNA, but the design, Weiss says. Instead of working completely by trial and error, bioengineers use computer models to predict how synthetic circuits or genetic edits will work in living cells of any species. But the larger the synthetic element, the harder it is to know whether it will work in a real cell. And the more radical the deletion, the harder it is to foresee whether it will have unintended consequences and kill the cell. Researchers also have a hard time predicting the degree to which cells will express the genes in a complex synthetic circuita lot, a little, or not at all. Gene regulation in humans is not fully understood, and rewriting on the scale done in the yeast chromosome would have far less predictable outcomes.

Besides being willing to take up and incorporate DNA, yeast is relatively simple. Upstream from a yeast gene, biologists can easily find the promoter sequence that turns it on. In contrast, human genes are often regulated by elements found in distant regions of the genome. That means working out how to control large pathways is more difficult, and theres a greater risk that changing the genetic sequencesuch as deleting what looks like repetitive nonsensewill have unintended, currently unpredictable, consequences.

Gibson notes that even in the minimal cell, the organism with the simplest known genome on the planet, biologists dont know what one-third of the genes do. Moving from the simplest organism to humans is a leap into the unknown. One design flaw can change how the cell behaves or even whether the cells are viable, Gibson says. We dont have the design knowledge.

Many scientists believe this uncertainty about design is all the more reason to try writing human and other large genomes. People are entranced with the perfect, Harvards Church says. But engineering and medicine are about the pretty good. I learn much more by trying to make something than by observing it.

Others arent sure that the move from writing the yeast genome to writing the human genome is necessary, or ethical. When the project to write the human genome was made public in May 2016, the founders called it Human Genome Project-write. They held the first organizational meeting behind closed doors, with no journalists present. A backlash ensued.

In the magazine Cosmos, Stanford University bioengineer Drew Endy and Northwestern University ethicist Laurie Zoloth in May 2016 warned of unintended consequences of large-scale changes to the genome and of alienating the public, potentially putting at risk funding for the synthetic biology field at large. They wrote that the synthesis of less controversial and more immediately useful genomes along with greatly improved sub-genomic synthesis capacities should be pursued instead.

GP-write members seem to have taken such criticisms to heart, or come to a similar conclusion on their own. By this Mays conference, human was dropped from the projects name. Leaders emphasized that the human genome would be a subproject proceeding on a conservative timescale and that ethicists would be involved at every step along the way. We want to separate the overarching goal of technology development from the hot-button issue of human genome writing, Boeke explains.

Bringing the public on board with this kind of project can be difficult, says Alta Charo, a professor of law and bioethics at the University of Wisconsin, Madison, who is not involved with GP-write. Charo cochaired a National Academy of Sciences study on the ethics and governance of human gene editing, which was published in February.

She says the likelihood of positive outcomes, such as new therapies or advances in basic science, must be weighed against potential unintended consequences or unforeseen uses of genome writing. People see their basic values at stake in human genetic engineering. If scientists achieve their goalsmaking larger scale genetic engineering routine and more useful, and bringing it to the human genomemajor changes are possible to what Charo calls the fabric of our culture and society. People will have to decide whether they feel optimistic about that or not. (Charo does.)

Given humans cautiousness, Charo imagines in early times we might have decided against creating fire, saying, Lets live without that; we dont need to create this thing that might destroy us. People often see genetic engineering in extreme terms, as a fire that might illuminate human biology and light the way to new technologies, or one that will destroy us.

Charo says the GP-write plan to keep ethicists involved going forward is the right approach and that its difficult to make an ethical or legal call on the project until its leaders put forward a road map.

The group will announce a specific road map sometime this year, but it doesnt want to be restrictive ahead of time. You know when youre done reading something, Boeke said at the meeting in May. But writing has an artistic side to it, he added. You never know when youre done.

Katherine Bourzac is a freelance science writer based in San Francisco.

Read the original post:
Writing the human genome - The Biological SCENE

American scientists use CRISPR to modify human embryos – MIMS General News (Hong Kong) (registration) (blog)

For the first time, scientists from the Oregon Health and Science University in the United States have successfully created genetically modified human embryos. Led by embryologist, Dr Shoukhrat Mitalipov a researcher at the university the team used the gene-editing technique CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) to introduce gene-editing chemicals to single-cell embryos.

The aim of the experiment was to target a gene associated with a significant human disease and see if the gene was modified.

This is the kind of research that is essential if we are to know if its possible to safely and precisely make corrections in embryos DNA to repair disease-causing genes, shares Alta Charo, a legal scholar and bioethicist at the University of Wisconsin.

Thus far, such experiments have only been conducted in China as scientists, religious organisations, civil society groups and even many biotechnology companies in America have been vehemently opposed to them.

However, the team was able to move forward with their experiment because of a report by the US National Academy of Sciences in February this year. The report agreed to laboratory research on germline modification as it argued, may one day be a way for parents with severe genetic disorders to have healthy, biological children.

But we anticipated that there would need to be a lot of research to see if you could make these changes without any unintentional effects, remarks Charo, who co-chaired the Academies committee.

The team chose to inject the CRISPR into eggs at the same time as they were fertilised by sperm. It was conducted in this way in order to avoid the pitfalls faced by the Chinese researchers. One pitfall was mosaicism, in which the desired DNA changes are taken up by only some of the cells in the embryo, not all; and the second are off-target effects, in which genes that were not meant to be edited, are.

It is proof of principle that it can work. They have significantly reduced mosaicism. I dont think its the start of clinical trials yet, but it does take it further than anyone has before, comments a scientist familiar with the project.

This is important as much of the criticism against germline engineering has been the concern that errors such as mosaicism and off-target editing make CRISPR an unsafe way to create human beings.

Although none of the embryos were permitted to develop for more than a few days and the team had no intention of implanting the embryos into a womb news of the experiment has brought to the forefront again, conversation around designer babies. An example situation would be in China, where more and more parents are opting for genetic testing in order to uncover their childs talents.

Genome editing to enhance traits or abilities beyond ordinary health, raises concerns about whether the benefits can outweigh the risks, and about fairness if available only to some people, explains Charo.

Additionally, because changes that are made to the embryos cells will also be found in the eggs or sperm that will be produced if the embryo is allowed to develop into an adult human, any children the person has will also inherit the changes.

This ability to change human evolution has triggered fears. However, Stanford University law professor and bioethicist Hank Greely responds that the key point is that the team did not implant any edited embryos. He argues that research embryos that are not to be transferred for possible implantation are not a big deal.

In America, parliamentary government has prohibited using edited IVF embryos to make people and the Department of Health and Human Services has forbidden the technology to do so from reaching clinical trials.

While there will be time for the public to decide if they want to get rid of regulatory obstacles to these studies, I do not find them inherently unethical, expresses Charo.

Indeed, for now, small, correctly-performed experiments such as Mitalipovs does beg the question: whether Charlies Gards situation would have been different had his parents had access to CRISPR technology. MIMS

Read more:What does the artificial womb mean for the future of fertility and neonatal care?Worlds first human-pig hybrid: Medical breakthrough or ethical dilemma?Male infertility boosts financial equity of the reproductive health industry in ChinaSources:https://www.technologyreview.com/s/608350/first-human-embryos-edited-in-us/https://www.statnews.com/2017/07/26/human-embryos-edited/http://www.sciencemag.org/news/2017/07/first-us-team-gene-edit-human-embryos-revealed

More:
American scientists use CRISPR to modify human embryos - MIMS General News (Hong Kong) (registration) (blog)

Will Healthcare Inequality Cause Genetic Diseases to Disproportionately Impact the Poor? – Gizmodo

Artwork via Angelica Alzona/Gizmodo

Today in America, if you are poor, you are also more likely to suffer from poor health. Low socioeconomic statusand the lack of access to healthcare that often accompanies ithas been tied to mental illness, obesity, heart disease and diabetes, to name just a few.

Imagine now, that in the future, being poor also meant you were more likely than others to suffer from major genetic disorders like cystic fibrosis, TaySachs disease, and muscular dystrophy. That is a future, some experts fear, that may not be all that far off.

Most genetic diseases are non-discriminating, blind to either race or class. But for some parents, prenatal genetic testing has turned what was once fate into choice. There are tests that can screen for hundreds of disorders, including rare ones like Huntingtons disease and 1p36 deletion syndrome. Should a prenatal diagnosis bring news of a genetic disease, parents can either arm themselves with information on how best to prepare, or make the difficult decision to terminate the pregnancy. That is, if they can pay for it. Without insurance, the costs of a single prenatal test can range from a few hundred dollars up to $2,000.

And genome editing, should laws ever be changed to allow for legally editing a human embryo in the United States, could also be a far-out future factor. Its difficult to imagine how much genetically engineering an embryo might cost, but its a safe bet that it wont be cheap.

Reproductive technology is technology that belongs to certain classes, Laura Hercher, a genetic counselor and professor at Sarah Lawrence College, told Gizmodo. Restricting access to prenatal testing threatens to turn existing inequalities in our society into something biological and permanent.

Hercher raised this point earlier this month in pages of Genome magazine, in a piece provocatively titled, The Ghettoization of Genetic Disease. Within the genetics community, it caused quite a stir. It wasnt that no one had ever considered the idea. But for a community of geneticists and genetic counsellors focused on how to help curb the impact of devastating diseases, it was a difficult thing to see articulated in writing.

Prenatal testing is a miraculous technology that has drastically altered the course of a womans pregnancy since it was first developed in the 1960s. The more recent advent of noninvasive prenatal tests made the procedure even less risky and more widely available. Today, most women are offered screenings for diseases like Down syndrome that result from an abnormal presence of chromosomes, and targeted testing of the parents can hunt for inherited disease traits like Huntingtons at risk of being passed on to a child, as well.

But there is a dark side to this miracle of modern medicine, which is that choice is exclusive to those who can afford and access it.

This is one of those aspects of prenatal testing that we dont want to talk about, Megan Allyse, who studies reproductive ethics at the Mayo Clinic, told Gizmodo. Theres a wide variety of reasons people might not get access to reproductive technologies. But what is unavoidable is that you are more likely to have access if you are socio-economically well-off.

The scenario Hercher imagines is this: Say you dont have insurance, or have insurance that does not cover the roster of prenatal tests that OB/GYNs commonly recommend. You also cannot afford the tests out-of-pocket, and your baby is born with a genetic disease. This scenario plays out over and over again among people who cannot afford testing, while at the same time many of those who can afford the test for that disease and test positive choose to terminate a pregnancy. Over time, Hercher predicts, that disease would become more prevalent in those communities that could not afford the tests.

Whether this hypothetical scenario will play out in the real world isnt totally clear, in part because there are many variables besides socioeconomic status at work. Maybe you live in a state where abortions are more difficult to access or against local norms, influencing your decision to undergo prenatal testing. Perhaps you oppose abortion for cultural or religious reasons. And there isnt data for on individuals who refuse prenatal testing altogether, even if they could afford it. Somewhere around 70 percent of women opt-in to some form of prenatal testing, but those numbers vary wildly by region, jumping up to about 90 percent on the coasts and dropping significantly in the midwest.

At this point, all researchers can really do is speculate about future disparities in genetic disease. For example, a 2012 meta-analysis published in Prenatal Diagnosis found that across the country, the mean termination rate for Down syndrome was 67 percent, meaning that a significant number of people who undergo prenatal testing and wind up testing positive for Down syndrome choose to end the pregnancy. Of course, not every parent who learns their future child will have Down syndrome wants to terminate the pregnancy. Its is a complex, personal choice. But access to prenatal testing also allows a parent to better plan for their childs future needs.

Some geneticists already see evidence of an accessibility gap in their own clinical practices.

Certainly we know that access to care varies, Massachusetts General medical geneticist Brian Skotko told Gizmodo. His own work has studied the demographic breakdown of Down syndrome, and has found a clear racial pattern in both Down syndrome births and pregnancy terminations.

In Massachusetts, were seeing more Hispanic and black mothers with Down syndrome babies, he said, and what weve learned from their stories is either they dont have access to testing or that if they did get tested, they had strong religious beliefs.

As access to prenatal testing increases, Skotko said, it is likely we will see a drastic reduction in genetic diseases. In the next five years, as tests get better and better, the global market for them is expected to balloon by 25 percent to over $10 billion. We can look to historical evidence, Skotko said. As more people get access to prenatal tests, there will be an increase in number of selective terminations.

Access to prenatal testing isnt the only thing that could lead to Herchers fear becoming a reality, either. Abortion access has become increasingly difficult in some parts of the country, with states like Texas stripping funding for clinics and placing more restrictions on the conditions under which they can take place. In vitro fertilization could one day also contribute, allowing those who can afford the tens of thousands of dollars to undergo IVF to select the most genetically-desirable eggs for implantation.

In her new book, Whittier Law School professor Judith Daar makes a terrifying prediction: that unequal access to IVF may wind up bringing about a new eugenics.

