The American Chestnut’s Genetic Rebirth

See Inside

A foreign fungus nearly wiped out North America's once vast chestnut forests. Genetic engineering can revive them

In 1876 Samuel B. Parsons received a shipment of chestnut seeds from Japan and decided to grow and sell the trees to orchards. Unbeknownst to him, his shipment likely harbored a stowaway that caused one of the greatest ecological disasters ever to befall eastern North America. The trees probably concealed spores of a pathogenic fungus, Cryphonectria parasitica, to which Asian chestnut treesbut not their American cousinshad evolved resistance. C. parasitica effectively strangles a susceptible tree to death by forming cankerssunken areas of dead plant tissuein its bark that encircle the trunk and cut off the flow of water and nutrients between the roots and leaves. Within 50 years this one fungus killed more than three billion American chestnut trees.

Before the early 1900s the American chestnut constituted about 25 percent of hardwood trees within its range in the eastern deciduous forests of the U.S. and a sliver of Canadadeciduous forests being those composed mostly of trees that shed their leaves in the autumn. Today only a handful of fully grown chestnuts remain, along with millions of root stumps. Now and then these living stumps manage to send up a few nubile shoots that may survive for 10 years or longer. But the trees rarely live long enough to produce seeds because the fungus almost always beats them back down again.

2014 Scientific American, a Division of Nature America, Inc.

View Mobile Site All Rights Reserved.

Give a 1 year subscription as low as $14.99

Subscribe Now >>

Continue reading here:
The American Chestnut's Genetic Rebirth

The American Chestnut's Genetic Rebirth

See Inside

A foreign fungus nearly wiped out North America's once vast chestnut forests. Genetic engineering can revive them

In 1876 Samuel B. Parsons received a shipment of chestnut seeds from Japan and decided to grow and sell the trees to orchards. Unbeknownst to him, his shipment likely harbored a stowaway that caused one of the greatest ecological disasters ever to befall eastern North America. The trees probably concealed spores of a pathogenic fungus, Cryphonectria parasitica, to which Asian chestnut treesbut not their American cousinshad evolved resistance. C. parasitica effectively strangles a susceptible tree to death by forming cankerssunken areas of dead plant tissuein its bark that encircle the trunk and cut off the flow of water and nutrients between the roots and leaves. Within 50 years this one fungus killed more than three billion American chestnut trees.

Before the early 1900s the American chestnut constituted about 25 percent of hardwood trees within its range in the eastern deciduous forests of the U.S. and a sliver of Canadadeciduous forests being those composed mostly of trees that shed their leaves in the autumn. Today only a handful of fully grown chestnuts remain, along with millions of root stumps. Now and then these living stumps manage to send up a few nubile shoots that may survive for 10 years or longer. But the trees rarely live long enough to produce seeds because the fungus almost always beats them back down again.

2014 Scientific American, a Division of Nature America, Inc.

View Mobile Site All Rights Reserved.

Give a 1 year subscription as low as $14.99

Subscribe Now >>

Originally posted here:

The American Chestnut's Genetic Rebirth

Rose scent in poplar trees? University turns to genetic engineering

WSU staff scientist Barri Herman, who oversees the field trials, holds a tray of genetically engineered poplar cuttings, Jan. 13, 2014. (Greg Gilbert/Seattle Times/MCT)

Under USDA regulations, every genetically engineered tree is tagged and its GPS coordinates noted, as seen, Jan. 13, 2014, in Washington State. (Greg Gilbert/Seattle Times/MCT)

SEATTLE _ Sniff the air around Norman Lewis' experimental poplars, and you won't pick up the scent of roses.

But inside the saplings' leaves and stems, cells are hard at work producing the chemical called 2-phenylethanol _ which by any other name would smell as sweet.

Sweeter still is the fact that perfume and cosmetics companies will pay as much as $30 an ounce for the compound that gives roses their characteristic aroma. Because what Lewis and his colleagues at Washington State University are really chasing is the smell of money.

Born out of the frustrating quest to wring biofuels from woody plants, the WSU project takes a different tack. Instead of grinding up trees to produce commercial quantities of so-called cellulosic ethanol, their goal is to turn poplars into living factories that churn out modest levels of chemicals with premium price tags.

