First genetic engineering therapy approved by the FDA for leukemia – Ars Technica

Enlarge / Scanning electron micrograph of a human T cell.

For the first time, the Food and Drug Administration has approved a therapy that involves genetically engineering a patients own cells, the agency announced Wednesday.

The therapy, called Kymriah (tisagenlecleucel) by Novartis, will be used to reprogram the immune cells of pediatric and young adult patients with a certain type of leukemia, called B-cell acute lymphoblastic leukemia. During a 22-day out-of-body retraining, patients immune cellsspecifically T cells that patrol the body and destroy enemiesget a new gene that allows them to identify and attack the leukemia cells.

Such therapies, called CAR-T therapies, have shown potential for effectively knocking back cancers in several trials, raising hopes of researchers and patients alike. But they come with severe safety concernsplus potentially hefty price tags.

Nevertheless, the FDA announced its approval with fanfare and optimism, calling it a historic action. In the announcement, FDA Commissioner Scott Gottlieb said:

Were entering a new frontier in medical innovation with the ability to reprogram a patients own cells to attack a deadly cancer. New technologies such as gene and cell therapies hold out the potential to transform medicine and create an inflection point in our ability to treat and even cure many intractable illnesses. At the FDA, were committed to helping expedite the development and review of groundbreaking treatments that have the potential to be life-saving.

Like all CAR-T therapies, Kymriah involves reprograming body-guard T cells to contain a gene that codes for a protein called chimeric antigen receptor or CAR. This protein allows the T cells to recognize and attack cells that have a protein called CD19 hanging off themwhich leukemia cells do.

In the Kymriah procedure, researchers first harvest T cells from a patient and then send them to a manufacturing center. There, researchers insert the CAR gene into the immune cells using a virus. The process takes 22 days, Nature reported.

In an earlier trial, 52 of 63 participants (82.5 percent) achieved overall remission after undergoing the therapy. The trial is unpublished and lacked controls, so its not possible to determine Kymriahs influence. But trials of other CAR-T therapies have shown similarly high rates of remission. And the early results were enough to sway an external panel of FDA scientific advisors in July. In a unanimous vote on July 12, the panel recommended that the FDA approve Kymriah.

This is a major advance and is ushering in a new era, panel member Malcolm Smith, a pediatric oncologist at the US National Institutes of Health in Bethesda, Maryland, told Nature at the time.

But, the story isnt all rosy. CAR-T therapies are known to cause life-threatening immune responses called cytokine storms or cytokine release syndrome (CRS). This can lead to systemic full body inflammation, with organ failure, seizures, delirium, and brain swelling. Several trials of therapies similar to Kymriah have reported deaths.

In the Kymriah trial, 47 percent of patients experienced some level of CRS, but none died. Novartis reported that it was able to manage all the cases of CRS.

The FDA noted the risk in todays announcement and also revealed that it had expanded the approved use of a drug called Actemra, which treats CRS, so it can be used in patients who receive CAR-T therapy. The FDA also approved Kymriah with a risk evaluation and mitigation strategy or (REMS). This involves additional safeguards such as extra training and protocols for healthcare providers.

For now, though, Kymriah is only approved for use in patients aged 25 or younger who have failed conventional therapies or relapsed since undergoing those therapies. Of the roughly 3,100 patients aged 20 or younger who are diagnosed each year with acute lymphoblastic leukemia, about 15 to 20 percent will fail treatment. For these patients, Kymriah may be a literal life-saver, as there are few alternatives.

But along with the frightening side effects, gene therapy may also come with a hefty price tag. UK experts have appraised one round of therapy at $649,000. Its still unclear what the actual cost will be and what patients will end up having to pay.

In a press release, Novartis announced that its working with Centers for Medicare and Medicaid Services to come up with outcomes-based pricing. Also in the release, Bruno Strigini, CEO of Novartis Oncology, added:

We are so proud to be part of this historic moment in cancer treatment and are deeply grateful to our researchers, collaborators, and the patients and families who participated in the Kymriah clinical program. As a breakthrough immunocellular therapy for children and young adults who desperately need new options, Kymriah truly embodies our mission to discover new ways to improve patient outcomes and the way cancer is treated.

See the original post here:
First genetic engineering therapy approved by the FDA for leukemia - Ars Technica

Genetic Engineering Advantages & Disadvantages – Biology …

During the latter stage stages of the 20th century, man harnessed the power of the atom, and not long after, soon realised the power of genes. Genetic engineering is going to become a very mainstream part of our lives sooner or later, because there are so many possibilities advantages (and disadvantages) involved. Here are just some of the advantages :

Of course there are two sides to the coin, here are some possible eventualities and disadvantages.

Genetic engineering may be one of the greatest breakthroughs in recent history alongside the discovery of the atom and space flight, however, with the above eventualities and facts above in hand, governments have produced legislation to control what sort of experiments are done involving genetic engineering. In the UK there are strict laws prohibiting any experiments involving the cloning of humans. However, over the years here are some of the experimental 'breakthroughs' made possible by genetic engineering.

Genetic engineering has been impossible until recent times due to the complex and microscopic nature of DNA and its component nucleotides. Through progressive studies, more and more in this area is being made possible, with the above examples only showing some of the potential that genetic engineering shows.

For us to understand chromosomes and DNA more clearly, they can be mapped for future reference. More simplistic organisms such as fruit fly (Drosophila) have been chromosome mapped due to their simplistic nature meaning they will require less genes to operate. At present, a task named the Human Genome Project is mapping the human genome, and should be completed in the next ten years.

The process of genetic engineering involves splicing an area of a chromosome, a gene, that controls a certain characteristic of the body. The enzyme endonuclease is used to split a DNA sequence and split the gene from the rest of the chromosome. For example, this gene may be programmed to produce an antiviral protein. This gene is removed and can be placed into another organism. For example, it can be placed into a bacteria, where it is sealed into the DNA chain using ligase. When the chromosome is once again sealed, the bacteria is now effectively re-programmed to replicate this new antiviral protein. The bacteria can continue to live a healthy life, though genetic engineering and human intervention has actively manipulated what the bacteria actually is. No doubt there are advantages and disadvantages, and this whole subject area will become more prominent over time.

The next page returns the more natural circumstances of genetic diversity.

Read the original:

Genetic Engineering Advantages & Disadvantages - Biology ...

ADRIAN Kibbler wonders whether genetic engineering may be used in the future to prevent illness – Ludlow Advertiser

LEANNE Brownhill was a 26-year-old nurse from Ludlow who sadly died young as a result of a genetic heart condition.

She suffered from cardiomyopathy, a disease that comes in three different forms but essentially damages the heart.

It can unfortunately result in the sudden death of young people who might otherwise have appeared to be fit and healthy.

The case that most people will be aware of is that of the footballer Fabrice Muamba, who aged just 23, suddenly collapsed and nearly died in an FA Cup match between his team Bolton Wanderers and Tottenham Hotspur in 2012.

Indeed, when we hear of a young sportsman or woman who has died suddenly then there is a good chance that cardiomyopathy is responsible.

One of the problems with this disease is that it can be difficult to diagnose and can bring with it no obvious symptoms although in some cases there may be shortness of breath or unexplained fainting.

When the disease is diagnosed various treatments are available that can include the use of various drugs and in some cases the fitting on a defibrillator type device to kick in if the heart fails.

However, medical experts are saying that a new technique could free people of this condition that is caused by inheriting a faulty gene.

The latest breakthrough suggests that not only can the faulty gene be identified but that it can also be repaired.

Now it is important to be cautious because even if this can be advanced it is not likely to widely available anytime soon. However, the potential is huge and there would appear to be reason to hope that the technique could also be applied to other inherited conditions.

The medical and scientific issues around this are only a part of the story because this is genetic engineering.

Of course, it is desirable that when people become ill they receive the best possible treatment but this is not the same thing as genetic engineering.

Some people will argue that if medicine gives us the ability to prevent illness by repairing faulty genes then there is nothing wrong with that. After all medicine enables treatment to be given to babies even when they are in the womb so is this so different?

It has long been the case that babies can be examined for serious medical conditions as part of pre-natal screening and in some cases this can lead to a decision to terminate a pregnancy.

What makes genetic engineering different is that it creates at least potentially the ability to produce a race of perfect people and many of us are very uncomfortable about this.

After all some would argue that it is our difference including in some cases our imperfections that make us special and unique.

No one can give a definitive answer but, for example, would Beethoven have been such a great composer if he not been deaf or Stephen Hawking such a special scientist without his illness?

These are difficult questions but they will become ever more important as medical science advances and what up to now might have been considered science fiction becomes science fact.