The growth and success of reproductive technologies, accounting for three out of every one hundred babies born in the United States today, have prompted lawmakers to introduce and occasionally pass legislation that expressly or indirectly limits access to [assisted reproductive technologies] by certain individuals, she writes. These formal legal barriers, combined with individual and practice-wide physician conduct, coalesce to suppress access to assisted conception for those who have historically experienced a devaluation of their reproductive worth.

Daar points out that while in the 1942 case Skinner v. Oklahoma, the Supreme Court affirmed that procreation is a right, striking down the states compulsory sterilization of certain criminals, the ruling only weighs in on procreating naturally. The court has yet to rule on anything that might also equalize access to technologies that could help with conception, or to ensure that a child conceived is healthy.

Whats missing in the conversation is how we adopt all of these technologies to a society that considers well-being for all, Eleonore Pauwels, a bioethicist at the Wils
on Center, told Gizmodo. There is already an access problem. But what about when were editing out diseases? Who will pay for CRISPR? We are looking at much more disruption in the future.

The only real way to prevent genetic diseases from becoming diseases of poverty, said Josephine Johnston, a bioethicist at The Hastings Institute, is to make sure everyone has access to the same services. While the costs of todays tests may one day be affordable for more people, there will inevitably also be newer, more expensive technologies that create the same issues in the future. Thus is the cycle of healthcares disparity of accessthere are always people for whom treatment is not equal to the rest.

People have to have access to healthcare services, and [genetic testing] needs to be part of what those services include, she told Gizmodo. If you dont have access to testing and termination servicesor support if you continue the pregnancyyou dont really have a choice about what to do. Its not a choice if youre backed into a corner.

The inequality threat that prenatal testing, IVF and germline editing present, is of course a version of the same inequality that has always existed. If you are poor, there is a good chance your access to healthcare is not as good as someone who has more money.

But as these technologies grow in power and expense, the gulf of that inequality widens. Genetic disease has always been our shared vulnerability, Hercher wrote in Genome. When one part of society can opt out of risk, will they continue to feel the same obligation to provide support and resources to those who remain vulnerable, especially if at least some of them have deliberately chosen to accept the risk?

Hercher presents what is really a common vision of dystopia: a future of genetic haves and have-nots in which inequality becomes encoded in our basic biology. But arriving at that future does not require genetic engineering or some other as-yet-unknown technology. All it requires is that we keep doing what we are already doing, living in a world in which access to necessary healthcare is often a luxury off-limits to the poor.

Read the rest here:
Will Healthcare Inequality Cause Genetic Diseases to Disproportionately Impact the Poor? - Gizmodo

Stanford’s Final Exams Pose Question About the Ethics of Genetic Engineering – Futurism

In BriefThe age of gene editing and creation will be upon us in thenext few decades, with the first lifeform having already beenprinted. Stanford University questions the ethics of prospectivestudents by asking a question we should all be thinking about. Stanfords Moral Pickle

When bioengineering students sit down to take their final exams for Stanford University,they are faced with a moral dilemma, as well as a series of grueling technical questions that are designed to sort the intellectual wheat from the less competent chaff:

If you and your future partner are planning to have kids, would you start saving money for college tuition, or for printing the genome of your offspring?

The question is a follow up to At what point will the cost of printing DNA to create a human equal the cost of teaching a student in Stanford? Both questions refer to the very real possibility that it may soon be in the realm of affordability to print off whatever stretch of DNA you so desire, using genetic sequencing and a machine capable of synthesizing the four building blocks of DNA A, C, G, and T into whatever order you desire.

The answer to the time question, by the way, is 19 years, given that the cost of tuition at Stanford remains at $50,000 and the price of genetic printing continues the 200-fold decrease that has occurred over the last 14 years. Precursory work has already been performed; a team lead by Craig Venter created the simplest life form ever known last year.

Stanfords moral question, though, is a little trickier. The question is part of a larger conundrum concerning humans interfering with their own biology; since the technology is developing so quickly, the issue is no longer whether we can or cant,but whether we should or shouldnt. The debate has two prongs: gene editing and life printing.

With the explosion of CRISPR technology many studies are due to start this year the ability to edit our genetic makeup will arrive soon. But how much should we manipulate our own genes? Should the technology be a reparative one, reserved for making sick humans healthy again, or should it be used to augment our current physical restrictions, making us bigger, faster, stronger, and smarter?

The question of printing life is similar in some respects; rather than altering organisms to have the desired genetic characteristics, we could print and culture them instead billions have already been invested. However, there is theadditional issue of playing God by sidestepping the methods of our reproduction that have existed since the beginning of life. Even if the ethical issue of creation was answered adequately, there are the further questions ofwho has the right to design life, what the regulations would be, and the potential restrictions on the technology based on cost; if its too pricey, gene editing could be reserved only for the rich.

It is vital to discuss the ethics of gene editing in order to ensure that the technology is not abused in the future. Stanfords question is praiseworthy because it makes todays students, who will most likely be spearheading the technologys developments, think about the consequences of their work.

See the article here:
Stanford's Final Exams Pose Question About the Ethics of Genetic Engineering - Futurism

Human genetic clustering – Wikipedia

Human genetic clustering is the degree to which human genetic variation can be partitioned into a small number of groups or clusters. A leading method of analysis uses mathematical cluster analysis of the degree of similarity of genetic data between individuals and groups in order to infer population structures and assign individuals to hypothesized ancestral groups. These groupings in turn often, but not always, correspond with the individuals' self-identified geographical ancestry. A similar analysis can be done using principal components analysis,[1] and several recent studies deploy both methods.[2][3]

Analysis of genetic clustering examines the degree to which regional groups differ genetically, the categorization of individuals into clusters, and what can be learned about human ancestry from this data. There is broad scientific agreement that a relatively small fraction of human genetic variation occurs between populations, continents, or clusters. Researchers of genetic clustering differ, however, on whether genetic variation is principally clinal or whether clusters inferred mathematically are important and scientifically useful.

One of the underlying questions regarding the distribution of human genetic diversity is related to the degree to which genes are shared between the observed clusters. It has been observed repeatedly that the majority of variation observed in the global human population is found within populations. This variation is usually calculated using Sewall Wright's fixation index (FST), which is an estimate of between to within group variation. The degree of human genetic variation is a little different depending upon the gene type studied, but in general it is common to claim that ~85% of genetic variation is found within groups, ~610% between groups within the same continent and ~610% is found between continental groups. Ryan Brown and George Armelagos described this as "a host of studies [that have] concluded that racial classification schemes can account for only a negligible proportion of human genetic diversity," including the studies listed in the table below.

(rather than among populations)

diversity[4]

Cavalli-Sforza

microsatellite loci

These average numbers, however, do not mean that every population harbors an equal amount of diversity. In fact, some human populations contain far more genetic diversity than others, which is consistent with the likely African origin of modern humans.[7][8] Therefore, populations outside of Africa may have undergone serial founder effects that limited their genetic diversity.[7][8]

The FST statistic has come under criticism by A. W. F. Edwards[9] and Jeffrey Long and Rick Kittles.[10] British statistician and evolutionary biologist A. W. F. Edwards faulted Lewontin's methodology for basing his conclusions on simple comparison of genes and rather on a more complex structure of gene frequencies. Long and Kittles' objection is also methodological: according to them the FST is based on a faulty underlying assumptions that all populations contain equally genetic diverse members and that continental groups diverged at the same time. Sarich and Miele have also argued that estimates of genetic difference between individuals of different populations understate differences between groups because they fail to take into account human diploidy.[11]

Keith Hunley, Graciela Cabana, and Jeffrey Long created a revised statistical model to account for unequally divergent population lineages and local populations with differing degrees of diversity. Their 2015 paper applies this model to the Human Genome Diversity Project sample of 1,037 individuals in 52 populations.[8] They found that least diverse population examined, the Surui, "harbors nearly 60% of the total species diversity." Long and Kittles had noted earlier that the Sokoto people of Africa contains virtually all of human genetic diversity.[12] Their analysis also found that non-African populations are a taxonomic subgroup of African populations, that "some African populations are equally related to other African populations and to non-African populations," and that "outside of Africa, regional groupings of populations are nested inside one another, and many of them are not monophyletic."[8]

Multiple studies since 1972 have backed up the claim that, "The average proportion of genetic differences between individuals from different human populations only slightly exceeds that between unrelated individuals from a single population."[13][14][15][16][17][18][19]

Edwards (2003) claims, "It is not true, as Nature claimed, that 'two random individuals from any one group are almost as different as any two random individuals from the entire world'" and Risch et al. (2002) state "Two Caucasians are more similar to each other genetically than a Caucasian and an Asian." However Bamshad et al. (2004) used the data from Rosenberg et al. (2002) to investigate the extent of genetic differences between individuals within continental groups relative to genetic differences between individuals between continental groups. They found that though these individuals could be classified very accurately to continental clusters, there was a significant degree of genetic overlap on the individual level, to the extent that, using 377 loci, individual Europeans were about 38% of the time more genetically similar to East Asians than to other Europeans.

Witherspoon et al. (2007) have argued that even when individuals can be reliably assigned to specific population groups, it may still be possible for two randomly chosen individuals from different populations/clusters to be more similar to each other than to a randomly chosen member of their own cluster. Witherspoon et al. conclude that "caution should be used when using geographic or genetic ancestry to make inferences about individual phenotypes". A study of three completely genotyped individuals, white American scientists James Watson and Craig Venter, and Korean scientist Seong-Jin Kim found that the two white scientists have fewer genetic variations (single nucleotide polymorphisms or SNPs) in common than either shares with Kim.[21]

Genetic structure studies are carried out using statistical computer programs designed to find clusters of genetically similar individuals within a sample of individuals. Studies such as those by Risch and Rosenberg use a computer program called STRUCTURE to find human populations (gene clusters). It is a statistical program that works by placing individuals into one of an arbitrary number of clusters based on their overall genetic similarity, many possible pairs of clusters are tested per individual to generate multiple clusters.[22] The basis for these computations are data describing a large number of single nucleotide polymorphisms (SNPs), genetic insertions and deletions (indels), microsatellite markers (or short tandem repeats, STRs) as they appear in each sampled individual. Cluster analysis divides a dataset into any prespecified number of clusters.

These clusters are based on multiple genetic markers that are often shared between different human populations even over large geographic ranges. The notion of a genetic cluster is that people within the cluster share on average similar allele frequencies to each other than to those in other clusters. (A. W. F. Edwards, 2003 but see also infobox "Multi Locus Allele Clusters") In a test of idealised populations, the computer programme STRUCTURE was found to consistently underestimate the numbers of populations in the data set when high migration rates between populations and slow mutation rates (such as single-nucleotide polymorphisms) were considered.[23] In 2004, Lynn Jorde and Steven Wooding argued that "Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry."[24]

A number of genetic cluster studies have been conducted since 2
002, including the following:

In a 2005 paper, Rosenberg and his team acknowledged that findings of a study on human population structure are highly influenced by the way the study is designed.[29][30] They reported that the number of loci, the sample size, the geographic dispersion of the samples and assumptions about allele-frequency correlation all have an effect on the outcome of the study.

In a review of studies of human genome diversity, Guido Barbujani and colleagues note that various cluster studies have identified different numbers of clusters with different boundaries. They write that discordant patterns of genetic variation and high within-population genetic diversity "make[] it difficult, or impossible, to define, once and for good, the main genetic clusters of humankind."[7]

A major finding of Rosenberg and colleagues (2002) was that when five clusters were generated by the program (specified as K=5), "clusters corresponded largely to major geographic regions." Specifically, the five clusters corresponded to Africa, Europe plus the Middle East plus Central and South Asia, East Asia, Oceania, and the Americas. The study also confirmed prior analyses by showing that, "Within-population differences among individuals account for 93 to 95% of genetic variation; differences among major groups constitute only 3 to 5%."

Rosenberg and colleagues (2005) have argued, based on cluster analysis, that populations do not always vary continuously and a population's genetic structure is consistent if enough genetic markers (and subjects) are included. "Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions." They also wrote, regarding a model with five clusters corresponding to Africa, Eurasia (Europe, Middle East, and Central/South Asia), East Asia, Oceania, and the Americas: "For population pairs from the same cluster, as geographic distance increases, genetic distance increases in a linear manner, consistent with a clinal population structure. However, for pairs from different clusters, genetic distance is generally larger than that between intracluster pairs that have the same geographic distance. For example, genetic distances for population pairs with one population in Eurasia and the other in East Asia are greater than those for pairs at equivalent geographic distance within Eurasia or within East Asia. Loosely speaking, it is these small discontinuous jumps in genetic distanceacross oceans, the Himalayas, and the Saharathat provide the basis for the ability of STRUCTURE to identify clusters that correspond to geographic regions".[31]

Rosenberg stated that their findings "should not be taken as evidence of our support of any particular concept of biological race (...). Genetic differences among human populations derive mainly from gradations in allele frequencies rather than from distinctive 'diagnostic' genotypes."[25] The study's overall results confirmed that genetic difference within populations is between 93 and 95%. Only 5% of genetic variation is found between groups.[29]

The Rosenberg study has been criticised on several grounds.