The potential market for specialty chemicals _ many of which are now synthesized from petroleum _ is big, said Lewis, director of WSU's Institute of Biological Chemistry. He's already patented some of the technology, which relies on genetic engineering, and created a spinoff company called Elasid.

In the longer term, the profits from high-end products could boost the struggling biofuel industry by helping companies survive what's called the "valley of death" _ the point where firms need to scale up production, but money is hard to come by.

The ideal operation would combine the two product lines, extracting valuable chemicals and using the waste for biofuel. But that's a long way off, Lewis said.

"Biofuels don't provide a compelling economic case at this point in time," he said. "We've been trying for many decades to understand how plants make these special chemicals that can be used in flavorings, fuels and medicinals, and that seemed like the obvious first place to target."

See original here:

Rose scent in poplar trees? University turns to genetic engineering

Ghanas GMO debates: beyond the sticking points (3)

Feature Article of Monday, 17 February 2014

Columnist: Agorsor, Yafetto, Otwe, Galyuon

Israel D. K. Agorsor, Levi Yafetto, Emmanuel P. Otwe and Isaac K. A. Galyuon This is the concluding part of the articles Ghanas GMO debates: beyond the sticking points (1) & (2)

6. Interfering in Nature As we indicated in the first part of this article, one of the moral arguments against GMOs is that the processes leading to them, that is, genetic engineering techniques, amount to gross interference in nature and the natural order. Here, we present scientific arguments that say that this may not be restricted to GMOs alone, as humankind has always interfered in nature, at times in ways unimaginable, all in an effort to make life better.

You may be surprised to hear that many of the food crops we eat today are not their original selves. They are products of years of conscious and systematic manipulation of nature, if you will call it that, representing a marked departure from what they were in the beginning of time. Humankind has always attempted to improve natural resources to meet the demands of a growing population in a changing climate. That is to say that conventional breeding itself relies on the transfer of genes, albeit via crosses. from one crop species to a related species in order to be able to develop new varieties.

Conventional plant breeding has its own problems. Unlike genetic engineering, conventional breeding in transferring a gene which conditions a specific trait also transfers a number of other genes on the same chromosome along with it. This means that the conventional breeder very often is not only transferring a specific trait to his elite cultivated variety (cultivar), but also other traits that may be undesirable. For example, two varieties of conventionally-bred potatoes, Lenape and Magnum Bonum, and conventionally-bred celery developed to be pest-resistant had to be withdrawn from the market after it was realized that the conventional breeding processes accidentally led to increased levels of naturally occurring toxins in them.

The foregoing explains why some scientists argue that the assumption that conventionally-bred crops are necessarily safer than GM crops is overly simplistic, especially when conventionally-bred crops are not subjected to the kind of pre-marketing safety analysis done for GM crops.

Then, we present another interference in nature: mutation breeding. Mutation breeding is a crop breeding technique where breeders subject seeds to doses of radiation and gene-altering chemicals in order to produce novel plant varieties. This technique has been in use since the dawn of the nuclear age in the 1950s, and has seen an escalated use in the last few years. The Nuclear Techniques in Food and Agriculture programme of the United Nations reportedly received about 40 requests for radiation services from a number of countries across the world in 2013. Many of the multinational seed companies chided for promoting GMOs, like BASF and Monsanto, have all reportedly used this technique in developing new crop varieties, all without regulation.

In Ghana, the Biotechnology and Nuclear Agriculture Research Institute (BNARI) of the Ghana Atomic Energy Commission, and research programmes in some of the nations universities, the University of Cape Coast for example, have been experimenting mutation breeding techniques for some time now.

In a 2004 report, the US National Academy of Sciences remarked that placing GM crops under tight regulations, while approving products of mutation breeding without any regulation, cannot be justified by science. Mutagenesis, the technique underpinning mutation breeding, has the capacity to rearrange or delete hundreds of genes randomly. It makes use of tools such as gamma radiation, which give rise to mutations (i.e., changes in an organisms genetic make-up) that sometimes are beneficial or hazardous to the organism. If you have ever had an X-ray image of any part of your body taken, then you have been exposed to radiation. And it is precisely because of the possibility of this process introducing mutations into your genetic make-up you are advised against taking X-ray images very frequently.

More:

Ghanas GMO debates: beyond the sticking points (3)

CRISPR is the technology that could allow researchers to perform microsurgery on genes

Precise and easy ways to rewrite human genes could finally provide the tools that researchers need to understand and cure some of our most deadly genetic diseases.