Read more here:

ADRIAN Kibbler wonders whether genetic engineering may be used in the future to prevent illness - Ludlow Advertiser

Listening for the Public Voice – Slate Magazine

Jupiterimages/Thinkstock

On Aug. 3, the scientific article in Nature finally gave us some facts about the much-hyped experiments that involved editing the genomes of human embryos at the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University. The story had broken in late July in Technology Review, spurring profuse hand-wringing and discussion. But until we saw the scientific paper, it was not clear what cells and methods were used, what genes were edited, or what the results were.

Now we know more, and while the paper demonstrates the possibility of genome editing of human embryos, it raises more questions than it answers. It is a useful demonstration of technical promise, though not an immediate prelude to the birth of a genome-edited baby. But the process by which the news emerged is also an ominous harbinger of the discombobulated way the debate about genetically altering human embryos is likely to unfold. We need open, vigorous debate that captures the many, often contradictory, moral views of Americans. Yet what we are likely to get is piecemeal, fragmented stories of breakthroughs with incomplete details, more sober publication in science journals that appear later, news commentary that lasts a few days, and very little systematic effort to think through what policy should be.

The science underlying this news cycle about human genome editing builds on a technique first developed six years ago by studying how bacteria alter DNA. CRISPR genome editing is the most recent, and most promising, way to introduce changes into DNA. It is faster, easier, and cheaper than previous methods and should eventually be more precise and controllablewhich is why it may one day be available for clinical use in people.

Though headlines about the study discussed designer babies, researchers prefer to emphasize how these techniques could help stop devastating genetic disorders. The Oregon experiments with human embryo cells corrected disease-associated DNA variants associated with heart muscle wasting that can cause heart failure. The treated embryos were alive for only a few days and were never intended to become a human baby. They were, however, human embryos deliberately created for the research.

U.S. guidance in this area is sparse and reflects the lack of societal consensus. In 1994, when the federal government was contemplating funding for research involving human embryos, the NIH Embryo Research Panel concluded that just this kind of experiment was ethically appropriate. But within hours of that reports release, then-President Bill Clinton announced he did not agree with creating embryos in order to do research on them.

The United States currently has just two policies relevant to genomic editing of human embryos. The first blocks federal funding: On April 28, 2015, Francis Collins, director of the National Institutes of Health, stated, NIH will not fund any use of gene-editing technologies in human embryos. This is not embedded in statute or formal executive order, but members of Congress are fully aware of it and it is, in effect, a federal policy. NIH can (and does) fund genome editing of nonembryonic cells that might be used to treat cancer and for other possible therapeutic purposes, but not embryonic cells that would have their effect by creating humans with germline alterations.

Second, Congress has prohibited the Food and Drug Administration from reviewing research in which a human embryo is intentionally created or modified to include a heritable genetic modification. This language comes from a rider to FDAs annual appropriations. Yet use of human embryonic cells for treatment should be subject to FDA regulation. So this language in effect means alterations of embryonic cells cannot be done in the United States if there is any intent to treat a human being, including implantation of an altered embryo into a womans uterus. This will remain true so long as the rider is included in FDAs annual appropriations. The federal government thus has two relevant policies, both of which take federal agencies out of the action: One removes NIH funding, and the other precludes FDA oversight of genome-edited human embryos.

This leaves privately funded research that has no direct therapeutic purpose, such as with the Oregon experiments. The funding came from OHSU itself; South Korean Basic Research Funds; the municipal government of Shenzhen, China; and several private philanthropies (Chapman, Mathers, Helmsley, and Moxie). The research complies with recommendations to study the basic cellular processes of genome editing, keeping an eye on possible future clinical use but only so long as the work does not attempt to create a human pregnancy.

By coincidence, on the same day the Nature paper came out, the American Journal of Human Genetics also published a thoughtful 10-page position statement about germline genome editing from the American Society for Human Genetics endorsed by many other genetic and reproductive medicine organizations from all over the world. It reviews recommendations of the National Academies of Sciences, Engineering, and Medicine, several international and U.S.-based organizations and commissions, and makes several recommendations of its own, concluding it is inappropriate to perform germline gene editing that culminates in human pregnancy, but also there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications. Indeed, the statement argues for public funding. Finally, it urges research to proceed only with compelling medical rationale, strong oversight, and a transparent public process to solicit and incorporate stakeholder input.

So is there a problem here? It is truly wonderful that medical and scientific organizations have addressed genome editing. It is, however, far from sufficient. Reports and scientific consensus statements inform the policy debate but cannot resolve it. All of the reports on genome editing call for robust public debate, but the simple fact is that embryo research has proven highly divisive and resistant to consensus, and it is far from clear how to know when there is enough thoughtful deliberation to make policy choices. Its significant that none of the reports have emerged from a process that embodied such engagement. The Catholic Church, evangelical Christians, and concerned civic action groups who view embryo research as immoral are not likely to turn to the National Academies of Sciences, Engineering and Medicine, the American Society for Human Genetics, the Hinxton Group, the Nuffield Council on Bioetics, or other scientific and medical organizations for their primary counsel. They may well listen to scientists, but religious and moral doctrine will get greater weight. Yet religious groups highly critical of embryo research are part of the political systemand whether we embrace this sort of genome editing in the United States is a political question, not a purely technical one.

Reports and scientific consensus statements inform the policy debate but cannot resolveit.

Addressing the political questions will be extremely difficult. The U.S. government is poorly positioned to mediate the policy debate in a way that recognizes and addresses our complex moral pluralism. NIH and FDA are two of the most crucial agencies, but current policies remove them from line authority, and with good reason, given that engaging in this debate could actually endanger the agencies other vital missions. International consensus about genome editing of human embryos remains no more likely than about embryo research in general: Some countries ban it while others actively promote and fund it. Private foundations dont have the mandate or incentive to mediate political debate about a controversial technology that rouses the politics of abortion. What private philanthropic organization would willingly take on such a thankless and politically perilous task, and what organization would be credible to the full range of constituencies?

So who can carry out the public engagement that everyone seems to agree we need? The likely answer is no one. This problem occurs with all debate about fraught scientific and technical innovations, but its particularly acute when it touches on highly ossified abortion politics.

The debate about genomic editing of human embryos is unlikely to follow the recommendations for systematic forethought proposed by illustrious research bodies and reports. Given the reactions weve seen to human embryonic stem-cell research in the past two decades, we have ample reason for pessimism. Rather, debate is more likely to progress by reaction to events as researchers make newsoften with the same lack of information we lived with for the last week of July, based on incomplete media accounts and quotes from disparate experts who lacked access to the details. Most of the debate will be quote-to-quote combat in the public media, leavened by news and analysis in scientific and medical journals, but surrounded by controversy in religious and political media. It is not what anyone designing a system would want. But the recommendations for robust public engagement and debate feel a bit vacuous and vague, aspirations untethered to a concrete framework.

Our divisive political system seems fated to make decisions about genomic editing of human embryos mainly amidst conflict, with experts dueling in the public media rather than through a thoughtful and well-informed debate conducted in a credible framework. As the furor over the Oregon experiments begins to dissipate, we await the event that will cause the next flare-up. And so it will continue, skipping from news cycle to news cycle.

History shows that sometimes technical advances settle the issues, at least for most people and in defined contexts. Furor about in vitro fertilization after Louise Brown, the first test tube baby, was born in 1978 gave way to acceptance as grateful parents gave birth to more and more healthy babies and welcomed them into their families. Initial revulsion at heart transplants gave way in the face of success. Anger about prospects for human embryonic stem-cell research might similarly attenuate if practical applications emerge.

Such historical examples show precisely why reflective deliberation remains essential, despite its unlikely success. Momentum tends to carry the research forward. Yet at times we should stop, learn more, and decide actively rather than passively whether to proceed, when, how, and with what outcomes in mind. In the case of genome editing of human embryos, however, it seems likely that technology will make the next move.

This article is part of Future Tense, a collaboration among Arizona State University, New America, and Slate. Future Tense explores the ways emerging technologies affect society, policy, and culture. To read more, follow us on Twitter and sign up for our weekly newsletter.

Read the original:

Listening for the Public Voice - Slate Magazine

The Impossible Burger wouldn’t be possible without genetic engineering – Grist

The Impossible Burger has had a charmed honeymoon period. Crowds of foodies surged into fancy eateries to try it. Environmentalists and animal rights activists swooned. So did investors: Impossible Foods brought in $75 million during its latest investment round.

Now the backlash is here. The activist organizations Friends of the Earth and the ETC Group dug up documents which they claim show that Impossible Foods ignored FDA warnings about safety and they handed them over to the New York Times.

The ensuing story depicted Impossible Foods as a culinary version of Uber disrupting so rapidly that its running headlong into government regulators. In reality, Impossible Foods has behaved like a pedestrian food company, working hand in hand with the FDA and following a well-worn path to comply with an arcane set of rules.