The existence of allelic clines and the observation that the bulk of human variation is continuously distributed, has led some scientists to conclude that any categorization schema attempting to partition that variation meaningfully will necessarily create artificial truncations. (Kittles & Weiss 2003). It is for this reason, Reanne Frank argues, that attempts to allocate individuals into ancestry groupings based on genetic information have yielded varying results that are highly dependent on methodological design.[32] Serre and Pbo (2004) make a similar claim:

The absence of strong continental clustering in the human gene pool is of practical importance. It has recently been claimed that "the greatest genetic structure that exists in the human population occurs at the racial level" (Risch et al. 2002). Our results show that this is not the case, and we see no reason to assume that "races" represent any units of relevance for understanding human genetic history.

In a response to Serre and Pbo (2004), Rosenberg et al. (2005) maintain that their clustering analysis is robust. Additionally, they agree with Serre and Pbo that membership of multiple clusters can be interpreted as evidence for clinality (isolation by distance), though they also comment that this may also be due to admixture between neighbouring groups (small island model). Thirdly they comment that evidence of clusterdness is not evidence for any concepts of "biological race".[27]

Clustering does not particularly correspond to continental divisions. Depending on the parameters given to their analytical program, Rosenberg and Pritchard were able to construct between divisions of between 4 and 20 clusters of the genomes studied, although they excluded analysis with more than 6 clusters from their published article. Probability values for various cluster configurations varied widely, with the single most likely configuration coming with 16 clusters although other 16-cluster configurations had low probabilities. Overall, "there is no clear evidence that K=6 was the best estimate" according to geneticist Deborah Bolnick (2008:76-77).[33] The number of genetic clusters used in the study was arbitrarily chosen. Although the original research used different number of clusters, the published study emphasized six genetic clusters. The number of genetic clusters is determined by the user of the computer software conducting the study. Rosenberg later revealed that his team used pre-conceived numbers of genetic clusters from six to twenty "but did not publish those results because Structure [the computer program used] identified multiple ways to divide the sampled individuals". Dorothy Roberts, a law professor, asserts that "there is nothing in the team's findings that suggests that six clusters represent human population structure better than ten, or fifteen, or twenty."[34] When instructed to find two clusters, the program identified two populations anchored around by Africa and by the Americas. In the case of six clusters, the entirety of Kalesh people, an ethnic group living in Northern Pakistan, was added to the previous five.[29][35]

Commenting on Rosenberg's study, law professor Dorothy Roberts wrote that "the study actually showed that there are many ways to slice the expansive range of human genetic variation.

Sarah A. Tishkoff and colleagues analyzed a global sample consisting of 952 individuals from the HGDP-CEPH survey, 2432 Africans from 113 ethnic groups, 98 African Americans, 21 Yemenites, 432 individuals of Indian descent, and 10 Native Australians. A global STRUCTURE analysis of these individuals examined 1327 polymorphic markers, including of 848 STRs, 476 indels, and 3 SNPs. The authors reported cluster results for K=2 to K=14. Within Africa, six ancestral clusters were inferred through Bayesian analysis, which were closely linked with ethnolinguistic heritage. Bantu populations grouped with other Niger-Congo-speaking populations from West Africa. African Americans largely belonged to this Niger-Congo cluster, but also had significant European ancestry. Nilo-Saharan populations formed their own cluster. Chadic populations clustered with the Nilo-Saharan groups, suggesting that most present-day Chadic speakers originally spoke languages from the Nilo-Saharan family and
later adopted Afro-Asiatic languages. Nilotic populations from the African Great Lakes largely belonged to this Nilo-Saharan cluster too, but also had some Afro-Asiatic influence due to assimilation of Cushitic groups over the last 3,000 years. Khoisan populations formed their own cluster, which grouped closest with the Pygmy cluster. The Cape Coloured showed assignments from the Khoisan, European and other clusters due to the population's mixed heritage. The Hadza and Sandawe populations formed their own cluster. An Afro-Asiatic cluster was also discerned, with the Afro-Asiatic speakers from North Africa and the Horn of Africa forming a contiguous group. Afro-Asiatic speakers in the Great Lakes region largely belonged to this Afro-Asiatic cluster as well, but also had some Bantu and Nilotic influence due to assimilation of adjacent groups over the last 3,000 years. The remaining inferred ancestral clusters were associated with European, Middle Eastern, Oceanian, Indian, Native American and East Asian populations.[36]

Jinchuan Xing and colleagues used an alternate dataset of human genotypes including HapMap samples and their own samples (296 new individuals from 13 populations), for a total of 40 populations distributed roughly evenly across the Earth's land surface. They found that the alternate sampling reduced the FST estimate of inter-population differences from 0.18 to 0.11, suggesting that the higher number may be an artifact of uneven sampling. They conducted a cluster analysis using the ADMIXTURE program and found that "genetic diversity is distributed in a more clinal pattern when more geographically intermediate populations are sampled."[3]

A study by the HUGO Pan-Asian SNP Consortium in 2009 using the similar principal components analysis found that East Asian and South-East Asian populations clustered together, and suggested a common origin for these populations. At the same time they observed a broad discontinuity between this cluster and South Asia, commenting "most of the Indian populations showed evidence of shared ancestry with European populations". It was noted that "genetic ancestry is strongly correlated with linguistic affiliations as well as geography".[37]

Studies of clustering reopened a debate on the scientific reality of race, or lack thereof. In the late 1990s Harvard evolutionary geneticist Richard Lewontin stated that "no justification can be offered for continuing the biological concept of race. (...) Genetic data shows that no matter how racial groups are defined, two people from the same racial group are about as different from each other as two people from any two different racial groups.[38] This view has been affirmed by numerous authors[15][16][18] and the American Association of Physical Anthropologists since.[10] A.W.F. Edwards as well as Rick Kittles and Jeffrey Long have criticized Lewontin's methodology.[10] Edwards also charged that Lewontin made an "unjustified assault on human classification, which he deplored for social reasons".[39] In their 2015 article, Keith Hunley, Graciela Cabana, and Jeffrey Long recalculate the apportionment of human diversity using a more complex model than Lewontin and his successors. They conclude: "In sum, we concur with Lewontins conclusion that Western-based racial classifications have no taxonomic significance, and we hope that this research, which takes into account our current understanding of the structure of human diversity, places his seminal finding on firmer evolutionary footing."[8]

Genetic clustering studies, and particularly the five-cluster result published by Rosenberg's team in 2002, have been interpreted by journalist Nicholas Wade, evolutionary biologist Armand Marie Leroi, and others as demonstrating the biological reality of race.[40][41][42] For Leroi, "Race is merely a shorthand that enables us to speak sensibly, though with no great precision, about genetic rather than cultural or political differences." He states that, "One could sort the world's population into 10, 100, perhaps 1,000 groups," and describes Europeans, Basques, Andaman Islanders, Ibos, and Castillians each as a "race".[42] In response to Leroi's claims, the Social Science Research Council convened a panel of experts to discuss race and genomics online.[43] In their 2002 and 2005 papers, Rosenberg and colleagues disagree that their data implies the biological reality of race.[25][27] Over one hundred senior population geneticists denounced Wade's book A Troublesome Inheritance for misinterpreting their work.[44][45]

In 2006, Lewontin wrote that any genetic study requires some priori concept of race or ethnicity in order to package human genetic diversity into defined, limited number of biological groupings. Informed by geneticist, zoologists have long discarded the concept of race for dividing up groups of non-human animal populations within a species. Defined on varying criteria, in the same species widely varying number of races could be distinguished. Lewontin notes that genetic testing revealed that "because so many of these races turned out to be based on only one or two genes, two animals born in the same litter could belong to different 'races'".[46]

Studies that seek to find genetic clusters are only as informative as the populations they sample. For example, Risch and Burchard relied on two or three local populations from five continents, which together were supposed to represent the entire human race.[29] Another genetic clustering study used three sub-Saharan population groups to represent Africa; Chinese, Japanese, and Cambodian samples for East Asia; Northern European and Northern Italian samples to represent "Caucasians". Entire regions, subcontinents, and landmasses are left out of many studies. Furthermore, social geographical categories such "East Asia" and "Caucasians" were not defined. "A handful of ethnic groups to symbolize an entire continent mimic a basic tenet of racial thinking: that because races are composed of uniform individuals, anyone can represent the whole group" notes Roberts.[29][47][48]

The model of Big Few fails when including overlooked geographical regions such as India. The 2003 study which examined fifty-eight genetic markers found that Indian populations owe their ancestral lineages to Africa, Central Asia, Europe, and southern China.[49][50] Reardon, from Princeton University, asserts that flawed sampling methods are built into many genetic research projects. The Human Genome Diversity Project (HGDP) relied on samples which were assumed to be geographically separate and isolated.[51] The relatively small sample sizes of indigenous populations for the HGDP do not represent the human species' genetic diversity, nor do they portray migrations and mixing population groups which has been happening since prehistoric times. Geographic areas such as the Balkans, the Middle East, North and East Africa, and Spain are seldom included in genetic studies.[29][52] East and North African indigenous populations, for example, are never selected to represent Africa because they do not fit the profile of "black" Africa. The sampled indigenous populations of the HGDP are assumed to be "pure"; the law professor Roberts claims that "their unusual purity is all the more reason they cannot stand in for all the other populations of the world that marked by intermixture from migration, commerce, and conquest."[29]

King and Motulsky, in a 2002 Science article, states that "While the computer-generated findings from all of these studies offer greater insight into the genetic unity and diversity of the human species, as well as its ancient migratory history, none support dividing the species into discrete, genetically determined racial categories".[53] Cavalli-Sforza asserts that classifying clusters as races would be a "futile exercise" because "every level of clustering would determine a different population and there is no biological reason to prefer a particular one". Bamshad, in 2004 paper published in Nature, asserts that a more accurate study of human genetic variation would use an objecti
ve sampling method. An objective sampling method would chose populations randomly and systematically across the world, including those populations which are characterized by historical intermingling, instead of cherry-picking population samples which fit a priori concept of racial classification. Roberts states that "if research collected DNA samples continuously from region to region throughout the world, they would find it impossible to infer neat boundaries between large geographical groups."[29][54][55][56]

Anthropologists such as C. Loring Brace,[57] philosophers Jonathan Kaplan and Rasmus Winther,[58][58][59][60] and geneticist Joseph Graves,[61] have argued that while there it is certainly possible to find biological and genetic variation that corresponds roughly to the groupings normally defined as "continental races", this is true for almost all geographically distinct populations. The cluster structure of the genetic data is therefore dependent on the initial hypotheses of the researcher and the populations sampled. When one samples continental groups the clusters become continental, if one had chosen other sampling patterns the clustering would be different. Weiss and Fullerton have noted that if one sampled only Icelanders, Mayans and Maoris, three distinct clusters would form and all other populations could be described as being clinally composed of admixtures of Maori, Icelandic and Mayan genetic materials.[62] Kaplan and Winther therefore argue that seen in this way both Lewontin and Edwards are right in their arguments. They conclude that while racial groups are characterized by different allele frequencies, this does not mean that racial classification is a natural taxonomy of the human species, because multiple other genetic patterns can be found in human populations that crosscut racial distinctions. Moreover, the genomic data underdetermines whether one wishes to see subdivisions (i.e., splitters) or a continuum (i.e., lumpers). Under Kaplan and Winther's view, racial groupings are objective social constructions (see Mills 1998 [63]) that have conventional biological reality only insofar as the categories are chosen and constructed for pragmatic scientific reasons.