Over the last decade, as DNA-sequencing technology has grown ever faster and cheaper, our understanding of the human genome has increased accordingly. Yet scientists have until recently remained largely ham-fisted when theyve tried to directly modify genes in a living cell. Take sickle-cell anemia, for example. A debilitating and often deadly disease, it is caused by a mutation in just one of a patients three billion DNA base pairs. Even though this genetic error is simple and well studied, researchers are helpless to correct it and halt its devastating effects.

Now there is hope in the form of new genome-engineering tools, particularly one called CRISPR. This technology could allow researchers to perform microsurgery on genes, precisely and easily changing a DNA sequence at exact locations on a chromosome. Along with a technique called TALENs, invented several years ago, and a slightly older predecessor based on molecules called zinc finger nucleases, CRISPR could make gene therapies more broadly applicable, providing remedies for simple genetic disorders like sickle-cell anemia and eventually even leading to cures for more complex diseases involving multiple genes. Most conventional gene therapies crudely place new genetic material at a random location in the cell and can only add a gene. In contrast, CRISPR and the other new tools also give scientists a precise way to delete and edit specific bits of DNAeven by changing a single base pair. This means they can rewrite the human genome at will.

It is likely to be at least several years before such efforts can be developed into human therapeutics, but a growing number of academic researchers have seen some preliminary success with experiments involving sickle-cell anemia, HIV, and cystic fibrosis (see table below). One is Gang Bao, a bioengineering researcher at the Georgia Institute of Technology, who has already used CRISPR to correct the sickle-cell mutation in human cells grown in a dish. Bao and his team started the work in 2008 using zinc finger nucleases. When TALENs came out, his group switched quickly, says Bao, and then it began using CRISPR when that tool became available. While he has ambitions to eventually work on a variety of diseases, Bao says it makes sense to start with sickle-cell anemia. If we pick a disease to treat using genome editing, we should start with something relatively simple, he says. A disease caused by a single mutation, in a single gene, that involves only a single cell type.

In little more than a year, CRISPR has begun reinventing genetic research.

Bao has an idea of how such a treatment would work. Currently, physicians are able to cure a small percentage of sickle-cell patients by finding a human donor whose bone marrow is an immunological match; surgeons can then replace some of the patients bone marrow stem cells with donated ones. But such donors must be precisely matched with the patient, and even then, immune rejectiona potentially deadly problemis a serious risk. Baos cure would avoid all this. After harvesting blood cell precursors called hematopoietic stem cells from the bone marrow of a sickle-cell patient, scientists would use CRISPR to correct the defective gene. Then the gene-corrected stem cells would be returned to the patient, producing healthy red blood cells to replace the sickle cells. Even if we can replace 50 percent, a patient will feel much better, says Bao. If we replace 70 percent, the patient will be cured.

Though genome editing with CRISPR is just a little over a year old, it is already reinventing genetic research. In particular, it gives scientists the ability to quickly and simultaneously make multiple genetic changes to a cell. Many human illnesses, including heart disease, diabetes, and assorted neurological conditions, are affected by numerous variants in both disease genes and normal genes. Teasing out this complexity with animal models has been a slow and tedious process. For many questions in biology, we want to know how different genes interact, and for this we need to introduce mutations into multiple genes, says Rudolf Jaenisch, a biologist at the Whitehead Institute in Cambridge Massachusetts. But, says Jaenisch, using conventional tools to create a mouse with a single mutation can take up to a year. If a scientist wants an animal with multiple mutations, the genetic changes must be made sequentially, and the timeline for one experiment can extend into years. In contrast, Jaenisch and his colleagues, including MIT researcher Feng Zhang (a 2013 member of our list of 35 innovators under 35), reported last spring that CRISPR had allowed them to create a strain of mice with multiple mutations in three weeks.

Genome GPS

Continued here:

CRISPR is the technology that could allow researchers to perform microsurgery on genes

Antimicrobial preservation strategies to prevent food contamination

PUBLIC RELEASE DATE:

14-Feb-2014

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 x2156 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, February 13, 2014Food spoiling and poisoning caused by microbial contamination can cause major health, social, and economic problems. The broad scope of antimicrobial approaches to kill or prevent the growth of microorganisms in foods and beverages, including a variety of natural and artificial preservative strategies, are described in a comprehensive Review article in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Industrial Biotechnology website.