So why isnt this story a nothingburger?

In a word: GMOs. You see, soy leghemoglobin, or SLH, the key ingredient that makes the Impossible Burger uniquely meaty, is churned out by genetically modified yeast. This is a protein produced with genetic engineering; its a new food ingredient, Dana Perls, senior food and technology campaigner at Friends of the Earth, told me when I asked why theyd singled out Impossible Foods.

The company has never exactly hidden the fact that they used genetic engineering, but they havent put it front and center either. You have to dig into their frequently asked questions to catch that detail and thats a recent edit, according to Perls. When I first looked at the Impossible Foods website, maybe back in March, there was no mention of genetic engineering, she said.(An Impossible Foods spokesperson disputed Perlss claim, saying the FAQ has included references to genetic engineering for at least a year, since before the burgers launch in restaurants. But areview of cached webpages suggests the references were added in June.*)

By tiptoeing around this issue, Impossible Foods set themselves up for a takedown by anti-GMO campaigners. These groups monitor new applications of genetic engineering, watch for potentially incriminating evidence, then work with journalists to publicize it. In 2014, Ecover, a green cleaning company, announced it was using oils made by algae as part of its pledge to remove palm oil a major driver of deforestation from its products. When Friends of the Earth and the ETC Group figured out the algae was genetically engineered, they pinged the same Times writer. Ecover quickly went back to palm oil.

When I asked Impossible Foods founder Pat Brown about the GMO question, he said he didnt think that battle was theirs to fight. After all, the SLH may be produced by transgenic yeast, but it isnt a GMO itself. He also pointed out that this isnt unusual: nearly all cheese contains a GMO-produced enzyme.

But now, Friends of the Earth and the ETC Group have brought their battle to Impossible Foods doorstep. (In a blistering series of responses to the New York Times article, the company charged it was chock full of factual errors and misrepresentations and was instigated by an extremist anti-science group.) The FDA documents handed over to the Times include worrying sentences like this one: FDA stated that the current arguments at hand, individually and collectively, were not enough to establish the safety of SLH for consumption.

If FDA officials say your company hasnt done enough to convince them that a new ingredient is safe, arent you supposed to stop selling it?

Not according to a risk expert at Arizona State University who reviewed the documents released by activists. There are no indications that they should have pulled this off the market, Andrew Maynard told me.

Thats just not how the food safety review process works, said Gary Yingling, a former FDA official now helping Impossible Foods navigate the bureaucracy. In the United States, its up to the companies themselves to determine if an ingredient is safe. (Not everyone likes that system or thinks the FDA is doing enough to protect public safety, but it is the law.)

Impossible worked with a group of experts at universities who decided in 2014 that their burger was safe. SLH, it turns out, grows naturally in the roots of soy plants, and the proteins in the burger look a lot like animal proteins a good indicator of safety.

Impossible could have stopped there: Companies, however, can ask the government to weigh in on their research. Sometimes, the FDA asks for more information, which is what happened with Impossible Foods. Its not unusual for the FDA to determine it cant establish the safety of a new ingredient its happened more than 100 times, with substances like Ginkgo biloba, gum arabic, and Spirulina. The FDA has called for more information in about one in every seven of the ingredients companies have asked it to review.

In the case of SLH, the FDA suggested more tests, including rat-feeding trials. Impossible Foods has finished these tests, and academics who have studied the new data confirmed that its generally recognized as safe. Next, Impossible Foods will bring the new evidence back to the FDA, Yingling said.

The criticism raised in this case is really criticism of a system that allows companies to decide for themselves if a new ingredient is OK to add to our food.

If a company decides something is safe, they can go ahead and do it, said Maynard, the risk expert. So thats a weakness in the system. On the other hand, you can argue that once you start this process with the FDA, they have smart scientists who ask tough questions. You can see in those documents that the level of due diligence that a company has to go through is really pretty deep. You really want to make sure that you have a system that doesnt inhibit innovation, but captures as much potentially harmful things as possible.

Each new innovation creates the potential for new hazards. We can block some of those hazards by taking precautions. But how high should we put the precautionary bar?

Impossible Burger could indeed pose some unknown hazard. We just have to weigh that against the known hazards of the present foodborne diseases in meat, greenhouse gases from animal production, the development of antibiotic resistant bacteria in farms, and animal suffering. These are problems which Impossible Foods is trying to solve.

There are other companies trying to solve these problems. (Friends of the Earth notes that the success of non-animal burgers, like the non-GMO Beyond Burger, demonstrates that plant-based animal substitutes can succeed without resorting to genetic engineering.) But its not yet clear that any of these companies including Impossible Foods will be successful in just generating a profit, let alone in replacing the global meat industry. No one knows which startups will pan out. And well probably need to try and discard lots of new things as we shift to a sustainable path.

Trying new things can be risky. Not trying new things and staying on our current trajectory is even more risky.

*This story has been updated to include a response from Impossible Foods about when references to genetic engineering first appeared in its FAQ, and to add information about the FDAs food safety review process.

Visit link:

The Impossible Burger wouldn't be possible without genetic engineering - Grist

Genetically Engineering Pigs to Grow Organs for People – The Atlantic

The idea of transplanting organs from pigs into humans has been around for a long time. And for a long time, xenotransplantsor putting organs from one species into anotherhas come up against two seemingly insurmountable problems.

The first problem is fairly intuitive: Pig organs provoke a massive and destructive immune response in humansfar more so than an organ from another person. The second problem is less obvious: Pig genomes are rife with DNA sequences of viruses that can infect human cells. In the 1990s, the pharmaceutical giant Novartis planned to throw as much $1 billion at animal-to-human transplant research, only to shutter its research unit after several years of failed experiments.

Quite suddenly, however, solving these two problems has become much easier and much faster thanks to the gene-editing technology CRISPR. With CRISPR, scientists can knock out the pig genes that trigger the human immune response. And they can inactivate the virusescalled porcine endogenous retroviruses, or PERVsthat lurk in the pig genome.

On Thursday, scientists working for a startup called eGenesis reported the birth of 37 PERV-free baby pigs in China, 15 of them still surviving. The black-and-white piglets are now several months old, and they belong to a breed of miniature pigs that will grow no bigger than 150 poundswith organs just the right size for transplant into adult humans.

eGenesis spun out of the lab of the Harvard geneticist George Church, who previously reported inactivating 62 copies of PERV from pig cells in 2015. But the jump from specialized pig cells that grow well in labs to living PERV-free piglets wasnt easy.

We didnt even know we could have viable pigs, says Luhan Yang, a former graduate student in Churchs lab and co-founder of eGenesis. When her team first tried to edit all 62 copies in pig cells that they wanted to turn into embryos, the cells died. They were more sensitive than the specialized cell lines. Eventually Yang and her team figured out a chemical cocktail that could keep these cells alive through the gene-editing process. This technique could be useful in large-scale gene-editing projects unrelated to xenotransplants, too.

When Yang and her team first inactivated PERV from cells in a lab, my colleague Ed Yong suggested that the work was an example of CRISPRs power rather than a huge breakthrough in pig-to-human transplants, given the challenges of immune compatibility. And true, Yang and Church come at this research as CRISPR pioneers, but not experts in transplantation. At a gathering of organ-transplantation researchers last Friday, Church said that his team had identified about 45 genes to make pig organs more compatible with humans, though he was open to more suggestions. I would bet we are not as sophisticated as we should be because weve only been recently invited [to meetings like this], he said. Its an active area of research for eGenesis, though Yang declined to disclose what the company has accomplished so far.

Its great genetic-engineering work. Its an accomplishment to inactivate that many genes, says Joseph Tector, a xenotransplant researcher at the University of Alabama at Birmingham.

Researchers like Tector, who is also a transplant surgeon, have been chipping away at the problem of immune incompatibility for years, though. CRISPR has sped up that research, too. The first pig gene implicated in the human immune response as one involved in making a molecule called alpha-gal. Making a pig that lacked alpha-gal via older genetic-engineering methods took three years. Now from concept to pig on the ground, its probably six months, says Tector.

Using CRISPR, his team has created a triple-knockout pig that lacks alpha-gal as well as two other genes involved in molecules that that provoke the human immune systems immediate hyperacute rejection of pig organs. For about 30 percent of people, the organs from these triple-knockout pigs should not cause hyperacute rejection. Tector thinks the patients who receive these pig organs could then be treated with the same immunosuppressant drugs that recipients take after an ordinary human-to-human transplant.

Tector and David Cooper, another transplant pioneer, were both recently recruited to the University of Alabama at Birmingham for a xenotransplant program funded by United Therapeutics, a Maryland biotech company that wants to manufacture transplantable organs.