Genetic clustering was also criticized by Penn State anthropologists Kenneth Weiss and Brian Lambert. They asserted that understanding human population structure in terms of discrete genetic clusters misrepresents the path that produced diverse human populations that diverged from shared ancestors in Africa. Ironically, by ignoring the way population history actually works as one process from a common origin rather than as a string of creation events, structure analysis that seems to present variation in Darwinian evolutionary terms is fundamentally non-Darwinian."[64]

Commercial ancestry testing companies, who use genetic clustering data, have been also heavily criticized. Limitations of genetic clustering are intensified when inferred population structure is applied to individual ancestry. The type of statistical analysis conducted by scientists translates poorly into individual ancestry because they are looking at difference in frequencies, not absolute differences between groups. Commercial genetic genealogy companies are guilty of what Pillar Ossorio calls the "tendency to transform statistical claims into categorical ones".[65] Not just individuals of the same local ethnic group, but two siblings may end up beings as members of different continental groups or "races" depending on the alleles they inherit.[29]

Many commercial companies use data from the International HapMap Project (HapMap)'s initial phrase, where population samples were collected from four ethnic groups in the world: Han Chinese, Japanese, Yoruba Nigerian, and Utah residents of Northern European ancestry. If a person has ancestry from a region where the computer program does not have samples, it will compensate with the closest sample that may have nothing to do with the customer's actual ancestry: "Consider a genetic ancestry testing performed on an individual we will call Joe, whose eight great-grandparents were from southern Europe. The HapMap populations are used as references for testing Joe's genetic ancestry. The HapMap's European samples consist of "northern" Europeans. In regions of Joe's genome that vary between northern and southern Europe (such regions might include the lactase gene), the genetic ancestry test is using the HapMap reference population is likely to incorrectly assign the ancestry of that portion of the genome to a non-European population because that genomic region will appear to be more similar to the HapMap's Yoruba or Han Chinese samples than to Northern European samples.[66] Likewise, a person having Western European and Western African ancestries may have ancestors from Western Europe and West Africa, or instead be assigned to East Africa where various ancestries can be found.[67] "Telling customers that they are a composite of several anthropological groupings reinforces three central myths about race: that there are pure races, that each race contains people who are fundamentally the same and fundamentally different from people in other races, and that races can be biologically demarcated." Many companies base their findings on inadequate and unscientific sampling methods. Researchers have never sampled the world's populations in a systematic and random fashion.[29]

Roberts argues against the use of broad geographical or continental groupings: "molecular geneticists routinely refer to African ancestry as if everyone on the continent is more similar to each other than they are to people of other continents, who may be closer both geographically and genetically.[29]Ethiopians have closer genetic affinity with Armenians than with Bantu populations.[68] Similarly, Somalis are genetically more similar to Gulf Arab populations than to other populations in Africa.[69] Braun and Hammonds (2008) asserts that the misperception of continents as natural population groupings is rooted in the assumption that populations are natural, isolated, and static. Populations came to be seen as "bounded units amenable to scientific sampling, analysis, and classification".[70] Human beings are not naturally organized into definable, genetically cohesive populations.

Software which support genetic clustering calculation.

See the original post:
Human genetic clustering - Wikipedia

Genetically modified food is too advanced for its out-of-date regulations – The Hill (blog)

Last week, the USDA published a series ofquestionsseeking input to establish a National Bioengineered Food Disclosure Standard, as mandated by amendments to the Agricultural Marketing Act of 1946 that went into effect in July 2016.

TheNational Bioengineered Food Disclosure Standard Actrequires the Secretary of the Department of Agriculture to establish disclosure standards for bioengineered food. The Act preempts state-based labeling laws for genetically modified organisms (GMOs), such as those adopted inVermontlast year.

The USDA is considering public input on the disclosure standards untilJuly 17, 2017. Two key issues are under consideration. The first is whether certain genetic modifications should be treated as though they are found in nature for example, a mutation that naturally confers disease resistance in a crop. The second concerns what types of breeding techniques should be classified as conventional breeding among "conventional breeding" techniques are hybridization and the use of chemicals or radiation to introduce random genetic mutations.

These seemingly mundane questions strike at the heart of GMO controversies and implicate the use of breakthrough CRISPR gene editing technologies. Gene editing allows novel and precise genetic modifications to be introduced into crops and animals intended for human consumption. The answers to the USDA's questions are significant because the Disclosure Standard Act exempts from mandatory disclosure genetic modifications obtained without recombinant DNA (rDNA) techniques that can otherwise be found in nature.

However, CRISPR gene editing need not rely on using any foreign DNA and can introduce genetic modifications that mirror those already found in nature. Unlike rDNA and conventional breeding methods, CRISPR technologies introduce genetic changes with far greater accuracy and precision.

In 2016, the USDAdeclined to regulatetwo CRISPR crops a mushroom and a waxy corn under regulations governing traditionalGMOs. But other regulatory agencies, including the FDA and EPA, have not yet made determinations on crops or animals modified with CRISPR technology, and uncertainty looms concerning the regulatory status of this new breed ofGMOs.

Opponents ofGMOs, who commonly argue thatGMOsare harmful to human health, decried the USDA's decision not to regulate CRISPR crops and argued thatpowerful corporations had found ways to circumvent the law through technical loopholes in outdated regulations.

Yet three decades of scientific research suggest that present-dayGMOcontroversies are not grounded in scientific fact. For instance, despite frequent rumors aboutGMO-induced cancers, a scientific consensus has now formed to support the health and environmental safety of genetically modified crops for animal and human consumption. That proposition is supported by investigations of theU.S. National Academies of Science, Engineering, and Medicineas well as scientific panels including the American Association for the Advancement of Science, the American Medical Association, the European Commission, and National Academies of Science in Australia, Brazil, China, France, Germany, India, the United Kingdom, and other countries.

In its rulemaking process, the USDA should rely upon science and facts. With regard to crops and animals with DNA altered through gene editing, rulemakers ought to distinguish among ways that CRISPR technology may be used to edit genes. For instance, CRISPR technology can be used as a DNA construct that is incorporated into the DNA of plant or animal cells, or as a preassembled RNA and protein complex.

How gene editing is carried out matters, because some methods appear to fall within the disclosure requirements while others do not. The law definesbioengineered foodas food that contains genetic material modified through in vitro rDNA techniques. Thus, under the Disclosure Standard Acts statutory constraints, CRISPR food created using DNA constructs that are incorporated into plant or animal cells would likely fall under the mandatory disclosures.

However, food derived from rDNA-free CRISPR gene editing using transient preassembled RNA and protein complexes should be excluded from the bioengineered food definition because such complexes are degraded shortly after gene editing takes place and do not insert themselves into the target organism DNA.

The nuances of ever-evolving biotechnological innovation highlight the complexity of our regulatory system and the need to modernize it. The National Bioengineered Food Disclosure Standard Act is just one of the latest pieces of that regulatory patchwork to emerge. Rules establishing bioengineered food disclosures should be coherent and science-based. Gene editing that uses no foreign DNA, is more precise than conventional breeding methods, and causes genetic modifications already found in nature should not be subject to onerous disclosure standards.

Paul Enrquez is a lawyer and scientist currently doing research in Structural & Molecular Biochemistry at North Carolina State University. His work focuses on the intersection of science and law and has been featured in both legal and scientific journals. He explores rising legal and regulatory issues concerning genome editing in crop production in depth and makes policy recommendations in his recently published article CRISPRGMOs.

The views expressed by contributors are their own and not the views of The Hill.

See more here:
Genetically modified food is too advanced for its out-of-date regulations - The Hill (blog)

The Future Is Here, and Uncomfortably Close to Home – The New York Times

The power of speculative fiction often lies in its ability to make us look at the world around us with fresh eyes. Mundane acts have a way of becoming extraordinarily beautiful when we are faced with the prospect of their vanishing. Here, baseball becomes a site of resistance, an emblem of humanity, an antidote to the automation and artificial intelligence that controls every other aspect of life in AutoAmerica. After all, what would be the point of automating such a thing as nine human players throwing and catching balls to the best of their physical abilities? What significance could there possibly be in a robot pitching a perfect game? We are here, one coach says late in the novel, because we believe anything can happen in a ballgame. You can get a guy and all his stats but give him a stick to swing, and you still dont know what will happen. Its a marvelously refreshing concept in a world that is otherwise dominated by algorithms.

The Resisters is a book that grows directly out of the soil of our current political moment, and much of the books unsettling pleasure lies in Jens ingenious extrapolation (or, in some cases, redescription) of contemporary problems. The book brims with EnforceBots (police robots), ThoughtCommand (next-level voice command), PermaDerms (permanent skin whitening) and SmartGuns. AutoAmerica is a nation shaped by policies like ShipEmBack, a mass deportation of immigrants, and the One Chance Policy, wherein Surplus families are permitted only one pregnancy, no matter the outcome.

Jen has such a gifted ear for the manipulative languages of tech, marketing and government that at times the sheer abundance of clever details threatens to overwhelm the stories of her characters. But perhaps this overabundance is part of the novels method, a way of swallowing the characters and the reader into AutoAmericas reality. The Resisters is aimed at many catastrophes at once: surveillance technology, government overreach, authoritarianism, automation, economic inequality, racism, sexual assault and the institutional mishandling of it, geopolitical conflict and climate change.

The central thread of the book, though, or perhaps the most lingering, is its obsession with the threats of artificial intelligence. The Resisters is full of characters who voluntarily hand over their humanity by agreeing to GenetImprovement or by mindlessly following the orders of Aunt Nettie. In one unnerving section, the narrator recounts the incremental steps that led to this all-encompassing control first, he let Aunt Nettie keep his calendar, then respond to emails on his behalf. (The Resisters might make you stop and actually read your user agreements.)

In the most devastating moment of this ultimately quite tender novel, one characters mind is surgically merged against her will with Aunt Nettie, so that the line between human and internet is no longer clear, even to herself. Crucially, it is other human beings who carry out this dreadful procedure, which suggests that even in a dystopian world dominated by artificial intelligence, people are still the ones who carry out the most atrocious acts.

We live in a moment when The Handmaids Tale is a hit television show, and Kellyanne Conways use of the term alternative facts reminded so many readers of the double talk in George Orwells classic 1984 that the novel hit the best-seller list seven decades after its original publication. The public seems to feel that the worst speculative fictions are coming true. Of course, Margaret Atwood would contend that The Handmaids Tale was true even as it was written. Perhaps Gish Jen could make a similar argument about much of The Resisters. The hope she offers, though, lies in the books title, and in the heroism of its family of Bartlebys, who resist both the lure of conveniences and the threats of the powerful, with one phrase: I would prefer not to.

See the original post here:
The Future Is Here, and Uncomfortably Close to Home - The New York Times

Mapping higher education’s literacies of the future – University World News

GLOBAL

At the same time, the planet continues to become more uncertain as a result of climate change, biodiversity and oceanic degradation, the refugee crisis, extremism and nuclear proliferation, among other global problems.

The growing anxiety associated with the increased and paradoxical juxtaposition of innovation and global problems places greater urgency on educational institutions to become actively involved in addressing these concerns and issues. Although the main purpose of education is to produce learning, higher education also serves several other equally important aims, including the civic or political, economic, social, environmental and personal purposes of education.

This contemporary reality raises serious humanitarian concerns and issues that are best addressed through a lens of human rights and democratic principles. Through this lens, institutions, societies and the planet are best served when leadership and decision-making are based on principles of ethics, inclusion and equity.

Some emerging trends in higher education

One of the best ways to get a grasp of the possible futures of higher education is to examine the emerging trends in higher education. Integrating sustainable development into the curriculum is one of the emerging trends in higher education, even though relatively little research has been conducted on the topic thus far.

Another important emerging trend in higher education is the integration of learning through a more tightly integrated and inclusive curriculum.

The problems currently facing societies and the planet today are of such complexity that they transcend industry and academic discipline boundaries. Pervasive problems such as hunger, homelessness, poverty, un/underemployment, debt and lack of social mobility cannot be solved or mitigated solely with siloed thinking. These problems traverse disciplinary boundaries and therefore require integrated thinking and problem-solving.

Another important emerging trend in higher education is the democratisation of knowledge and learning.

With the development of new ways to provide traditional formal learning (for example, e-learning and hybrid learning) has come the emergence of open education (for instance, MIT OpenCourseWare, a relatively less structured type of formal learning that is open to all) and non-formal learning (such as provided by the Khan Academy).

In addition, the growing importance of continual learning in the lives of people has also sparked other forms of education such as shadow education (for instance, private tutoring).

Results of emerging trends

Not only has lifelong learning become a human right, but it is also looked at by some as a social equaliser. Thus, over the past several decades, higher education has evolved from an elitist model of education to a universal model of education. As the world has become increasingly hyperconnected, so has higher education in many ways.

For instance, today there are many ways to provide learning along the learning spectrum from informal to non-formal to formal learning. In doing so, many types and forms of communities of knowledge now exist, which in turn, have created a more dynamic, diverse and interconnected learning eco-system (that is, knowledge democracy).

The end results of these trends are 1) to democratise knowledge so that it is available to anyone at any time at any place, and 2) to develop a global knowledge society by making learning more meaningful by addressing the needs of individuals, societies and the planet as a whole.

Since education at all levels is the engine that drives the development of humanity, it follows that education policy must be visionary in its policy-making and inclusive in its practices.

A humanistic vision of higher education

These trends have moved the higher education community towards a humanistic vision of higher education. Humanistic education refers to the role of education in addressing the contemporary needs, concerns and problems of humanity.

In humanistic education all three core knowledge domains (the arts, humanities and sciences) are equally important and valuable since each domain serves a different role and purpose in human development.