In the Review "Ingredient Technology for Food Preservation," Zuoxing Zheng, PhD, Principle Scientist at Kraft Foods Group (Glenview, IL) discusses new and emerging antimicrobials and how they are being used to improve the safety, quality, and shelf-life of food and beverage products. He describes antimicrobial mechanisms for preventing food spoilage and the criteria used to select particular antimicrobials for specific food or beverage applications.

"As we seek to expand global food production to meet the nutritional requirements of an increasing population, we also need to develop innovative solutions to prevent food spoilage and its impact on human health," says Co-Editor-in-Chief Larry Walker, PhD, Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY. "Biotechnology solutions must be on the table as we seek to address these challenges."

###

About the Journal

Industrial Biotechnology, led by Co-Editors-in-Chief Larry Walker, PhD, and Glenn Nedwin, PhD, MoT, CEO and President, Taxon Biosciences, Tiburon, CA, is an authoritative journal focused on biobased industrial and environmental products and processes, published bimonthly in print and online. The Journal reports on the science, business, and policy developments of the emerging global bioeconomy, including biobased production of energy and fuels, chemicals, materials, and consumer goods. The articles published include critically reviewed original research in all related sciences (biology, biochemistry, chemical and process engineering, agriculture), in addition to expert commentary on current policy, funding, markets, business, legal issues, and science trends. Industrial Biotechnology offers the premier forum bridging basic research and R&D with later-stage commercialization for sustainable biobased industrial and environmental applications.

About the Publisher

Read this article:

Antimicrobial preservation strategies to prevent food contamination

Ghanas GMO debates: beyond the sticking points (1)

Feature Article of Thursday, 13 February 2014

Columnist: Agorsor, Yafetto, Otwe, Galyuon

Israel D. K. Agorsor, Levi Yafetto, Emmanuel P. Otwe and Isaac K. A. Galyuon

1. Introduction

At the turn of the last decade, Ghana signaled its intention to adopt plant genetic engineering as part of the efforts towards modernizing its agriculture when it established the National Biosafety Committee. This committee would, among others, activate the processes for the formulation of a Biosafety Bill. In 2011, a draft Biosafety Bill was passed into law by Ghanas Parliament, and is known as Biosafety Act 2011 or Act 831. Genetic engineering techniques enable scientists to modify the genetic make-up of an organism, otherwise known as its genome, by inserting into the genome pieces of deoxyribonucleic acid (DNA) ? the genetic material ? that condition specific desirable traits from other organisms. These modifications result in what are known as genetically modified organisms (GMOs) or transgenic organisms (transgenics).

To say that the debates on GMOs are, perhaps, the fiercest of all debates that have ever engulfed any human endeavour and, for that matter, any scientific discipline in living memory may be an understatement. Why the GMO wars have been so fiercely fought is clear only to the extent that people and cultures have significant emotional attachment to food and food products, and thus anything that appears an aberration to these would always be fiercely resisted. However, the evidence, as we have it, is that these debates have at times gone beyond the science, and have assumed moral and speculative dimensions. The result is that quite often, moral questions are also asked to proponents of genetic engineering, questions whose answers may not be readily available.

Some of these moral questions include: Are scientists now playing God? Why do scientists interfere in nature and the natural order? Speculative ones include the myriad of diseases, such as cancer, heart diseases, diabetes and fibroid, that genetically modified (GM) food causes. Of course we are aware of some published reports which suggest GM foods could have adverse effects on human and animal health. But we are also aware that some of these reports have either been challenged or retracted from the scientific journals in which they were published after follow-up studies showed that the experiments leading to those conclusions were flawed. You may read, for example, Sralini affair at http://en.wikipedia.org/wiki/S%C3%A9ralini_affair, as well as the widely-referenced Pusztai study which although hailed by some scientists, has been challenged by others including the UK Royal Society. See the Pusztai affair at http://en.wikipedia.org/wiki/Pusztai_affair.