Cooper has transplanted kidneys from pigs engineered by United Therapeutics to have six mutations, which lasted over 200 days in baboons. The result is promising enough that he says human trials could begin soon. These pigs were not created using CRISPR and they are not PERV-free, though recent research has suggested that PERV may not be that harmful to humans. It will be up to the FDA to decide whether pig organs with PERV are safe enough to transplant into people.

If it happens, routine pig-to-human transplants could truly transform healthcare beyond simply increasing the supply. Organs would go from a product of chancesomeone young and healthy dying, unexpectedlyto the product of a standardized manufacturing process. Its going to make such a huge difference that I dont think its possible to conceive of it, says Cooper. Organ transplants would no longer have to be emergency surgeries, requiring planes to deliver organs and surgical teams to scramble at any hour. Organs from pigs can be harvested on a schedule, and surgeries planned for exact times during the day. A patient that comes in with kidney failure could get a kidney the next dayeliminating the need for large dialysis centers. Hospital ICU beds will no longer be taken up by patients waiting for a heart transplant.

With the ability to engineer a donor pig, pig organs can go beyond simply matching a human organ. For example, Cooper says, you could engineer organs to protect themselves from the immune system in the long term, perhaps by making their own localized dose of immunosuppressant drugs.

'Big Pork' Wants to Get In on Organ Transplants

At last Fridays summit, Church speculated about making organs resistant to tumors or viruses. When an audience member asked about the possibility of genetically enhancing pig organs to work as well as Michael Phelpss lungs or Usain Bolts heart, he responded, We not only can but should enhance pig organs, even if were opposed to enhancing human beings ... They will go through safety and efficacy testing, but part of efficacy is making sure theyre robust and maybe they have to be as robust as Michael Phelps in order to do the job.

Xenotransplantation will raise ethical questions, of course, and genetically enhancing pigs might come uncomfortably close to the plot of Okja. These enhancements are hard to fathom for now because scientist dont yet know what genes to alter if they wanted to make, for example, super lungs. Its taken decades of research to pinpoint the handful of genes that could make pig organs simply compatible with humans. But the technical ability to make any editsor even dozens of edits at oncewith CRISPR is already here.

Here is the original post:

Genetically Engineering Pigs to Grow Organs for People - The Atlantic

When genetic engineering is the environmentally friendly choice – GreenBiz

This article originally ran on Ensia.

Which is more disruptive to a plant: genetic engineering or conventional breeding?

It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.

My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides.

One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.

It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding.

What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.

Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.

A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of "knocking out" a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.

We can use CRISPR-based genome editing to create a "targeted mutation" in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.

A substantial body of research shows proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.

Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.

Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the "coat protein." The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.

Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution.

Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can "stack" resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.

Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:

Microorganisms often can overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called "R" proteins ("R" standing for "resistance"). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.

This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.

The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.

View post:

When genetic engineering is the environmentally friendly choice - GreenBiz

Gene Editing Might Mean My Brother Would’ve Never Existed – TIME

CRISPR-CAS9 gene editing complex from Streptococcus pyogenes.Molekuul/Science Photo Library/Getty Images

Reynolds, Ph.D., is Rice Family Postdoctoral Fellow in Bioethics and the Humanities at The Hastings Center.

On August 2nd, scientists achieved a milestone on the path to human genetic engineering. For the first time in the United States, scientists successfully edited the genes of a human embryo . A transpacific team of researchers used CRISPR-Cas9 to correct a mutation that leads to an often devastating heart condition. Responses to this feat followed well-trodden trails. Hype over designer babies. Hope over new tools to cure and curb disease. Some spin, some substance and a good dose of science-speak. But for me, this breakthrough is not just about science or medicine or the future of humankind. Its about faith and family, love and loss. Most of all, its about the life and memory of my brother.

Jason was born with muscle-eye-brain disease. In his case, this included muscular dystrophy, cerebral palsy , severe nearsightedness, hydrocephalus and intellectual disability. He lived past his first year thanks to marvels of modern medicine. A shunt surgery to drain excess cerebrospinal fluid building up around his brain took six attempts, but the seventh succeeded. Aside from those surgeries complications and intermittent illnesses due to a less-than-robust immune system, Jason was healthy. Healthy and happy very happy. His smile could light up a room. Yet, that didnt stop people from thinking that his disability made him worse off. My family and those in our religious community prayed for Jason. Strangers regularly came up to test their fervor. Prayer circles frequently had his name on their lists. We wanted him to be healed. But I now wonder: What, precisely, were we praying for?

Jasons disabilities fundamentally shaped his experience of the world. If praying for his healing meant praying for him to be normal, we were praying for Jason to become someone else entirely. We were praying for a paradox. If I could travel back in time, Id walk up to young, devout Joel and ask: How will Jason still be Jason if God flips a switch and makes him walk and talk and think like you? The answer to that question is hard. Yes, some just prayed for his seizures to stop. Some for his continued well-being. But is that true of most? Is that what I was praying for?

The ableist conflation of disability with disease and suffering is age-old. Just peruse the history of medicine. Decades of eugenic practices. Sanctioned torture of people with intellectual disability. The mutilation of otherwise healthy bodies in the name of functional or aesthetic normality. These stories demonstrate over and over again how easily biomedical research and practice can mask atrocity with benevolence and injustice with progress. Which leads me to ask: What, precisely, are we editing for?

Although muscle-eye-brain disease does not result from a single genetic variant, researchers agree that a single gene, named POMGNT1, plays a large role. Perhaps scientists will soon find a way to correct mutations in that and related genes. Perhaps people will no longer be born with it. But that means there would never be someone like Jason. Those prayers I mentioned above? Science will have retroactively answered them. That thought brings me to tears.

I wish we could cure cancer , relieve undue pain and heal each break and bruise. But I also wish for a world with Jason and people like him in it. I want a world accessible and habitable for people full stop not just the people we design. I worry that in our haste to make people healthy, we are in fact making people we want. We, who say we pray for healing, but in fact pray for others to be like us. We, who say were for reducing disease and promoting health, but support policies and practices aimed instead at being normal. We, who are often still unable to distinguish between positive, world-creating forms of disability and negative, world-destroying forms between Deafness , short stature or certain types of neurodiversity and chronic pain, Tay-Sachs or Alzheimers . It is with great responsibility that we as a society balance along the tightrope of biomedical progress. I long for us to find that balance. Ive certainly not found it for myself. Lest I forget how often weve lost it and how easy it is to fall, I hold dearly onto the living memory of Jason. I no longer pray for paradoxes, but for parity for the promise of a world engineered not for normality, but equality.

But that world will never come if we edit it away.

Read the original:

Gene Editing Might Mean My Brother Would've Never Existed - TIME

It’s Time to Stop Asking Whether Human Genetic Engineering Should Happen and Start Planning to Manage it Safely – HuffPost

The DNA of early human embryos carrying a sequence leading to hypertrophic cardiomyopathya potentially deadly heart defecthas been edited to ensure they would carry a healthy DNA sequence if brought to term. The Nature paper announcing this has reenergized a terrific national and international debate over whether permanent changes in DNA that can be passed from one generation to another should be made. Bioethicists are asking, Should we genetically engineer children? while some potential parents are almost certainly asking, When will this technique be available?

The Should questions bioethicists are asking are probably not relevant. The only question whose answer ultimately matters is: Can techniques like CRISP-R be used to genetically engineer children safely? Because a variety of forces guarantee that if they can be, they will be.

The key questions reliable practitioners must answer are: Can we prove it works? Then: Can it be used safely?. If yes on these questions, then we will see: Who is marketing this technique to potential parents? Finally, we will learn: Where was it done, who did it, and who paid for its use?

We are closer than ever before to using CRISP-R to replace dangerous DNA sequences with those that wont keep a baby from being healthy. Fortunately, this Nature paper leaves many questions Unanswered because the embryos were not allowed to come to term.

Most importantly, we still dont know Could the embryos have developed into viable babies? Just as in 2015 when researchers at Sun Yat-Sen University in China didnt implant engineered embryos into a womans womb, the scientists who published in Nature recently didnt feel ready (and didnt have permission) to try this potentially enormous step. As experiments proceed, this question will, at some point, be answered.

It will be answered because there is an enormous, proven market for techniques that can be used to ensure that a baby will be born without DNA sequences that can lead to genetically-mediated conditions; many of which are devastating as we have been tragically reminded of late.

Under the best circumstances, in-vitro fertilization leads to a live birth less than half of the time. As a result, whoever tries to see if an embryo that has had targeted DNA repaired using CRISP-R will doubtless prepare a lot of embryos for implanting in quite a few women. When those women are asked to carry these embryos to term we will not know about it. We will probably not find out if none of the embryos come to term successfully.