Humanistic education takes the Humboldtian model of higher education (the integration of teaching, learning and research) and extends it to include service to humanity. Thus, its aim is human capacity building in all areas and at all levels.

In the global higher education community, international organisations such as the United Nations Educational, Scientific and Cultural Organization, the International Association of Universities and the International Higher Education Teaching and Learning Association provide a voice and a medium through which to help achieve this aim. These organisations work with institutions, educators and policy-makers to help higher education move in a positive direction in an often uncertain and chaotic world.

In short, the contemporary vision of humanistic education focuses on the core qualities of all people: agency, dignity and development. As such, it involves the ongoing development of the ideals of rights (human, animal and environment) and democracy (in all its forms).

It also involves all those principles that flow from those ideals inclusion, equity and justice and all those practices that flow from those principles lifelong learning for all, academic freedom, pedagogical pluralism, epistemic diversity and institutional diversification.

This contemporary humanistic vision of higher education can be depicted in the following model:

A humanistic framework (agency, dignity and development), ideals (rights and democracy) principles (equity, inclusion and justice) and practices (lifelong learning for all, academic freedom, pedagogical pluralism, epistemic diversity and institutional diversification).

Higher education at a turning point

Higher education is at a turning point. As such, it must re-examine its position in society as a knowledge producer and re-imagine its role on the planet as a contributor to the common good. For instance, sustainable development has become a top priority in addressing the needs of the planet. Thus, colleges and universities must learn how to integrate sustainable development into the curriculum if they want to remain relevant in the 21st century.

A growing number of educational institutions have initiated community-based learning programmes, such as service-learning a teaching strategy, a learning activity and an educational philosophy that fosters active and engaged learning by integrating experiential learning and student research with classroom learning through community service.

In this way, they aim to promote and facilitate civic engagement, social responsibility and democratic learning. A programme like service-learning can serve as a gateway for colleges and universities to implement more global programmes, such as sustainable development that will help equip students with the new literacies of the future.

Patrick Blessinger is an adjunct associate professor of education at St Johns University, New York City, United States, and chief research scientist for the International Higher Education Teaching and Learning Association or HETL. Enakshi Sengupta is director of the Center for Advanced Research in Education at HETL. Mandla Makhanya is principal, vice-chancellor and professor at the University of South Africa and president of HETL. HETL will explore the issues raised in this article in its upcoming conference, the International Higher Education Teaching and Learning Conference.

Receive UWN's free weekly e-newsletters

See the rest here:
Mapping higher education's literacies of the future - University World News

Meet the Russian geneticist who wants to edit your children – Russia Beyond

CRISPR, a tool used to edit genes, has the power to shape the future of the human genome. The international community is wary of the technology, but a lone Russian scientist says we should already be doing more tests...on human embryos.

Denis Rebrikov would have been following the news with great interest when CRISPR, a method for editing the genes of living organisms, made international headlines last year.

It was reported that a Chinese geneticist named He Jiankui had edited the genomes of twin girls without consulting the global scientific community. Known to the world as Lulu and Nana, the babies had their CCR5 gene altered in the womb in the hope of improving their resistance to HIV. When Hes experiments were made public, the Chinese authorities cracked down on his research, and the resulting international uproar led to further restrictions on human testing using CRISPR.

As it turned out, Rebrikov had already been planning his own tests for quite some time.

A geneticist himself, Rebrikov worked for years in relative obscurity at the Pirogov Russian National Research Medical University that is, until he went public with his intentions last summer to pick up the torch where He left off. When I see a new technology come forward, he says, I want to see how it works and how I can improve it. Where Rebrikovs vision differs from Hes is in whether or not experiments should be conducted openly or not. The Russian scientist believes everything should be done in the public eye, and with the involvement of the state.

Conversations over genome editing are nothing new for Russia. In fact, a public conversation on its national importance has been taking place over the past two years.

A watershed moment came in 2017 when President Vladimir Putin addressed a youth forum in Sochi. In some of his first public comments on the subject, the president described the technologys potential applications, from the medicinal to the military, calling its use (and potential misuse) as fearsome as the atomic bomb. Elsewhere he confirmed it as a technology that will determine the future of the whole world.

Accordingly, Russia has been investing heavily into genetic research. $2 billion was reportedly spent on establishing official research programs in 2017, with an additional $3.3 billion invested this past April. The payoffs when they come will be enormous. Not only may the health of the nation be improved: as with any technology, innovation brings with it a geopolitical edge. Words like biodefense have circulated within the upper echelons of Russian society, and major figures like Mikhail Kovalchuk (director of the Kurchatov Institute, made famous by this years Chernobyl series) have pushed for Russia to become a global leader in genetics.

This kind of environment is encouraging for figures like Rebrikov, who decided to go public in June with his intention to continue working with genes affecting HIV transmission. But there was difficulty in finding parents who were willing to participate in such a study, so Rebrikov changed course and decided to work with genes connected to hearing loss in children. He found five couples who would qualify for the experiment; one of which met with the scientist to discuss potential risks and benefits. The couple as of yet has not decided on whether they want to participate, even in theory.

Rebrikov hadnt gotten as far as He Jiankui before becoming an international sensation, but this was intentional: he may want the scientific community to know there are no secrets in his lab. For him, comparisons to nuclear weapons can be taken in his stride. The situation is completely analogous to developing an atomic bomb, he says. Can bad people use technology for bad purposes? Of course, but did ethical concerns stop the Soviet Union from doing so?

While international the reaction has not been as heated as it was with He, there have been numerous articles published in major journals like Nature and Science demanding that the international community pressure Rebrikov to stop any future applications of the technology. Some have gone as far as to call him rogue.

In contrast with policies in China and the United States, though, Russias response has been more cautiously optimistic. Whereas other global powers have placed effective moratoriums on embryonic genetic editing (with little chance of these policies changing any time soon), an official panel including leading Russian experts met in July to discuss the question. Figures ranging from Kovalchuk to prominent endocrinologist Maria Vorontsova were invited to speak at the gathering.

Human embryo

The scientist also receives support from the Pirogov Institute. Sergey Lukyanov, Rebrikovs colleague and former PhD advisor, says that his intentions are admirable: [He] is one of those people who takes action towards any imperfection of the universe that can, from his point of view, be corrected. For him, this is an opportunity to bring happiness to parents to have healthy children.

Rebrikov is not without his critics, however. Prominent researchers like Pavel Tishchenko, a bioethicist at the Russian Academy of Sciences (RAS) Institute of Philosophy, have called for increased restrictions. Tishchenko organized an ethics panel in October 2019 to review the case and is concerned that parents might not be aware of all the risks involved, or that ethics and regulatory committees might not be as rigorous as necessary.

One of the main questions that needs answering, Tishchenko has said, is who will bear responsibility for possible complications down the line. The edited genes in the Chinese twins might have effects beyond HIV resilience (especially as the CCR5 gene is linked to memory formation), and he claims that todays scientists are not equipped to make the necessary judgment calls.

The Russian Ministry of Health has since come out with an official statement calling genetic experimentation on humans premature. Interesting enough, however, no concrete regulations have been introduced that would definitively prohibit experiments like the ones Rebrikov suggests. Under the current rules, a grey zone exists that may allow for certain experiments depending on whether or not the embryos were created for research purposes or previously discarded, or on whether the experiments are conducted for research purposes or for a clinical trial.

For now, it seems like Rebrikov has put some of his plans on hold. He has said publicly that he will definitely not transfer an edited embryo without the permission of the regulator, but all the same has expressed frustration with the delays. I want the rules to be set, he said, but nobody is doing this. Moreover, the couple which consulted with him has not yet expressed interested in progressing further, and the global attention paid to his research may make any future missteps into a potential international incident.

But temporary setbacks are no guarantee that the status quo is going to last. The current regulatory limbo, despite the rhetoric from Rebrikovs critics, still allows for dramatic steps to be made in the future. And given the potential for genetic engineering to change the world, it may be that Russia may still allow Rebrikov and his team to develop their research further than any other scientist on the planet.

Only time will tell.

If using any of Russia Beyond's content, partly or in full, always provide an active hyperlink to the original material.

') }, error: function() { $email.val(''); alert('An unknown error occurred. Try later.'); } }); } }); }; initFormSubmit(); $completeButton.on('click', function (evt) { evt.preventDefault(); evt.window.location.reload(); }); }());

Follow this link:
Meet the Russian geneticist who wants to edit your children - Russia Beyond

How innovation works: ‘A perfect human being is the danger that genetic manipulation poses’ – Innovation Origins

The days when an inventor sat behind closed doors tinkering with groundbreaking technology are over. Nowadays, scientists from a variety of backgrounds work together to come up with an invention or a product. They also dare to bring it to the market at an ever-increasing rate. By no means are all innovations a success, but one invention is enough to change the world.

Innovation Origins regularly speaks to innovation leaders, trendsetters who are high on the innovation ladder. Steef Blok has the floor today. The director of TU/e Innovation Lab is responsible at Eindhoven University of Technology for valorization. That entails bringing knowledge from the university back to society. He has to deal on a daily basis with technologies that the rest of the world might not become acquainted with until ten years from now. Technology forms the foundation for the growth of prosperity in the Netherlands. Our daily lives are wholly influenced by it, Blok states.

He talks about the impact of technology in the past and its importance for the future: Our ancestors used to spend all day collecting and preparing food. Technology made it possible for food to be produced on a greater scale. As a result, not everyone had to deal with food and people started providing services. This is how the economy as we know it today came into being. Later on, machines began to take over more and more of the heavy work that people had to do, for example on farms. As a result, the economy grew and so did prosperity.

Sticking with that example for a moment, the advent of machines meant that the farms had to continue to grow as well. You cant put a large machine on one hectare of land. More space is needed for that. Besides that, farmers have to produce more in order to recoup the cost of those machines. Thats how mass production came about.

Although Blok believes that this type of mass production is now going to be phased out again with the advent of intelligent systems. We can connect machines through these intelligent systems. This allows us to remotely switch on the heating at home, but it also enables ASMLs machines to communicate with each other. The possibilities are unimaginable. Even for the aforementioned farmers. For example, a Brabant potato farmer flies drones over his land in order to measure the amount of manure and water thats on the land. He only fertilizes the soil that actually needs it. That saves time and money and is also better for the environment. The harvest will be better as a result too.

A potato is still a potato, but this farmer takes care of his land in a tailor-made way. Thanks to smart technologies, the more of the same mentality is a thing of the past. This can have several meanings. As an example, in the future, a machine could make a different product for one customer than for another.

Universities are indispensable when it comes to these kinds of developments. This is where such systems are conceived. Universities are about ten years ahead of the market. But not everything that is designed at a university will survive on the market. Some projects dont even get further developed into a product. If that does happen, it sometimes doesnt yield the results you envisage. Weve come up with inventions that I thought would make the world a better place. And nobody on the market cared.

I heard, for example, that early menopause is one of the main reasons why some women cant have children. Women are already really reduced in their reproductive ability ten years before the onset of menopause. For example, if someone starts menopause prematurely, at around 40 years of age, they would have already had low fertility from the age of 30. The average age at which a woman has a child in The Netherlands is now over 29 years of age. Technology might offer a solution to this problem.

At the university, we designed a diagnostic chip that allows us to detect the gene that can predict a womans early onset of menopause. As a result, women know at an early age whether they will start menopause early, and they can tailor the time when they can begin to have children. The chip costs about 6 million. So it seemed like the ideal solution. Expensive and often unpleasant treatments with hormones and IVF would be used less as a result. But in the end nobody wanted it. Women didnt want to know at all when they were going to go through menopause. Oh well. The world is full of surprises.

Consumers will ultimately use a product. Naturally, they have to want to do that. This is not only true in the field of healthcare, but also in the field of sustainability and circularity. Things are already improving in those areas. For example, we are already using more and more refurbished computers instead of immediately throwing away all our electronics. We are also handling food more carefully. If we dont want to burn waste anymore, but want to re-use everything instead, that should already be taken into account during the production process. In order to achieve this, entire production processes need to change.

Genetic engineering is also one of the topics that we do a lot of research on at the university, but on which public opinion is really divided. Bananas grow in a greenhouse under controlled conditions at the University of Wageningen. This way the plants are no longer affected by disease. This allows for a constant supply of bananas. These plants are genetically manipulated. I wouldnt hesitate for a second to use that on a large scale.

Genetic engineering in humans is also being explored more extensively. Ive worked in the hospital sector. Here Ive seen people suffer from diseases like cancer and Ive seen people die. Suppose theres a child on its way who has a disease or disability. But when you remove one gene, its completely healthy. Id do it. Although genetic manipulation does pose a risk to people. Imagine, for example, that over time youve designed a perfect human being. But thats true for other technologies: Atomic energy isnt bad, but an atomic bomb is. I admit that the engineered human being is a bit scary. But we can t stop technological progress.