We have noticed, too, that in an opinion piece that appeared in the Daily Graphic of Monday, December 23, 2013, and titled GM Foods: Mass genocide, studies by Australian scientist Judy Carman and her colleague Jack Heinemann have been cited as evidence of health risks of GMOs. In fact, Carman and co-authors studies have been disputed. Many scientists, including the food regulator for Australia/New Zealand known as Food Standards Australia and New Zealand (FSANZ) have rejected Carman and colleagues claim that GM foods have health risks as reported in one study. See FSANZs response to Carman and colleagues claims at http://www.foodstandards.gov.au/consumer/gmfood/Pages/Response-to-Dr-Carman's-study.aspx. Basically, the charge is that it was flawed science that led to their claims.

For an example of a publication that discusses the health implications of GM foods, see the article (not an original research paper, but a review article) Health risks of genetically modified foods by Dona and Arvanitoyannis published in the journal Critical Reviews in Food Science and Nutrition in 2009 (Crit Rev Food Sci Nutr 49(2): 164-175) at http://www.ncbi.nlm.nih.gov/pubmed/18989835 (click on View full text). For a challenge to the views expressed in Dona and Arvanitoyannis, see the article Response to Health risks of genetically modified foods by Craig Rickard in the same journal at http://www.tandfonline.com/doi/full/10.1080/10408390903467787#tabModule.

Unfortunately, the independence of the authors of some of the pro- and anti-GMO articles and research papers have been questioned at times; the authors have been accused of doing the bidding of either biotechnology giants or anti-GMO movements because they have been receiving, allegedly, research funding from these groups. These accusations have also added to the complexity of the GMO debates.

Read the original here:

Ghanas GMO debates: beyond the sticking points (1)

Cuba, France Agree To Develop Hepatitis B Vaccine

PARIS, Feb 13 (BERNAMA-NNN-PRENSA LATINA) -- French company Abivax and the Centre for Genetic Engineering and Biotechnology (CIGB) in Cuba announced an agreement here Wednesday to partner in the development and commercialisation of vaccines with one against the Hepatitis B virus.

The CIGB, Cuba's leading biotechnology institution, has more than 50 research-development projects, while Abivax, based in Paris, is a product of the merger of the Wittycell, Splicos and Zophis firms. Their objective is to fight infectious diseases and cancer.

"Cuba is known for the excellence of its physicians and the quality of its vaccines. This is a project of international importance to put France foremost in this matter," Philippe Pouletty, president of the Administrative Council of the French firm, said.

Norkis Arteaga, head of Biocubafarma business department, said that the complementary nature of both companies in research and production will allow for the distribution of many products in the future.

Arteaga cited in a statement a licensing agreement between the CIGB and Abivax for the development and commercialisation of the therapeutic vaccine against Hepatitis B.

Cuba will provide the clinical results and capacity, while the French firm financial resources to complete other clinical trials in Europe and Asia along with the experience to register it in these markets and commercialise it later.

-- BERNAMA-NNN-PRENSA LATINA

See more here:

Cuba, France Agree To Develop Hepatitis B Vaccine

Marsden Medal for Barry Scott

From protecting New Zealand from the mad cow disease to guiding legislation around genetic engineering, Professor Barry Scott has been at the forefront of some of the most important scientific discussions over the past 30 years.

Now his lifes work has been recognised with the New Zealands Association of Scientists top honour, the Marsden Medal.

"Sometimes I think scientists are maniacs with the hours we work, so its nice to be recognised," Professor Scott says. "Im really delighted."

His work has taken him far from the laboratory. He has sat on world-leading boards, spoken at international conferences and helped guide government policy-makers dealing with international dilemmas.

In 1996, he was a member of a committee that advised the New Zealand Government on how to protect agriculture and human health after the outbreak of mad cow disease in Britain. As part of an expert panel, he looked at the implications for New Zealand, its agricultural sector and New Zealanders living in Britain at the time.

As a founding member of Environmental Risk Management Authority, Professor Scott was also been heavily involved in shaping New Zealands policy and decision-making around the introduction of genetically-modified organisms in the 1990s. He was regularly called upon to front public debates on the issue and to help educate people about the underlying science.

Much his work has helped the advancement of New Zealands agricultural sector, including his world-leading research into how an endophyte fungus protects ryegrass from drought, disease and insects.

He is particularly proud of the successes of students he taught and supervised, including more than 20 PhD students now employed in major organisations throughout the world.