We *will* know about this procedure if even one baby comes to term and is born with the targeted genetic sequence corrected as intended. Until now, (and maybe even with our new knowledge), any baby brought to term after CRISP-R was used to edit and replace unhealthy DNA would have almost certainly had other DNA damaged in the editing process. This near-certainty and other concerns have held people back from trying to genetically engineer an embryo that they would then bring to term. They could not, until recently, have confidence that only the sequence being targeted has been affected. With this new Nature report, this, at least, is changing.

The results of these newly reported experiments are many steps closer to usability than the Chinese experiments reported in 2015. This is the nature of scientific experimentation, particularly when there is demand for the capability or knowledge being developed.

People try something. It either works or it doesnt. Sometimes when it doesnt work, we learn enough to adjust and try again. If it does work, it often doesnt function exactly the way we expected. Either way, people keep trying until either the technique is perfected or it ultimately proves to be unusable.

This Nature paper is an example of trying something and doing a better job than the first attempt. It does not represent a provably safe and reliable technique . Yet. If market driven research works as it often does, people will work hard to publish data (hopefully from reliable experimental work) suggesting they have a safe and effective technique. Doing so will let them tell some desperate set of wealthy prospective parents: We should be able to use this technique with an acceptable chance of giving you a healthy baby.

Princetons Lee Silver predicted parents desire for gene editing in his Remaking Eden, a book published in 1997. He argued this because people fear sickness or disability and feel strong personal, economic and social pressures to have healthy, beautiful children who should become healthy attractive adults.

People already spend a great deal on molecular techniques like pre-implantation genetic diagnosis (PGD). PGD is regularly used to reduce couples risk of having babies with known (or potential), chromosomal abnormalities and/or single gene mutations that can lead to thousands of DNA-mediated conditions.

As I showed in my Genetics dissertation published from Yale in 2004, different countries respond differently to controversial science like this. Similarly, different individuals responses are equally diverse. One poll indicates nearly half of Americans would use gene editing technology to prevent possible DNA-mediated conditions in their children. Policy makers who object to the technology therefore have a problem: if they succeed in blocking it somewhere, research and real world experience indicate other governments may well permit its use. If this happens, these techniques will be available to anyone wealthy and desperate enough to find providers with the marketingand hopefully scientificskill needed to sell people on trying them.

This gene editing controversy is a reminder that we are losing the capacity to effectively ask, Should we? As our knowledge of science grows, becomes more globalized, and is increasingly easy to acquire for people with different morals, needs and wants, we must soon be ready to ask, Can we? and ultimately, Will someone? Their answers will give us the best chance to ensure any babies that may come from any technique described as genetic engineering are born healthy, happy, and able to thrive.

The Morning Email

Wake up to the day's most important news.

Link:

It's Time to Stop Asking Whether Human Genetic Engineering Should Happen and Start Planning to Manage it Safely - HuffPost

Global: Engineering the Future of Our Food – STRATFOR

Biotechnology company, AquaBounty Technologies, sold 4.5 metric tons of genetically modified salmon Aug. 4 on the open Canadian market. The seminal transaction occurred after Canadian authorities approved the fish for human consumption in 2016. The sale marks a long-awaited victory for the company that has spent the better part of three decades working to bring their fast-growing salmon to dinner tables.

The modifications, which incorporate genes from two additional species of fish (the Chinook salmon and ocean pout), enable the salmon to grow in about half the time as non-engineered species. AquaBounty already has plans to expand its Panamanian production to facilities in Prince Edward Island, Canada. Additionally, the company is awaiting approval to begin production at recently acquired facilities in Indiana. Proponents see this type of engineering as a solution to growing uncertainty over supply in the market. Traditional salmon producing areas, however, have voiced objections to growing competition in a market.

Those objections have stalled the sale of the AquaBounty product in the United States, despite approval from the Food and Drug Administration (FDA) six months before the Canadian government. Specifically, debate surrounding labeling requirements (heavily backed by Alaskan Senator Lisa Murkowski) have delayed the sale of genetically modified salmon. But this is just the beginning. The journey from tank to table is important for more than just the salmon industry. Livestock producers of a number of different species also are waiting in anticipation for how this will play out. Genetic engineering trials for pigs, cattle and goats are underway. How fast policy catches up to technological developments will in part dictate the rate of adoption of biotechnology throughout the agricultural sector (in the United States and globally). This case, and other early endeavors, have the ability to set the precedent for others to follow, especially as genetic engineering techniques improve and become cheaper.

As we see genetic engineering techniques progress and knowledge spread about the purpose of specific genes, policy surrounding the sale of manipulated organisms will become crucial to the sector. In January, the U.S. Food and Drug Administration opened up a commenting period (that closed in June) on expanding the scope of its "Guidance for Industry #187." In non-legal speak, that is the directive on requirements for genetically modified or engineered labeling. In addition to the recombinant DNA technology that was prevalent in the later part of the 20th century (and what AquaBounty used to develop the salmon in question), the new language would include improved methods, including the much-touted CRISPR.

Meanwhile, the continued development of biotechnology remains a key strategy for both the United States and China, and both countries will likely remain undeterred from this approach moving forward. External drivers, demographics, changing dietary patterns and climate change are going to force producers to do more with less. Biotechnology (gene editing and the increased knowledge of genomic purpose) allow for better control of beneficial traits, whether it is a faster growing fish or pigs that emit less phosphorus. As its relevance grows, we will also see an increased emphasis on biotechnology in trade negotiations, especially as policies and protocols seek to better address emerging technologies.

More:

Global: Engineering the Future of Our Food - STRATFOR

Genetic Engineering with Strict Guidelines? Ha! – Discovery Institute

Human genetic engineering is moving forward exponentially and there is still no meaningful societal, regulatory, or legislative conversation about whether, how, and to what extent we should permit the human genome to be altered in ways that flow down the generations.

But dont worry. The Scientists assure us, when that can be done, there will (somehow) be STRICT OVERSIGHT. From the AP story:

And lots more research is needed to tell if its really safe, added Britains [Robin] Lovell-Badge. He and [Johns Hopkins University bioethicist Jeffrey] Kahn were part of a National Academy of Sciences report earlier this year that said if germline editing ever were allowed, it should be only for serious diseases with no good alternatives and done with strict oversight.

Please!No more! When I laugh this hard it makes mystomach hurt.

Heres the problem: Strict guidelines rarely are strict and they almost never offer permanent protection. Theyare ignored, unenforced, or stretched over time until they, essentially, cease to exist.

Thats awful with actions such as euthanasia. But wecant let that kind of pretense rule the day withtechnologies that could prove to be among themost powerful and potentially destructive inventions in human history. Indeed, other than nuclear weapons, I cant think of a technology with more destructive potential.

Strict oversight will have to include legal limitations and clear boundaries, enforced bystiff criminalpenalties, civil remedies, and international protocols.

They wont be easy to craft and it will take significant time to work through all of the scientific and ethical conundrums.But we havent yet made a beginning. If we wait until what may be able to be done actually can be done, it will be too late.

Photo: Genetically engineering mice, via Wikicommons.

Cross-posted at The Corner.

Read the rest here:

Genetic Engineering with Strict Guidelines? Ha! - Discovery Institute

When genetic engineering is the environmentally friendly choice – Genetic Literacy Project

Thisarticleoriginally appeared at Ensia and has been republished here with permission.

Which is more disruptive to a plant: genetic engineering or conventional breeding?

It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.

My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides. One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.

What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.

Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.

Knocking Out Susceptibility

A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of knocking out a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.

We can use CRISPR-based genome editing to create a targeted mutation in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.

There is a substantial body of research showing proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a very wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.

The Power of Viral Snippets

Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.

Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the coat protein. The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.

Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can stack resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.

Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:

Tweaking Sentry Molecules

Microorganisms can often overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called R proteins (R standing for resistance). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.

This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.

Engineered for Sustainability

The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.

Read more here:
When genetic engineering is the environmentally friendly choice - Genetic Literacy Project

Experts Call on US to Start Funding Scientists to Genetically Engineer Human Embryos – Gizmodo

Edited human embryos. Image: OHSYU

This week, news of a major scientific breakthrough brought a debate over genetically engineering humans front and center. For the first time ever, scientists genetically engineered a human embryo on American soil in order to remove a disease-causing mutation. It was the fourth time ever that such a feat has been published on, and with the most success to date. It may still be a long way off, but it seems likely that one day we will indeed have to grapple with the sticky, complicated philosophical mess of whether, and in which cases, genetically engineering a human being is morally permissible.