Read the rest here:
How innovation works: 'A perfect human being is the danger that genetic manipulation poses' - Innovation Origins

The Most Expensive Materials on Earth – 24/7 Wall St.

On a daily basis, we interact with hundreds or thousands of materials that range in complexity from the water we drink to the OLED screens on our smartphones. The development of new materials can be linked to nearly every major advance in human history, and breakthroughs made by material scientists have profoundly affected our society and daily lives from transportation to how we receive information.

Some of the most expensive materials on this list are naturally occurring, while others, such as two-dimensional materials, have been developed in laboratories and are on the cutting edge of scientific progress.

Human epochs are defined by the materials that enabled advancement, First the Stone Age, then bronze, then iron, then steel, then plastics, and now were firmly in the semiconductor age, said Alex Kozen, an assistant research scientist at the University of Maryland, College Park. I expect the next great advance in materials to be biological materials, where genetic engineering could be used to create organisms that provide better nutrition, grow structural materials and much more.

The following is a list of some of the most expensive materials used today in manufacturing, tech products, research, and other applications. They include precious metals, compounds, rare earth elements, and ultra-thin two-dimensional materials.

Click here to see the most expensive materials on Earth

The cost of different materials is determined by several factors, including supply and demand, mining costs, raw materials costs, how rare or abundant a material is, purity of the material, engineering costs whether it is a complex material to produce among many other factors. The materials on this list are not meant to represent a complete list of every expensive material. The materials on our list were selected in part because they are used commonly in industry and research.

To compile our list, we used various scientific journals, the Defense Logistics Agencys list of Strategic Materials, the USGSs Mineral Commodities Summary 2019, and prices were estimated from various suppliers websites.

See original here:
The Most Expensive Materials on Earth - 24/7 Wall St.

We may need to genetically engineer astronauts to protect them from radiation during long space flights – Genetic Literacy Project

One of the main health concerns with space travelis radiation exposure. If, for example, scientists could figure out a way to make human cells more resilient to the effects of radiation, astronauts could remain healthier for longer durations in space. Theoretically, this type of technology could also be used to combat the effects of radiation on healthy cells during cancer treatments on Earth, [geneticist Chris] Mason noted.

One way that scientists could alter future astronauts is through epigenetic engineering, which essentially means that they would turn on or off the expression of specific genes, Mason explained

Alternatively, and even more strangely, these researchers are exploring how to combine the DNA of other species, namely tardigrades, with human cells to make them more resistant to the harmful effects of spaceflight, like radiation. This wild conceptwas explored in a 2016 paper.

Genetically editing humans for space travel would likely be a part of natural changes to the human physiology that could occur after living on Mars for a number of years, Mason said. Its not if we evolve; its when we evolve, he added.

Read full, original post: Can We Genetically Engineer Humans to Survive Missions to Mars?

Originally posted here:
We may need to genetically engineer astronauts to protect them from radiation during long space flights - Genetic Literacy Project

What Does Every Engineer Want for the Holidays? – Medical Device and Diagnostics Industry

Engineers and scientists are really like most ordinary consumers except in their interest in experiences that deal with great technical achievements, failures and the future technologies that are yet to be. So, rather than a set of catchy products, this list will focus on unique experiences with particular appeal to engineers and scientists.

I. Books

Reading is an experience unlike no other in that it can be done by any literate person at almost any time and in any place. Here is a very short list of science and engineering related books released in 2019:

> Infinite Powers: The Story of Calculus The Language of the Universe, by Steven Strogatz (Atlantic Books)

This is the story of mathematics greatest ever idea: calculus. Without it, there would be no computers, no microwave ovens, no GPS, and no space travel. But before it gave modern man almost infinite powers, calculus was behind centuries of controversy, competition, and even death.

Professor Steven Strogatz charts the development of this seminal achievement from the days of Archimedes to todays breakthroughs in chaos theory and artificial intelligence. Filled with idiosyncratic characters from Pythagoras to Fourier, Infinite Powers is a compelling human drama that reveals the legacy of calculus on nearly every aspect of modern civilization, including science, politics, medicine, philosophy, and much besides.

> Six Impossible Things: The Quanta of Solace and the Mysteries of the Subatomic World, by John Gribbin (Icon Books Ltd.)

Quantum physics is strange. It tells us that a particle can be in two places at once. Indeed, that particle is also a wave, and everything in the quantum world can be described entirely in terms of waves, or entirely in terms of particles, whichever you prefer.

All of this was clear by the end of the 1920s. But to the great distress of many physicists, let alone ordinary mortals, nobody has ever been able to come up with a common sense explanation of what is going on. Physicists have sought quanta of solace in a variety of more or less convincing interpretations. Popular science master John Gribbin takes us on a tour through the big six, from the Copenhagen interpretation via the pilot wave and many worlds approaches.

> Hacking Darwin: Genetic Engineering and the Future of Humanityby Jamie Metzl (Sourcebooks)

At the dawn of the genetics revolution, our DNA is becoming as readable, writable, and hackable as our information technology. But as humanity starts retooling our own genetic code, the choices we make today will be the difference between realizing breathtaking advances in human well-being and descending into a dangerous and potentially deadly genetic arms race.

Enter the laboratories where scientists are turning science fiction into reality. Look towards a future where our deepest beliefs, morals, religions, and politics are challenged like never before and the very essence of what it means to be human is at play. When we can engineer our future children, massively extend our lifespans, build life from scratch, and recreate the plant and animal world, should we?

II. Engineering Coding Boot Camps

All engineers need to stay current in their own discipline as well as learn new skills. What better way to accomplish that goal that with an uber-focused bootcamp.

> Flatiron School

Flatiron School offers on-campus (throughout the US) and online programs in software engineering, data science, and UX/UI Design. The schools immersive courses aim to launch students into careers as software engineers, data scientists, and UX/UI designers through a rigorous curriculum and the support of seasoned instructors and personal career coaches. Through labs and projects, this school teaches students to think and build like software engineers and data scientists. The UX/UI Design includes a client project to give students client-facing experience.

> Hack Reactor

This 12-week immersive coding school provides software engineering education, career placement services, and a network of professional peers. The school has campuses in major US cities as well as an online. During the first six weeks at Hack Reactor, students learn the fundamentals of development, full stack JavaScript and are introduced to developer tools and technologies. In the final six weeks, students work on personal and group projects, using the skills they have learned. After 800+ hours of curriculum, students graduate as full-stack software engineers and JavaScript programmers.

> Codesmith

This program offers a full-time, 12-week full stack software engineering bootcamp in Los Angeles and New York City. Codesmith is a selective program focusing largely on computer science and full-stack JavaScript, with an emphasis on technologies like React, Redux, Node, build tools, Dev Ops and machine learning. This program enables Codesmith students (known as Residents) to build open-source projects, with the aim of moving into positions as skilled software engineers. Codesmith Residents gain a deep understanding of advanced JavaScript practices, fundamental computer science concepts (such as algorithms and data structures), and object-oriented and functional programming. The program helps residents develop strong problem-solving abilities and technical communication skills.

III. Engineer-themed video games

Tired of playing Minecraft, Tetris and other teckie games?Add these new challenges to a virtual stocking stuffers.

> Scrap Mechanic

Scrap Mechanic is a multiplayer sandbox game which drops players right into a world where they literally engineer your own adventures! Players choose from the 100+ building parts at their disposal and create anything from crazy transforming vehicles to a house that moves.

> Automachef

Automachef is an indie puzzle game in which players have to build automatic kitchens for a robotic fast food tycoon who believes he's a human. Sounds good, doesn't it?

> Factorio

Factorio is a game in which you build and maintain factories. Players will mine resources, research technologies, build infrastructures, automate production and fightenemies. Players must use their imagination to design your factory, combine simple elements into ingenious structures, apply management skills to keep it working, and protect it from the creatures who dont like them.

Image Source: Factorio

IV. Engineer-Themed Escape Rooms

An escape room is a game in which a team of players cooperatively discover clues, solve puzzles, and accomplish tasks in one or more rooms in order to progress and accomplish a specific goal in a limited amount of time. The goal is often to escape from the site of the game.

While such escape rooms have become popular in recent years, few tend be filled with puzzles that are based on engineering or science. One that fits the latter categories is calledLabEscape, created by University of Illinois physicist. There are 3 separate missions, each dealing with renowned quantum physicist Professor Schrdenberg. Each mission features a unique set of awesome puzzles and challenges, all designed to amaze, delight, and astound!

Another example is the recently opened Mind-Field Escapes. All Clear is an engineering-focused mission that takes place in a bomb shelter. The scenario is as follows: Its been four years and the shelling has stop. Now its time for the surviors to come out. Unfortunately, someone fed several of the instruction manual to the rats, which means no one really remembers how everything works. All Clear has electrical, mechanical, pneumatic, hydraulics puzzles and more. Its fun for any engineer. Other engineering focused future missions will include Mr Harveys Room and Dr. K. L. Koffs lab.

V. Tours for Engineers

Heres a short list of engineering-related adventures to get off the bucket list.

> Arecibo Observatory

Ever wonder about the radio telescope buried deep in the jungles of Puerto Rico, which has served as a backdrop for TV shows and movies like
the X-Files and James Bond, among others. Then maybe a trip to Arecibo is in order.

> Manhattan Project National Historical Park B Reactor

The B Reactor National Historic Landmark is the world's first full-scale plutonium production reactor and part of the Manhattan Project National Historical Park. Sign up for a tour and learn more about the people, events, science, and engineering that led to the creation of the atomic bombs that helped bring an end to World War II.

> Apollo Mission Control Center

In 2019, NASA finished refurbishing the iconic room where space exploration began. In honor of the 50th anniversary of the Apollo 11 mission to the Moon, the Agency has refurbished the historic mission control center at Johnson Space Center in Houston, where engineers guided astronauts to their one small step.

VI. Movies for the engineer in all of us

Engineers and scientist like a variety of movies and TV shows, especially those that have cool technology or a science fiction theme. Here are three that made the list in 2019.

> Deadly Engineering 2019 edition, Amazon Original

Engineering failures are Icarus-like moments when our overreaching, greed and desire to conquer the impossible can cost not just reputations, but millions of dollars, the environment and lives. Each episode will focus on one disaster, looking at dramatic archive news footage of the disaster occurring and its devastating impact. Check out a few of the recent episode titles: The Chernobyl Conspiracy,NASAs Challenger Disaster, Doom on the Titanic, and Nightmare in Hells Valley.

> Avengers: Endgame

Whether you are a Marvel fan or not, Endgame presents some pretty cool tech from Tony Starks Ironman suit, Antmans quantum adventures to the time-traveling machine.

> The Current War

The Current Waris the latest film to retell the major events of the decade-long battle between Thomas Edison, George Westinghouse and Nikola Tesla to bring electricity to America of the late 1800s. This current retelling focuses on the personality differences between these great inventors and entrepreneurs but includes enough technical bits to ensure the films interest for electrical, mechanical and manufacturing engineers. It is well worth the price of admission.

RELATED ARTICLES:

John Blyler is a Design News senior editor, covering the electronics and advanced manufacturing spaces. With a BS in Engineering Physics and an MS in Electrical Engineering, he has years of hardware-software-network systems experience as an editor and engineer within the advanced manufacturing, IoT and semiconductor industries. John has co-authored books related to system engineering and electronics for IEEE, Wiley, and Elsevier.

See more here:
What Does Every Engineer Want for the Holidays? - Medical Device and Diagnostics Industry

Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease – The San Diego Union-Tribune

Aspen Neuroscience, a new San Diego biotech company working on stem cell treatment for Parkinsons disease, has come out of stealth mode and raised $6.5 million to pursue clinical testing for its therapy.

Co-founded by well-known stem cell scientist Jeanne Loring, Aspen Neuroscience proposes creating stem cells from modified skin cells of Parkinsons patents via genetic engineering.

The stem cells, which can become any type of cell in the body, then would undergo a process that makes them specialize into dopamine-releasing neurons.

People with Parkinsons lose a large number up to 50 percent at diagnosis of specific brain cells that make the chemical dopamine.

Without dopamine, nerve cells cannot communicate with muscles and people are left with debilitating motor problems.

Once these modified skin cells have been engineered to specialize in producing dopamine, they can be transplanted into the Parkinsons patient to restore the types of neurons lost to the disease.

The reason we called it Aspen is because l was raised in the Rocky Mountain states, said Loring. When there is a forest fire in the Rockies, the evergreens are wiped out but the aspens are the fist that regenerate after the burn. So it is a metaphor for regeneration.

Aspen still has a long way to go before its proposed therapy would be available to Parkinsons patients. It has been meeting with the U.S. Food and Drug Administration to provide animal trial data and other information in hopes of getting permission to start human clinical trials.

But the company expects the earliest it would get the go-ahead from FDA to start human trials would be 2021.

Loring has been working on the therapy for eight years. She is professor emeritus and founding director of the Center for Regenerative Medicine at the Scripps Research Institute.