Read the original post:

Marsden Medal for Barry Scott

Genome Surgery

Over the last decade, as DNA-sequencing technology has grown ever faster and cheaper, our understanding of the human genome has increased accordingly. Yet scientists have until recently remained largely ham-fisted when theyve tried to directly modify genes in a living cell. Take sickle-cell anemia, for example. A debilitating and often deadly disease, it is caused by a mutation in just one of a patients three billion DNA base pairs. Even though this genetic error is simple and well studied, researchers are helpless to correct it and halt its devastating effects.

Now there is hope in the form of new genome-engineering tools, particularly one called CRISPR. This technology could allow researchers to perform microsurgery on genes, precisely and easily changing a DNA sequence at exact locations on a chromosome. Along with a technique called TALENs, invented several years ago, and a slightly older predecessor based on molecules called zinc finger nucleases, CRISPR could make gene therapies more broadly applicable, providing remedies for simple genetic disorders like sickle-cell anemia and eventually even leading to cures for more complex diseases involving multiple genes. Most conventional gene therapies crudely place new genetic material at a random location in the cell and can only add a gene. In contrast, CRISPR and the other new tools also give scientists a precise way to delete and edit specific bits of DNAeven by changing a single base pair. This means they can rewrite the human genome at will.

It is likely to be at least several years before such efforts can be developed into human therapeutics, but a growing number of academic researchers have seen some preliminary success with experiments involving sickle-cell anemia, HIV, and cystic fibrosis (see table below). One is Gang Bao, a bioengineering researcher at the Georgia Institute of Technology, who has already used CRISPR to correct the sickle-cell mutation in human cells grown in a dish. Bao and his team started the work in 2008 using zinc finger nucleases. When TALENs came out, his group switched quickly, says Bao, and then it began using CRISPR when that tool became available. While he has ambitions to eventually work on a variety of diseases, Bao says it makes sense to start with sickle-cell anemia. If we pick a disease to treat using genome editing, we should start with something relatively simple, he says. A disease caused by a single mutation, in a single gene, that involves only a single cell type.

In little more than a year, CRISPR has begun reinventing genetic research.

Bao has an idea of how such a treatment would work. Currently, physicians are able to cure a small percentage of sickle-cell patients by finding a human donor whose bone marrow is an immunological match; surgeons can then replace some of the patients bone marrow stem cells with donated ones. But such donors must be precisely matched with the patient, and even then, immune rejectiona potentially deadly problemis a serious risk. Baos cure would avoid all this. After harvesting blood cell precursors called hematopoietic stem cells from the bone marrow of a sickle-cell patient, scientists would use CRISPR to correct the defective gene. Then the gene-corrected stem cells would be returned to the patient, producing healthy red blood cells to replace the sickle cells. Even if we can replace 50 percent, a patient will feel much better, says Bao. If we replace 70 percent, the patient will be cured.

Though genome editing with CRISPR is just a little over a year old, it is already reinventing genetic research. In particular, it gives scientists the ability to quickly and simultaneously make multiple genetic changes to a cell. Many human illnesses, including heart disease, diabetes, and assorted neurological conditions, are affected by numerous variants in both disease genes and normal genes. Teasing out this complexity with animal models has been a slow and tedious process. For many questions in biology, we want to know how different genes interact, and for this we need to introduce mutations into multiple genes, says Rudolf Jaenisch, a biologist at the Whitehead Institute in Cambridge Massachusetts. But, says Jaenisch, using conventional tools to create a mouse with a single mutation can take up to a year. If a scientist wants an animal with multiple mutations, the genetic changes must be made sequentially, and the timeline for one experiment can extend into years. In contrast, Jaenisch and his colleagues, including MIT researcher Feng Zhang (a 2013 member of our list of 35 innovators under 35), reported last spring that CRISPR had allowed them to create a strain of mice with multiple mutations in three weeks.

Because a CRISPR system can easily be designed to target any specific gene, the technology is allowing researchers to do experiments that probe a large number of them. In December, teams led by Zhang and MIT researcher Eric Lander created libraries of CRISPRs, each of which targets a different human gene. These vast collections, which account for nearly all the human genes, have been made available to other researchers. The libraries promise to speed genome-wide studies on the genetics of cancer and many other human diseases.

Genome GPS

The biotechnology industry was born in 1973, when Herbert Boyer and Stanley Cohen inserted foreign DNA that they had manipulated in the lab into bacteria. Within a few years, Boyer had cofounded Genentech, and the company had begun using E. coli modified with a human gene to manufacture insulin for diabetics. In 1974, Jaenisch, then at the Salk Institute for Biological Studies in San Diego, created the first transgenic mouse by using viruses to spike the animals genome with a bit of DNA from another species. In these and other early examples of genetic engineering, however, researchers were limited to techniques that inserted the foreign DNA into the cell at random. All they could do was hope for the best.