On the heels of this news, on Thursday a group of 11 genetics groups released policy recommendations for whats known as germline editingor altering the human genome in such a way that those changes could be passed down to future generations. The statement, from groups including the American Society for Reproductive Medicine, said that doctors should not yet entertain implanting an altered embryo in a human womb, a step which would be against the law in the United States. But they also argued that there is no reason not to use public money to fund basic research on human germline editing, contrary to a National Institutes of Health policy that has banned funding research involving editing human embryo DNA.

Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing, they wrote. There should be no prohibition on making public funds available to support this research.

Safety, ethical concerns and the impact germline editing might have on societal inequality, they wrote, would all have to be worked out before such technology is ready for the clinic.

Genetic disease, once a universal common denominator, could instead become an artifact of class, geographic location, and culture, they wrote. In turn, reduced incidence and reduced sense of shared risk could affect the resources available to individuals and families dealing with genetic conditions.

If and when embryo editing is ready for primetime, the group concluded that there would need to be a good medical reason to use such technology, as well as a transparent public debate. Some have questioned the medical necessity of embryo editing, arguing that genetic screening combined with in vitro fertilization could allow doctors to simply pick disease-free eggs to implant, achieving the same results via a method that is less morally-fraught.

In February, the National Academy of Sciences released a 261-page report that also gave a cautious green light to human gene-editing, endorsing the practice for purposes of curing disease and for basic research, but determining that uses such as creating designer babies are unethical. Other nations, like China and the UK, have forged ahead with human embryo editing for basic research, though there have been no published accounts of research past the first few days of early embryo development.

Given the way the culture, religion and regional custom impact attitudes toward genetically-engineering human life, its safe to say that this debate will not be an easy one to settle. As the policy recommendations point out, views on the matter vary drastically not just across the US, but around the world, and yet one nation making the decision to go ahead with implanting edited embryos will create a world in which that technology exists for everyone.

In the meantime, though, there are still more than a few kinks to work out in the science before were faced with these questions in the real world.

Read more:

Experts Call on US to Start Funding Scientists to Genetically Engineer Human Embryos - Gizmodo

Genetic Engineering with ‘Strict Guidelines?’ Ha! – National Review

Human genetic engineering is moving forward exponentially and we are still not having any meaningful societal, regulatory, or legislative conversations about whether, how, and to what extent we should permit the human genome to be altered in ways that flow down the generations.

But dont worry. The scientists assure us, when that can be done, there will (somehow) beSTRICT OVERSIGHT From the AP story:

And lots more research is needed to tell if its really safe, added Britains Lovell-Badge. He and Kahn were part of a National Academy of Sciences report earlier this year that said if germline editing ever were allowed, it should be only for serious diseases with no good alternatives and done with strict oversight.

Please!No more! When I laugh this hard it makes mystomach hurt.

Heres the problem: Strict guidelines rarely are strict and the almost never permanently protect. Theyare ignored, unenforced, or stretched over time until they, essentially, cease to exist.

Thats awful with actions such as euthanasia. But wecant let that kind of pretense rule the day withtechnologies that could prove to be among themost powerful and potentially destructive inventions in human history. Indeed, other than nuclear weapons, I cant think of a technology with more destructive potential.

Strict oversight will have to include legal limitations and clear boundaries, enforced bystiff criminalpenalties, civil remedies, and international protocols.

They wont be easy to craft and it will take significant time to work through all of the scientific and ethical conundrums.

But we havent made a beginning. If we wait until what may be able to be done actually can be done, it will be too late.

Wheres the leadership? All we have now is drift.

Link:

Genetic Engineering with 'Strict Guidelines?' Ha! - National Review

A Blueprint for Genetically Engineering a Super Coral – Smithsonian

In a healthy reef, coral symbionts make food for the coral animal.

A coral reef takes thousands of years to build, yet can vanish in an instant.

The culprit is usuallycoral bleaching, a disease exacerbated by warming watersthat today threatens reefs around the globe. The worst recorded bleaching eventstruck the South Pacific between 2014 and 2016, when rising ocean temperatures followed by a sudden influx of warm El Nio waters traumatizedthe Great Barrier Reef.In just one seasonbleaching decimated nearly a quarter of thevast ecosystem, which once sprawled nearly 150,000 square miles through the Coral Sea.

As awful as it was, that bleaching event was a wake-up call, says Rachel Levin, a molecular biologist who recently proposed a bold technique to save these key ecosystems. Her idea, published in the journal Frontiers in Microbiology, is simple:Rather than finding healthy symbiontsto repopulate bleached coral in nature, engineer them in the lab instead.Given that this would requiretampering with nature in a significant way, the proposal is likely to stir controversial waters.

But Levin argues that with time running out for reefs worldwide, the potential value could wellbe worth the risk.

Levin studied cancer pharmacology as an undergraduate, but became fascinated by the threats facing aquatic life while dabbling in marine science courses. She was struck by the fact that, unlike in human disease research, there were far fewer researchers fighting to restore ocean health. After she graduated, she moved from California to Sydney, Australia to pursue a Ph.D. at the Center for Marine Bio-Innovation in the University of New South Wales, with the hope of applying her expertise in human disease research to corals.

In medicine, it often takes the threat of a serious disease for researchers to try a new and controversial treatment (i.e. merging two womens healthy eggs with one mans sperm to make a three-parent baby).The same holds in environmental scienceto an extent.Like a terrible disease [in] humans, when people realize how dire the situation is becoming researchers start trying to propose much more, Levin says.When it comes to saving the environment, however, there are fewer advocates willing to implementrisky, groundbreaking techniques.

When it comes to reefscrucial marine regions that harbor an astonishing amount of diversity as well as protect land massesfrom storm surges, floods and erosionthat hesitation could be fatal.

Coral bleachingis often presented as the death of coral, which is a little misleading. Actually, its the breakdown of the symbiotic union that enables a coral to thrive. The coral animal itself is like a building developer who constructs the scaffolding of a high rise apartment complex. The developer rents out each of the billions of rooms to single-celled, photosynthetic microbes called Symbiodinium.

But in this case, in exchange for a safe place to live, Symbiodinium makes food for the coral using photosynthesis. A bleached coral, by contrast, is like a deserted building. With no tenants to make their meals, the coral eventually dies.

Though bleaching can be deadly, its actually a clever evolutionary strategy of the coral. The Symbiodinium are expected to uphold their end of the bargain. But when the water gets too warm, they stop photosynthesizing. When that food goes scarce, the coral sends an eviction notice. Its like having a bad tenantyoure going to get rid of what you have and see if you can find better, Levin says.

But as the oceans continue to warm, its harder and harder to find good tenants. That means evictions can be risky. In a warming ocean, the coral animal might die before it can find any better rentersa scenario that has decimated reef ecosystems around the planet.

Levin wanted to solve this problem,by creatinga straightforward recipe for building a super-symbiont that could repopulate bleached corals and help them to persist through climate changeessentially, the perfect tenants. But she had to start small. At the time, there were so many holes and gaps that prevented us from going forward, she says. All I wanted to do was show that we could genetically engineer [Symbiodinium].

Even that would prove to be a tall order. The first challenge was that, despite being a single-celled organism, Symbiodinium has an unwieldy genome. Usually symbiotic organisms have streamlined genomes, since they rely on their hosts for most of their needs. Yet while other species have genomes of around 2 million base pairs, Symbiodiniums genome is 3 orders of magnitude larger.

Theyre humongous, Levin says. In fact, the entire human genome is only slightly less than 3 times as big as Symbiodiniums.

Even after advances in DNA sequencing made deciphering these genomes possible, scientists still had no idea what 80 percent of the genes were for. We needed to backtrack and piece together which gene was doing what in this organism, Levin says. A member of a group of phytoplankton called dinoflagellates, Symbiodinium are incredibly diverse. Levin turned her attention to two key Symbiodinium strains she could grow in her lab.

The first strain, like most Symbiodinium, was vulnerable to the high temperatures that cause coral bleaching. Turn up the heat dial a few notches, and this critter was toast. But the other strain, which had been isolated from the rare corals that live in the warmest environments,seemed to be impervious to heat. If she could figure out how these two strains wielded their genes during bleaching conditions, then she might find the genetic keys to engineering a new super-strain.

When Levin turned up the heat, she saw that the hardySymbiodinium escalated its production of antioxidants and heat shock proteins, which help repair cellular damage caused by heat. Unsurprisingly, the normal Symbiodinium didnt. Levin then turned her attention to figuring out a way to insert more copies of these crucial heat tolerating genes into the weaker Symbiodinium, thereby creating a strain adapted to live with corals from temperate regionsbut with the tools to survive warming oceans.