Loring co-founded the 20-employee company with Andres Bratt-Leal, a former post-doctoral researcher in Lorings lab at Scripps.

Joining them as Aspens Chief Executive is Dr. Howard Federoff, former vice chancellor for health affairs and chief executive of the University of California Irvine Health System.

Federoff said the company is the only one pursuing the use of Parkinsons patients own cells as part of neuron replacement therapy.

Aspens proprietary approach does not require the use of immuno-suppression drugs, which can be given when transplanted cells come from another person and perhaps limit the effectiveness of the treatment.

Aspens approach is a therapy that is likely to benefit from the fact that your own cells know how to make the best connections with their own target cells in the brain, even in the setting of Parkinsons disease, said Federoff. So when transplanted it is able to set back the clock on Parkinsons.

In addition to Aspens main therapy, it is researching a gene-editing treatment for forms of Parkinsons common in certain families.

Aspens research work up to now has been supported by Summit for Stem Cell, a non-profit on which provides a variety of services for people with Parkinsons disease.

The new seed funding round was led by Domain Associates and Axon Ventures, with additional participation from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32.

Aspens financial backing, combined with its experienced and proven leadership team, positions it well for future success, said Kim Kamdar, a partner at Domain Associates. Domain prides itself on investing in companies that can translate scientific research into innovative medicines and therapies that make a difference in peoples lives. We clearly see Aspen as fitting into that category, as it is the only company using a patients own cells for replacement therapy in Parkinsons disease.

More:
Aspen Neuroscience gets funding to pursue personalized cell therapy for Parkinsons disease - The San Diego Union-Tribune

CSU ground zero this week for biodefense meeting on threats to livestock, crops and human life – The Denver Channel

FORT COLLINS, Colo. -- China is in the midst of one of the largest outbreaks of pork disease in history, more than half-a-million pigs wiped off the map by a swine fever so insidious it's been likened to Ebola.

May would be quick to look at something like this and say "that's terrible, but it's not like it's going to happen here in the U.S., certainly not Colorado."

But, experts insist that not only is it possible, it could one day be intentional.

There are terrorists who online are looking for biological weapons," said Asha George, executive director of the U.S. Commission on Biodefense.

Thats why George and others with the Bipartisan Commission on Biodefense are visiting Colorado State University in Fort Collins this week. They say theres a real threat that it could easily happen here.

"Right now, we have an African swine flu problem in China that really isn't getting the attention it deserves, said former U.S. Senator Tom Daschle, who sits on the commission. But, it could easily spread to American livestock, as well."

The bi-partisan commission says it goes beyond naturally-occurring outbreaks. There are intentional threats, as well.

"The state department suspects countries like Russia, China, Iraq, Iran, North Korea and even Syria - what theyre trying to do is pursue an advantage using asymmetric warfare," George said.

And terrorist groups possibly pose the most imminent threat.

"Its not difficult to contemplate a situation where instead of airplanes into buildings it's pathogens against humans, pathogens against livestock or crops, said Ken Wainstein, former homeland security advisor and commission member. And it could have a devastating impact."

The commission says the impact to human life and the economy would be catastrophic.

"And because things move around this planet so quickly, we can have a very serious threat at our doors within 24 hours," said Alan Rudolph, vice president of research at Colorado State University.

The decision to hold the forum at CSU was no coincidence. U.S. leaders say the university is leading the charge in biodefense.

"This and Kansas State University are the only two places weve held these discussions, Daschle said. This is where people and resources and real focus and priority lies."

The team says the U.S. must develop real countermeasures like antibiotics and vaccines to isolate threats that could cause incalculable destruction.

"In the absence of those countermeasures, we're screwed," George said.

"Were here sounding the alarm that maybe in the past and present, we're not taking the biothreat seriously enough," Wainstein said.

The commission started as a blue-ribbon study panel and eventually evolved. It delivered its first report to Congress in November 2015 and continues to make strides in biodefense.

As for whats happening in China, George said the economic impact is global. "Sixty percent of all the pigs are either already infected or they're just killing them," she said. Thats a huge, huge hit.

The U.S. battled an Avian influenza outbreak in chickens and poultry a few years ago.

When you start adding things like synthetic biology and genetic engineering, suddenly we have this massive problem that we need to deal with," George said. We cant ignore outbreaks and epidemics until they end up here and then suddenly everybody's freaking out.

The biological threat against this nation is real, Wainstein said. It's real as it relates to humans, as it relates to animals and as it relates to crops.

The commission says bringing the conversation to universities like CSU helps to open-up the conversation, spark new ideas on how to prevent bio-threats and helps the nation understand what they're role we each play.

Colorado State is right in the middle for good planning for that experience, Daschle said. With the resources and leadership to understand and study animal health.

The threat is exacerbated by lack of good countermeasures like antibiotics and their overuse that has resulted in bacteria becoming immune or resistant, Rudolph said. And these universities are now essentially ecosystems of innovation.

See the article here:
CSU ground zero this week for biodefense meeting on threats to livestock, crops and human life - The Denver Channel

Global $71Bn Vaccines Market Review 2016-2019 and Forecast to 2026 – ResearchAndMarkets.com – Business Wire

DUBLIN--(BUSINESS WIRE)--The "Global Vaccines Market Analysis 2019" report has been added to ResearchAndMarkets.com's offering.

The Global Vaccines market is expected to reach $71.04 billion by 2026 growing at a CAGR of 8.7% from 2018 to 2026.

Factors such as rise in prevalence of diseases, increasing government initiatives towards immunization and increasing number of prospects from the developing economies are driving the market growth. Though, high cost of development and complexities related to manufacturing are projected to inhibit the growth of the market. Moreover, high growth prospects in emerging markets may provide ample opportunities for the market growth.

By technology, recombinant vaccines segment acquired significant growth in the market owing to less side-effect of these vaccines in comparison to conventional ones. They are largely used in animals for prevention of diseases such as pneumonia, foot and mouth disease, septicaemia and pox disease that will further support the business growth. Developments in the field of molecular biology and genetic engineering will positively impact the growth of market.

The key vendors mentioned are Emergent Biosolutions, Glaxosmithkline, Pfizer, Sanofi Pasteur, Merck, Medimmune, LLC (A Subsidiary of Astrazeneca), CSL Limited, Serum Institute of India, Johnson & Johnson, Mitsubishi Tanabe Pharma Corporation, Astellas Pharma, Panacea Biotec, Bavarian Nordic, Biological E and Daiichi Sankyo Company.

Key Questions Answered in this Report

Key Topics Covered

1 Market Synopsis

2 Research Outline

3 Market Dynamics

3.1 Drivers

3.2 Restraints

4 Market Environment

5 Global Vaccines Market, By Patient Type

5.1 Introduction

5.2 Pediatric Patients

5.3 Adult Patients

6 Global Vaccines Market, By Type

6.1 Introduction

6.2 Monovalent Vaccines

6.3 Multivalent Vaccines

7 Global Vaccines Market, By Route of Administration

7.1 Introduction

7.2 Oral Administration

7.3 Intramuscular and Subcutaneous Administration

7.4 Injectable

7.5 Other Routes of Administration

8 Global Vaccines Market, By Indication

8.1 Introduction

8.2 Foot and Mouth Disease

8.3 Respiratory Syncytial Virus (RSV)

8.4 Cancer

8.5 Cholera

8.6 Human Papilloma Virus (HPV)

8.7 Influenza

8.8 Diphtheria, Pertussis, and Tetanus (DPT)

8.9 Meningococcal Disease

8.10 Hepatitis

8.11 Varicella

8.12 Herpes Zoster

8.13 Measles, Mumps, and Rubella (MMR)

8.14 Dengue

8.15 Rotavirus

8.16 Pneumococcal Disease

8.17 Polio

8.18 Disease

9 Global Vaccines Market, By Technology

9.1 Introduction

9.2 Attenuated Vaccines

9.3 Recombinant Vaccines

9.4 Inactivated & Subunit Vaccines

9.5 Toxoid Vaccines

9.6 Live Attenuated Vaccines

9.7 Conjugate Vaccines

10 Global Vaccines Market, By Distribution Channel

10.1 Introduction

10.2 Retail Pharmacies

10.3 Institutional Sale

10.4 Hospital Pharmacies

11 Global Vaccines Market, By End User

11.1 Introduction

11.2 Pediatric Vaccines

11.3 Traveler Vaccines

11.4 Adult Vaccines

10 Global Vaccines Market, By Geography

10.1 Introduction

10.2 North America

10.3 Europe

10.4 Asia Pacific

10.5 South America

10.6 Middle East & Africa

11 Strategic Benchmarking

12 Vendors Landscape

12.1 Emergent Biosolutions

12.2 Glaxosmithkline

12.3 Pfizer

12.4 Sanofi Pasteur

12.5 Merck

12.6 Medimmune, LLC (A Subsidiary of Astrazeneca)

12.7 CSL Limited

12.8 Serum Institute of India

12.9 Johnson & Johnson

12.10 Mitsubishi Tanabe Pharma Corporation

12.11 Astellas Pharma

12.12 Panacea Biotec

12.13 Bavarian Nordic

12.14 Biological E

12.15 Daiichi Sankyo Company

For more information about this report visit https://www.researchandmarkets.com/r/y1y6vk

See the article here:
Global $71Bn Vaccines Market Review 2016-2019 and Forecast to 2026 - ResearchAndMarkets.com - Business Wire

Its Bong Joon Hos Dystopia. We Just Live in It. – The New York Times

Its so metaphorical! Kim Ki-woo exclaims early in Parasite, Bong Joon Hos new film. Ki-woo is the college-aged son of one of the two families the impoverished Kims and the wealthy Parks whose fates entwine with horrible and hilarious results. He uses the phrase a few times, most notably with reference to the large, decorative landscape rock that is a gift from a better-off friend. In the interpretation of Parasite that emphasizes the movies fairy-tale aspects, the stone brings good fortune to Ki-woo, his sister and their parents, even as, like so many magical objects, it also curses them. (Spoilers follow, for Parasite and other Bong movies.)

Before long, Ki-woo stops talking about metaphors. Maybe because things start getting real. He takes a job tutoring the Parks teenage daughter, Da-hye, and pretty soon his whole family is employed, under dubious premises and fake identities, in the Park household. His sister, pretending to be a highly trained art therapist, starts working with Da-hyes younger brother, Da-song. The Kim patriarch, Ki-taek, replaces the chauffeur who drives Mr. Park to and from his fancy tech job. Kim Chung-sook, the mother of the clan (a former Olympic-level hammer-thrower), takes over as housekeeper.

Or maybe and it might amount to the same thing the Kims reality has turned into an unsettling allegory of modern life, and Ki-woo doesnt see metaphors in the way that a fish doesnt notice water. What started out as a clever scam has turned into a fable.

In South Korea, where Parasite is already a blockbuster (having taken in more than $70 million at the box office), it has contributed to that countrys continuing debate about economic inequality. In the United States, where similar arguments are swirling, it has begun to turn Bong from an auteur with a passionate cult following into a top-tier international filmmaker. Fifty years old, with seven features to his name most of them available on North American streaming platforms he combines showmanship with social awareness in a way that re-energizes the faded but nonetheless durable democratic promise of movies.

The cramped, leaky semi-basement apartment the Kims call home is a metaphor of sorts, and so is the spacious, modern, architecturally significant mansion where they work. The Park home in particular comes with built-in symbols, including a deep subbasement where inconvenient secrets can be stashed away, like dead bodies or hidden meanings in an Edgar Allan Poe story. And Parasite, which won the top prize in Cannes in May and has recently become the rare subtitled release to be mentioned as an Oscar contender beyond the foreign film category, plays out like a parable of contemporary social relations. Its part horror film, part satire and part tragedy, conveying a sharp lesson about class struggle in South Korea and just about everywhere else.

But the houses in the film like every office, alley, field, railroad car and precinct house in Bongs expanding cinematic universe are also actual physical places. And their inhabitants are anything but symbols or ciphers. Bong likes to choreograph wildly improbable chases and fights, but he doesnt cheat at physics. A reason for the frequent comparisons to Alfred Hitchcock and Steven Spielberg is the ruthless precision of his technique. But for all his love of whimsy and absurdity, he doesnt play games with human psychology. The actions and reactions in his movies are often surprising, but they are never nonsensical. His characters have gravity, density, grace and a decent share of stupidity.

To call Bong a realist, though, would be crazy. The movie of his that first caught the attention of genre geeks on a global scale was his third feature, The Host (released here in 2007), about a giant, carnivorous mutant fish spreading terror along the Han River in Seoul. In 2014 came Snowpiercer (based on a French graphic novel), which confirmed Bongs status as an international action auteur. A gaggle of movie stars from Hollywood and beyond (including Chris Evans, Tilda Swinton and Song Kang Ho, the solid South Korean Everyman who has appeared in four of Bongs movies and who plays the Kim patriarch in Parasite) were packed into a high-speed train zooming around an apocalyptically frozen earth. The passengers were sorted into haves and have-nots, rebels and sellouts, and their struggles were both surprising and grimly familiar.