It took more than two decades before molecular biologists became adept at efficiently changing specific genes in animal genomes. Dana Carroll of the University of Utah recognized that zinc finger nucleases, engineered proteins reported by colleagues at Johns Hopkins University in 1996, could be used as a programmable gene-targeting tool. One end of the protein can be designed to recognize a particular DNA sequence; the other end cuts DNA. When a cell then naturally repairs those cuts, it can patch its genome by copying from supplied foreign DNA. While the technology finally enabled scientists to confidently make changes where they want to on a chromosome, its difficult to use. Every modification requires the researcher to engineer a new protein tailored to the targeted sequencea difficult, time-consuming task that, because the proteins are finicky, doesnt always work.

Follow this link:
Genome Surgery

Engineering The Human Genome One Letter At A Time

Image Caption: Beating-heart cells derived from iPS cells are shown. A single DNA base-pair of the PRKAG2 gene was edited using the method developed by Drs. Miyaoka and Conklin. Credit: Luke Judge/Gladstone Institutes

Anne D. Holden, PhD Gladstone Institutes

Gladstones innovative technique in stem cells to boost scientists ability to study and potentially cure genetic disease

Sometimes biology is cruel. Sometimes simply a one-letter change in the human genetic code is the difference between health and a deadly disease. But even though doctors and scientists have long studied disorders caused by these tiny changes, replicating them to study in human stem cells has proven challenging. But now, scientists at the Gladstone Institutes have found a way to efficiently edit the human genome one letter at a time not only boosting researchers ability to model human disease, but also paving the way for therapies that cure disease by fixing these so-called bugs in a patients genetic code.

Led by Gladstone Investigator Bruce Conklin, MD, the research team describes in the latest issue of Nature Methods how they have solved one of science and medicines most pressing problems: how to efficiently and accurately capture rare genetic mutations that cause disease as well as how to fix them. This pioneering technique highlights the type of out-of-the-box thinking that is often critical for scientific success.

Advances in human genetics have led to the discovery of hundreds of genetic changes linked to disease, but until now weve lacked an efficient means of studying them, explained Dr. Conklin. To meet this challenge, we must have the capability to engineer the human genome, one letter at a time, with tools that are efficient, robust and accurate. And the method that we outline in our study does just that.

One of the major challenges preventing researchers from efficiently generating and studying these genetic diseases is that they can exist at frequencies as low as 1%, making the task of finding and studying them labor-intensive.

For our method to work, we needed to find a way to efficiently identify a single mutation among hundreds of normal, healthy cells, explained Gladstone Research Scientist Yuichiro Miyaoka, PhD, the papers lead author. So we designed a special fluorescent probe that would distinguish the mutated sequence from the original sequences. We were then able to sort through both sets of sequences and detect mutant cellseven when they made up as little one in every thousand cells. This is a level of sensitivity more than one hundred times greater than traditional methods.

The team then applied these new methods to induced pluripotent stem cells, or iPS cells. These cells, derived from the skin cells of human patients, have the same genetic makeup including any potential disease-causing mutations as the patient. In this case, the research team first used a highly advanced gene-editing technique called TALENs to introduce a specific mutation into the genome. Some gene-editing techniques, while effective at modifying the genetic code, involve the use of genetic markers that then leave a scar on the newly edited genome. These scars can then affect subsequent generations of cells, complicating future analysis. Although TALENs, and other similarly advanced tools, are able to make a clean, scarless single letter edits, these edits are very rare, so that new technique from the Conklin lab is needed.

Our method provides a novel way to capture and amplify specific mutations that are normally exceedingly rare, said Dr. Conklin. Our high-efficiency, high-fidelity method could very well be the basis for the next phase of human genetics research.

Original post:
Engineering The Human Genome One Letter At A Time

Rose scent in poplar trees? WSU turns to genetic engineering

Sniff the air around Norman Lewis experimental poplars, and you wont pick up the scent of roses.

But inside the saplings leaves and stems, cells are hard at work producing the chemical called 2-phenylethanol which by any other name would smell as sweet.