Getting new DNA into a dinoflagellate cell is no easy task. While tiny, these cells are protected by armored plates, two cell membranes, and a cell wall. You can get through if you push hard enough, Levin says. But then again, you might end up killing the cells. So Levin solicited help from an unlikely collaborator: a virus. After all, viruses have evolved to be able to put their genes into their hosts genomethats how they survive and reproduce, she says.

Levin isolated a virus that infected Symbiodinium, and molecularly altered it it so that it no longer killed the cells. Instead, she engineered it to be a benign delivery system for those heat tolerating genes. In her paper, Levin argues that the viruss payload could use CRISPR, the breakthrough gene editing technique that relies on a natural process used by bacteria, to cut and paste those extra genes into a region of the Symbiodiniums genome where they would be highly expressed.

It sounds straightforward enough. But messing with a living ecosystem is never simple, says says Dustin Kemp, professor of biology at the University of Alabama at Birmingham who studies the ecological impacts of climate change on coral reefs. Im very much in favor of these solutions to conserve and genetically help, says Kemp. But rebuilding reefs that have taken thousands of years to form is going to be a very daunting task.

Considering the staggering diversity of the Symbiodinium strains that live within just one coral species, even if there was a robust system for genetic modification, Kemp wonders if it would ever be possible to engineer enough different super-Symbiodinium to restore that diversity. If you clear cut an old growth forest and then go out and plant a few pine trees, is that really saving or rebuilding the forest? asks Kemp, who was not involved with the study.

But Kemp agrees that reefs are dying at an alarming rate, too fast for the natural evolution of Symbiodinium to keep up. If corals were rapidly evolving to handle [warming waters], youd think we would have seen it by now, he says.

Thomas Mock, a marine microbiologist at the University of East Anglia in the UKand a pioneer in genetically modifying phytoplankton, also points out that dinoflagellate biology is still largely enshrouded in mystery. To me this is messing around, he says. But this is how it starts usually. Provocative argument is always goodits very very challenging, but lets get started somewhere and see what we can achieve. Recently, CSIRO, the Australian governments science division, has announced that it will fund laboratories to continue researching genetic modifications in coral symbionts.

When it comes to human healthfor instance, protecting humans from devastating diseases like malaria or Zikascientists have been willing to try more drastic techniques, such as releasing mosquitoes genetically programmed to pass on lethal genes. The genetic modifications needed to save corals, Levin argues, would not be nearly as extreme. She adds that much more controlled lab testing is required before genetically modified Symbiodinium could be released into the environment to repopulate dying corals reefs.

When were talking genetically engineered, were not significantly altering these species, she says. Were not making hugely mutant things. All were trying to do is give them an extra copy of a gene they already have to help them out ... were not trying to be crazy scientists.

Read the rest here:

A Blueprint for Genetically Engineering a Super Coral - Smithsonian

Don’t fear the rise of superbabies. Worry about who will own genetic engineering technology. – Chicago Tribune

Seen any clone armies in your backyard lately? Probably not. This might surprise you if you are old enough to remember the ethical panic that greeted the birth of Dolly the sheep, the first mammal cloned from an adult cell, in Scotland 21 years ago.

The cloned creature set off a crazy overreaction, with fears of clone armies, re-creating the dead, and a host of other horrors, monsters, abuses and terrors none of which has come to pass. That is why it is so important, amid all the moral hand-wringing about what could happen as human genetic engineering emerges, to keep our ethical eye on the right ball. Freaking out over impending superbabies and mutant humans with the powers of comic book characters is not what is needed.

An international team of scientists, led by researchers at the Oregon Health and Science University, has used genetic engineering on human sperm and a pre-embryo. The group is doing basic research to figure out if new forms of genetic engineering might be able to prevent or repair terrible hereditary diseases.

How close are they to making freakish superpeople using their technology? About as close as we are to traveling intergalactically using current rocket technology.

So what should we be worrying about as this rudimentary but promising technique tries to get off the launch pad?

First and foremost, oversight of what is going on. Congress, in its infinite wisdom, has banned federal funding for genetic engineering of sperm, eggs, pre-embryos or embryos. That means everything goes on in the private or philanthropic world here or overseas, without much guidance. We need clear rules with teeth to keep anyone from trying to go too fast or deciding to try to cure anything in an embryo intended to become an actual human being without rock-solid safety data.

Second, we need to determine who should own the techniques for genetic engineering. Important patent fights are underway among the technology's inventors. That means people smell lots of money. And that means it is time to talk about who gets to own what and charge what, lest we reinvent the world of the $250,000 drug in this area of medicine.

Finally, human genetic engineering needs to be monitored closely: all experiments registered, all data reported on a public database and all outcomes good and bad made available to all scientists and anyone else tracking this area of research. Secrecy is the worst enemy that human genetic engineering could possibly have.

Let your great-great-grandkids fret about whether they want to try to make a perfect baby. Today we need to worry about who will own genetic engineering technology, how we can oversee what is being done with it and how safe it needs to be before it is used to try to prevent or fix a disease.

That is plenty to worry about.

Arthur L. Caplan is head of the division of medical ethics at the New York University School of Medicine.

See the article here:

Don't fear the rise of superbabies. Worry about who will own genetic engineering technology. - Chicago Tribune

When genetic engineering is the environmentally friendly choice – Ensia

July 27, 2017 Which is more disruptive to a plant: genetic engineering or conventional breeding?

It often surprises people to learn that GE commonly causes less disruption to plants than conventional techniques of breeding. But equally profound is the realization that the latest GE techniques, coupled with a rapidly expanding ability to analyze massive amounts of genetic material, allow us to make super-modest changes in crop plant genes that will enable farmers to produce more food with fewer adverse environmental impacts. Such super-modest changes are possible with CRISPR-based genome editing, a powerful set of new genetic tools that is leading a revolution in biology.

My interest in GE crops stems from my desire to provide more effective and sustainable plant disease control for farmers worldwide. Diseases often destroy 10 to 15 percent of potential crop production, resulting in global losses of billions of dollars annually. The risk of disease-related losses provides an incentive to farmers to use disease-control products such as pesticides. One of my strongest areas of expertise is in the use of pesticides for disease control. Pesticides certainly can be useful in farming systems worldwide, but they have significant downsides from a sustainability perspective. Used improperly, they can contaminate foods. They can pose a risk to farm workers. And they must be manufactured, shipped and applied all processes with a measurable environmental footprint. Therefore, I am always seeking to reduce pesticide use by offering farmers more sustainable approaches to disease management.

What follows are examples of how minimal GE changes can be applied to make farming more environmentally friendly by protecting crops from disease. They represent just a small sampling of the broad landscape of opportunities for enhancing food security and agricultural sustainability that innovations in molecular biology offer today.

Genetically altering crops the way these examples demonstrate creates no cause for concern for plants or people. Mutations occur naturally every time a plant makes a seed; in fact, they are the very foundation of evolution. All of the food we eat has all kinds of mutations, and eating plants with mutations does not cause mutations in us.

Knocking Out Susceptibility

A striking example of how a tiny genetic change can make a big difference to plant health is the strategy of knocking out a plant gene that microorganisms can benefit from. Invading microorganisms sometimes hijack certain plant molecules to help themselves infect the plant. A gene that produces such a plant molecule is known as a susceptibility gene.

We can use CRISPR-based genome editing to create a targeted mutation in a susceptibility gene. A change of as little as a single nucleotide in the plants genetic material the smallest genetic change possible can confer disease resistance in a way that is absolutely indistinguishable from natural mutations that can happen spontaneously. Yet if the target gene and mutation site are carefully selected, a one-nucleotide mutation may be enough to achieve an important outcome.

There is a substantial body of research showing proof-of-concept that a knockout of a susceptibility gene can increase resistance in plants to a very wide variety of disease-causing microorganisms. An example that caught my attention pertained to powdery mildew of wheat, because fungicides (pesticides that control fungi) are commonly used against this disease. While this particular genetic knockout is not yet commercialized, I personally would rather eat wheat products from varieties that control disease through genetics than from crops treated with fungicides.

The Power of Viral Snippets

Plant viruses are often difficult to control in susceptible crop varieties. Conventional breeding can help make plants resistant to viruses, but sometimes it is not successful.

Early approaches to engineering virus resistance in plants involved inserting a gene from the virus into the plants genetic material. For example, plant-infecting viruses are surrounded by a protective layer of protein, called the coat protein. The gene for the coat protein of a virus called papaya ring spot virus was inserted into papaya. Through a process called RNAi, this empowers the plant to inactivate the virus when it invades. GE papaya has been a spectacular success, in large part saving the Hawaiian papaya industry.