That was followed by Okja (2017), an antic updating of the basic Charlottes Web material (a young farm girl fights to save the life of her beloved piglet) for an age of genetic engineering, mass media and multinational capitalism. Swinton returned, playing twin moguls, but the real stars were Ahn Seo Hyun, as the young girl, and the digitally rendered shoat whose soul was at stake in the hectic battles among scientists, executives, animal-rights activists and other motley human specimens.

In obvious ways, Parasite is more realistic than those films. It returns Bong to the workaday Korean settings of his first two features, the grotesque comedy Barking Dogs Never Bite and the detective drama Memories of Murder, and also of Mother, his masterpiece (released here in 2010) about a woman whose mentally challenged adult son is accused of killing a schoolgirl. Parasite is more noir than science fiction, farcical until it turns melodramatic.

But to sort Bongs work by genre or style is to miss both its originality and consistency. His movies are bold and bright, infused with rich colors and emphatic performances. They are funny, suspenseful and punctuated by kinetic sequences that can make even jaded multiplex-potatoes sit up and gasp. There are at least a half-dozen such moments in Parasite, perhaps the most thrilling of which involves three people hiding under a living-room coffee table while another camps out in a tent in the backyard.

At the same time, his movies are dark and subtle, burrowing deep into sticky ethical problems and hot zones of social dysfunction. You could say that he uses blockbuster means to advance art-house ends. You could also say the opposite. His real achievement, though, is to scramble such facile distinctions, and a host of others as well.

His stories are often tragic, but the mood tends to be more exuberant than somber, an emotional effect that can be hard to describe. The full awfulness of human beings and their circumstances is on vivid display: venality, vanity, deception and outright cruelty. But the aim isnt mockery or glib sensationalism, or the routine fusion of the laughable and the grotesque that has been a staple of Hollywood cool since the mid-1990s. The most shocking thing about Bongs films might be their sincerity, the warm humanism that flickers through the chronicles of spite, sloth and self-delusion.

The flickers are sometimes faint. In Bongs debut feature, Barking Dogs Never Bite (2000), the humanism is all but buried in a gruesome, urban-legend-inflected conceit. A beleaguered graduate student, desperate to become a professor an advancement that depends on his ability to come up with a large bribe for a senior figure in his field is tormented by the barking of a neighbors dog. Since he lives in a vast, impersonal apartment block (the first of Bongs metaphorical architectural spaces), he cant identify the offending creature. The wrong dog ends up dying, more than once, and being eaten by a janitor with a taste for stewed canine flesh. Meanwhile the students marriage starts to crumble.

A measure of redemption or at least a twinkle of mischief, innocence and decency arrives via a subplot concerning a young woman in the building, and her friend, who works in a convenience store. They represent archetypal Bong characters: socially marginal, loyal to each other, but not necessarily heroic or noble by virtue of their poverty. Bongs sense of class solidarity, which threads through every one of his movies, doesnt involve romanticizing the people on the losing end of an increasingly ruthless economic competition.

The Kims in Parasite arent necessarily nicer
, more loving or more honest than the bourgeois Parks. The small-town police officers in Memories of Murder are hardly pillars of virtue. The snack vendor played by Song in The Host, who enlists his father and his siblings in a valiant crusade to save his daughter from the monster, is a bit of an oaf. The mother in Mother, who sells herbs and practices acupuncture without a license, pushes maternal devotion to the point of homicide.

To sentimentalize or idealize any of these people would not only be a form of condescension. It would strip their stories of dramatic and moral interest, making them less disturbing, and also a lot less fun. The pleasure and the discomfort cant be separated. We are watching players compete in a rigged game with potentially mortal stakes and unreliable referees. Institutions schools, companies, governments are comically and also lethally useless. There is no legitimate authority, only raw power. Family connections are the only bonds that count, but families are a mess. The only answer is a kind of wily resourcefulness, an on-the-fly problem-solving knack that can deliver at best small, local victories. That those can be satisfying is a tribute to Bongs own wily resourcefulness and also to his radical compassion.

What makes Parasite the movie of the year what might make Bong the filmmaker of the century is the way it succeeds in being at once fantastical and true to life, intensely metaphorical and devastatingly concrete.

There doesnt seem to be much distance, in other words, between the dire futures projected in Snowpiercer and Okja nightmares of technology and greed run amok and the class-specific domestic spaces of Parasite, Mother and Memories of Murder. A much-remarked-on feature of human existence at the moment is how dystopian it feels, as some of the most extreme and alarming fantasies of fiction reappear as newsfeed banalities. Fires and hurricanes feel less like symbols than signals, evidence of a disaster thats already here rather than omens of impending catastrophe. Monsters walk among us. Corruption is normal. Trust, outside a narrow circle of friends or kin, is unthinkable. Whether we know it or not, its Bongs world were living in. Literally.

Parasite: In theaters now.

Okja: Stream it on Netflix.

Snowpiercer: Stream it on Netflix; buy or rent it on iTunes, Vudu, Amazon and YouTube.

Mother: Buy or rent it on iTunes, Amazon and Vudu.

The Host: Buy or rent it on iTunes, Vudu and YouTube.

Memories of Murder: Buy or rent it on iTunes and YouTube.

Barking Dogs Never Bite: Buy or rent it on iTunes.

Top Art: Associated Press (Bong); Magnolia Pictures (Mother); Netflix (Okja); Radius-TWC (Snowpiercer); CJ ENM Corporation, Barunson E&A and Neon (Parasite)

Read the original post:
Its Bong Joon Hos Dystopia. We Just Live in It. - The New York Times

Human Genetic Engineering Cons

Many Human Genetic Engineering Cons are there that can stop a person from getting through the entire gene therapy. It is a process in which there is a modification or change in the genes of a human. The aim or objective of using Human Genetic Engineering is to choose newborn phenotype or to change or alter the existing phenotype of an adult or an already grown child. Human Genetic Engineering has shown a lot of promise for curing cystic fibrosis. It is a kind of genetic disease that exist in humans. It will increase the level of immunity in people. Increased immunity will make them resistant to several severe diseases.

There is also a speculation that Human Genetic Engineering can be used in other area of work. It can be used for making changes in the physical appearances. Metabolism may notice some improvements. Human Genetic Engineering Cons can be seen on the mental abilities of a human.

However, it can make certain improvements in the intelligence level. Human Genetic Engineering has made a lot of contributions in the field of advanced medical sciences. There is not much data about Human Genetic Engineering Cons . One can easily think of it as a successful invention in the field of medical science.

Gene therapy can be used for curing several deadly diseases. Many diseases are there that have no cure, so this is a helpful invention in this field. It can lead to various health benefits. Genetic engineering can also lead to population free from any diseases. However, some Human Genetic Engineering Cons are also there that can trouble human beings.

This is because of the complications involved in human genes. A person has multiple physical attributes that differ from each other, so chances are there that these attributes get controlled by only one gene sequence. This helps the scientists to make changes or alteration in only one gene at a time and the remaining multiple sequences of genes will automatically be altered.

Scientists involved in this alteration process also noticed that whenever a DNA strand gets a new gene, then it becomes difficult for the DNA strand to make a decision about where the new gene will be settled. It is one of the factors that contribute to Human Genetic Engineering Cons. With the help of genetic engineering scientists will find no difficulty at the time of altering a part of DNA in a human. This will keep them resistant or away from any genetic disease or effects. These effects might be there on the reproductive cells of a person.

For an instance, it these reproductive cells are there on parents that their children will automatically acquire the effects of genetics. Such Human Genetic Engineering Cons can cause few genetic diseases on humans. Chances of errors are always there in making use of genetic engineering for human cloning, agriculture, and in any other related field. Entire human generation can lead to mutation if these Human Genetic Engineering Cons do get removed at their earliest.

Human Genetic Engineering Cons

1.39 (27.87%) 6001 votes

See more here:
Human Genetic Engineering Cons

We Need to Talk About Genetic Engineering | commentary – Commentary Magazine

What began as a broad-based and occasionally sympathetic conduit for anti-Trump activists has evolved into a platform for the maladjusted to receive unhealthy levels of public scrutiny. The cycle has become a depressingly familiar. A relatively obscure member of the political class achieves viral notoriety and becomes a figure of cult-like popularity with some uncompromising display of opposition toward the president only to humiliate themselves and their followers in short order.

Democratic Rep. Maxine Waters is not the first to be feted by liberals as the embodiment of noble opposition to authoritarianism. In May, the Center for American Progress blog dubbed her the patron saint of resistance politics. Left-leaning viral-politics websites now routinely praise Waters as a Trump-bashing resistance leader, the Democratic rock star of 2017, and an all-around badass for her unflagging commitment to trashing the president as a crooked and racist liar, the Daily Beast observed. Waters was even honored by an audience of tweens and entertainers at this years MTV Movie Awards. Even a modestly curious review of Waters record would have led more cautious political actors to keep their distance. Time bombs have a habit of going off.

Zero hour arrived late Friday evening when Waters broke the news of a forthcoming putsch. Mike Pence is somewhere planning an inauguration, the congresswoman from California wrote. Priebus and Spicer will lead the transition. That sounds crazy, but its a familiar kind of crazy.

Anyone who has followed the congresswomans career knows she has a history of making inflammatory assertions for the benefit of her audience. It only takes a cursory google search to discover that, in her decade in politics, Citizens for Responsibility and Ethics in Washington (CREW) has named her the most corrupt member of Congress four times and the misconduct of her chief of staff ensnared her in a House Ethics Committee probe. The Resistance is willing to overlook a plethora of flaws and misdeeds as long as their prior assumptions are validated.

This is not the first time its own heroes have undercut The Resistance.

National Reviews Charles C. W. Cooke recently demonstrated why Louise Mensch, formerly a prominent poster child for The Resistance, has a habit of seeing Russians behind every darkened corner. They are responsible for riots in Missouri, Democratic losses at the polls, and Anthony Weiners libido. In Menschs imagination, a secret Republican Guard is mere moments away from dispatching this administration amid some species of constitutional coup. Cooke also noted that Mensch was elevated to unearned status as a celebrity of the Resistance by the anti-Trump commentary class desperate for what she was selling.

Menschs star has faded, but not before she managed to embarrass those who invested confidence in her sources. Those who embraced her should have been more cautious in the process. Menschs British compatriots long ago caught onto her habit of lashing out at phantoms. A prudent political class would have given her a wide berth.

25-year-old Teen Vogue columnist Lauren Duca became a sensation last December when her article accusing the president of gas lighting the nation went viral. She was festooned with praise for her work from forlorn Democratsculminating in a letter of praise from Hillary Clintonand soon found herself the subject of fawning New York Times profiles and delivering college commencement addresses without any apparent effort to vet her work.

Duca, too, became a source of bias-confirming misinformation for the left. Cute pic of Trump getting tired of winning, she tweeted with the image of an airplane going down in flames. The tweet was quickly deleted, but not before it provided a means by which the pro-Trump right could credibly undermine her integrity.

Attributable only to a plague mass hysteria, liberal Trump opponents collectively determined last December that a paranoid, 127-tweet rant was a work of unpatrolled genius. That diatribe was the work of Eric Garland, a self-described D.C. technocrat based in Missouri whos now infamous game theory polemic was an example of what he calls his spastic historical and political narratives.

Journalists and political activists who surveyed his work declared it not just compelling anti-Trump prose but near historic in its brilliance. It was anything but. Laced with profanity, exaggerated misspellings to caricature his political opponents, and an offensively indiscreet application of the caps lock, Garland threaded 9/11, Al Gore, Hurricane Katrina, Edward Snowden, and Fox News to tell the tale of how Americas sovereignty was repeatedly violated. The Resistance abandoned its better judgment.

It wasnt long before Garland had humiliated anyone who ever treated him as a credible political observer. Rupert Murdoch is a threat to Western Civilization and a Russian operative, he wrote. I WONT BE THE FIRST GARLAND OF MY LINE TO SPILL BLOOD FOR AMERICA AND THE RIGHT SIDE OF HISTORY AND NEVER THE LAST, YOU F***ERS. This kind of hyperventilating excess came as no surprise to anyone who didnt read his manic thread through tears as they struggled to come to terms with the age of Trump.

If Democrats hope to strike a favorable contrast with a lackadaisical White House, theyre not well served by surrounding themselves with reckless people. Too often, the faces of The Resistance wither in the spotlight. A serious movement attracts serious opposition. A frivolous, self-gratifying movement, well, doesnt.

Visit link:
We Need to Talk About Genetic Engineering | commentary - Commentary Magazine