Sweeter still is the fact that perfume and cosmetics companies will pay as much as $30 an ounce for the compound that gives roses their characteristic aroma. Because what Lewis and his colleagues at Washington State University are really chasing is the smell of money.

Born out of the frustrating quest to wring biofuels from woody plants, the WSU project takes a different tack. Instead of grinding up trees to produce commercial quantities of so-called cellulosic ethanol, their goal is to turn poplars into living factories that churn out modest levels of chemicals with premium price tags.

The potential market for specialty chemicals many of which are now synthesized from petroleum is big, said Lewis, director of WSUs Institute of Biological Chemistry. Hes already patented some of the technology, which relies on genetic engineering, and created a spinoff company called Elasid.

In the longer term, the profits from high-end products could boost the struggling biofuel industry by helping companies survive whats called the valley of death the point where firms need to scale up production, but money is hard to come by.

The ideal operation would combine the two product lines, extracting valuable chemicals and using the waste for biofuel. But thats a long way off, Lewis said.

Biofuels dont provide a compelling economic case at this point in time, he said. Weve been trying for many decades to understand how plants make these special chemicals that can be used in flavorings, fuels and medicinals, and that seemed like the obvious first place to target.

But failures outnumber successes in the world of green technology, and it remains to be seen whether Lewis and his group will buck the trend.

Costs and controversy

Read the original:

Rose scent in poplar trees? WSU turns to genetic engineering

Sugar industry can be revived with the help of Tissue Culture & Genetic Engineering in UP. – Video


Sugar industry can be revived with the help of Tissue Culture Genetic Engineering in UP.
02 February 2014, Shri Narendra Modi highlight the growth of cooperatives in Gujarat which along with focusing on tissue culture, genetic engineering and dri...

By: Bharatiya Janata Party

Go here to read the rest:
Sugar industry can be revived with the help of Tissue Culture & Genetic Engineering in UP. - Video

Sugar industry can be revived with the help of Tissue Culture & Genetic Engineering in UP. – Video


Sugar industry can be revived with the help of Tissue Culture Genetic Engineering in UP.
02 February 2014, Shri Narendra Modi highlight the growth of cooperatives in Gujarat which along with focusing on tissue culture, genetic engineering and dri...

By: Bharatiya Janata Party

Link:

Sugar industry can be revived with the help of Tissue Culture & Genetic Engineering in UP. - Video

Critical factor (BRG1) identified for maintaining stem cell pluripotency

PUBLIC RELEASE DATE:

6-Feb-2014

Contact: Vicki Cohn vcohn@liebertpub.com 914-740-2100 x2156 Mary Ann Liebert, Inc./Genetic Engineering News

New Rochelle, NY, February 6, 2014The ability to reprogram adult cells so they return to an undifferentiated, pluripotent statemuch like an embryonic stem cellis enabling the development of promising new cell therapies. Accelerating progress in this field will depend on identifying factors that promote pluripotency, such as the Brg1 protein described in a new study published in BioResearch Open Access, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the BioResearch Open Access website.

In "BRG1 Is Required to Maintain Pluripotency of Murine Embryonic Stem Cells," Nishant Singhal and coauthors, Max Planck Institute for Molecular Biomedicine, Mnster, and University of Mnster, Germany, demonstrate the critical role the Brg1 protein plays in regulating genes that are part of a network involved in maintaining the pluripotency of embryonic stem cells. This same network is the target for methods developed to reprogram adult somatic cells.

"This work further clarifies the role of the Brg1 containing BAF complex in regulating pluripotency and has important implications for all cellular reprogramming technologies," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland.

###

About the Journal

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in promising areas of science and biomedical research, including, DNA and Cell Biology, Tissue Engineering, Stem Cells and Development, Human Gene Therapy, HGT Methods, and HGT Clinical Development, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

See the original post here:

Critical factor (BRG1) identified for maintaining stem cell pluripotency

Cybernetics, Teleportation, and TransEvolution of Humanity with Daniel Estulin – Video


Cybernetics, Teleportation, and TransEvolution of Humanity with Daniel Estulin
TransEvolution and the imminent cybernetic future where artificial intelligence, life extensions, brain enhancement, genetic engineering, and teleportation w...

By: TheLipTV

See the article here:
Cybernetics, Teleportation, and TransEvolution of Humanity with Daniel Estulin - Video