Aerial view of a field trial showing virus-resistant papaya growing well while the surrounding susceptible papaya is severely damaged by the virus. Reproduced with permission from Gonsalves, D., et al. 2004. Transgenic virus-resistant papaya: From hope to reality in controlling papaya ringspot virus in Hawaii. APSnet Features. Online. DOI: 10.1094/APSnetFeature-2004-0704

Through time, researchers discovered that even just a very small fragment from one viral gene can stimulate RNAi-based resistance if precisely placed within a specific location in the plants DNA. Even better, they found we can stack resistance genes engineered with extremely modest changes in order to create a plant highly resistant to multiple viruses. This is important because, in the field, crops are often exposed to infection by several viruses.

Does eating this tiny bit of a viral gene sequence concern me? Absolutely not, for many reasons, including:

Tweaking Sentry Molecules

Microorganisms can often overcome plants biochemical defenses by producing molecules called effectors that interfere with those defenses. Plants respond by evolving proteins to recognize and disable these effector molecules. These recognition proteins are called R proteins (R standing for resistance). Their job is to recognize the invading effector molecule and trigger additional defenses. A third interesting approach, then, to help plants resist an invading microorganism is to engineer an R protein so that it recognizes effector molecules other than the one it evolved to detect. We can then use CRISPR to supply a plant with the very small amount of DNA needed to empower it to make this protein.

This approach, like susceptibility knockouts, is quite feasible, based on published research. Commercial implementation will require some willing private- or public-sector entity to do the development work and to face the very substantial and costly challenges of the regulatory process.

Engineered for Sustainability

The three examples here show that extremely modest engineered changes in plant genetics can result in very important benefits. All three examples involve engineered changes that trigger the natural defenses of the plant. No novel defense mechanisms were introduced in these research projects, a fact that may appeal to some consumers. The wise use of the advanced GE methods illustrated here, as well as others described elsewhere, has the potential to increase the sustainability of our food production systems, particularly given the well-established safety of GE crops and their products for consumption.

Link:
When genetic engineering is the environmentally friendly choice - Ensia

We Need to Talk About Genetic Engineering | commentary – Commentary Magazine

What began as a broad-based and occasionally sympathetic conduit for anti-Trump activists has evolved into a platform for the maladjusted to receive unhealthy levels of public scrutiny. The cycle has become a depressingly familiar. A relatively obscure member of the political class achieves viral notoriety and becomes a figure of cult-like popularity with some uncompromising display of opposition toward the president only to humiliate themselves and their followers in short order.

Democratic Rep. Maxine Waters is not the first to be feted by liberals as the embodiment of noble opposition to authoritarianism. In May, the Center for American Progress blog dubbed her the patron saint of resistance politics. Left-leaning viral-politics websites now routinely praise Waters as a Trump-bashing resistance leader, the Democratic rock star of 2017, and an all-around badass for her unflagging commitment to trashing the president as a crooked and racist liar, the Daily Beast observed. Waters was even honored by an audience of tweens and entertainers at this years MTV Movie Awards. Even a modestly curious review of Waters record would have led more cautious political actors to keep their distance. Time bombs have a habit of going off.

Zero hour arrived late Friday evening when Waters broke the news of a forthcoming putsch. Mike Pence is somewhere planning an inauguration, the congresswoman from California wrote. Priebus and Spicer will lead the transition. That sounds crazy, but its a familiar kind of crazy.

Anyone who has followed the congresswomans career knows she has a history of making inflammatory assertions for the benefit of her audience. It only takes a cursory google search to discover that, in her decade in politics, Citizens for Responsibility and Ethics in Washington (CREW) has named her the most corrupt member of Congress four times and the misconduct of her chief of staff ensnared her in a House Ethics Committee probe. The Resistance is willing to overlook a plethora of flaws and misdeeds as long as their prior assumptions are validated.

This is not the first time its own heroes have undercut The Resistance.

National Reviews Charles C. W. Cooke recently demonstrated why Louise Mensch, formerly a prominent poster child for The Resistance, has a habit of seeing Russians behind every darkened corner. They are responsible for riots in Missouri, Democratic losses at the polls, and Anthony Weiners libido. In Menschs imagination, a secret Republican Guard is mere moments away from dispatching this administration amid some species of constitutional coup. Cooke also noted that Mensch was elevated to unearned status as a celebrity of the Resistance by the anti-Trump commentary class desperate for what she was selling.

Menschs star has faded, but not before she managed to embarrass those who invested confidence in her sources. Those who embraced her should have been more cautious in the process. Menschs British compatriots long ago caught onto her habit of lashing out at phantoms. A prudent political class would have given her a wide berth.

25-year-old Teen Vogue columnist Lauren Duca became a sensation last December when her article accusing the president of gas lighting the nation went viral. She was festooned with praise for her work from forlorn Democratsculminating in a letter of praise from Hillary Clintonand soon found herself the subject of fawning New York Times profiles and delivering college commencement addresses without any apparent effort to vet her work.

Duca, too, became a source of bias-confirming misinformation for the left. Cute pic of Trump getting tired of winning, she tweeted with the image of an airplane going down in flames. The tweet was quickly deleted, but not before it provided a means by which the pro-Trump right could credibly undermine her integrity.

Attributable only to a plague mass hysteria, liberal Trump opponents collectively determined last December that a paranoid, 127-tweet rant was a work of unpatrolled genius. That diatribe was the work of Eric Garland, a self-described D.C. technocrat based in Missouri whos now infamous game theory polemic was an example of what he calls his spastic historical and political narratives.

Journalists and political activists who surveyed his work declared it not just compelling anti-Trump prose but near historic in its brilliance. It was anything but. Laced with profanity, exaggerated misspellings to caricature his political opponents, and an offensively indiscreet application of the caps lock, Garland threaded 9/11, Al Gore, Hurricane Katrina, Edward Snowden, and Fox News to tell the tale of how Americas sovereignty was repeatedly violated. The Resistance abandoned its better judgment.

It wasnt long before Garland had humiliated anyone who ever treated him as a credible political observer. Rupert Murdoch is a threat to Western Civilization and a Russian operative, he wrote. I WONT BE THE FIRST GARLAND OF MY LINE TO SPILL BLOOD FOR AMERICA AND THE RIGHT SIDE OF HISTORY AND NEVER THE LAST, YOU F***ERS. This kind of hyperventilating excess came as no surprise to anyone who didnt read his manic thread through tears as they struggled to come to terms with the age of Trump.

If Democrats hope to strike a favorable contrast with a lackadaisical White House, theyre not well served by surrounding themselves with reckless people. Too often, the faces of The Resistance wither in the spotlight. A serious movement attracts serious opposition. A frivolous, self-gratifying movement, well, doesnt.

View original post here:

We Need to Talk About Genetic Engineering | commentary - Commentary Magazine

Understanding the basics of Genetically-Modified Organisms – NIGERIAN TRIBUNE (press release) (blog)

Genetic modification, also known as genetic engineering, is a technologically advanced way to select desirable traits in crops. While selective breeding has existed for thousands of years, modern biotechnology is more efficient and effective because seed developers are able to directly modify the genome of the crop. Plants that are genetically engineered (GE) have been selectively bred and enhanced with genes to withstand common problems that confront farmers. These include strains of wheat that are more resistant to drought, maize that can survive pesticides, and cassava that is biofortified with additional nutrients. In addition to resistance-based attributes and biofortification, some GM crops can produce higher yields from the same planted area. GM crops have the potential to strengthen farming and food security by granting more certainty against the unpredictable factors of nature. These resistances and higher yields hold great promise for the developing world and for global food security. Yet, controversy remains over access to this biotechnology, corporation patents on certain plant strains, and claims regarding the safety and quality of GM foods as compared to non-GM foods.

Why are seed developers genetically modified organisms? Genetic modification can protect crops against threats to strong yields, such as diseases, drought, pests, and herbicides used to control weeds, and therefore improve the efficiency of food production. While farmers have been selectively breeding plants for centuries, genetic engineering allows new traits to be developed much more quickly. Utilising traditional selective breeding can take multiple growing seasons to develop and test a new variety. Genetic engineering is more precise than conventional hybridisation and therefore is less likely to produce unexpected results. For example, mutagenic breeding is not considered genetic engineering, yet it exposes plant material to radiation or chemicals to create varieties with new traits.

GMOs seem to be in the news a lot lately. Is the GMO process new? GMOs are in the news a lot right now, but not because they are new. They have actually been in our food supply for nearly 20 years. Farmers have been using hybridisation and mutation breeding of crops to improve their resistance to pests or environmental conditions for decades. But scientists began to sufficiently understand the genetic makeup of certain plants to be able to modify genes that would strengthen the plants ability to resist new pests or diseases and thus improve yields so that farmers began planting GMO crops in the mid-1990s.

What are the effects of genetic modification on the environment? In order to feed a world population that is expected to top 9 billion by 2050 and to do so in ways that do not harm the environment, farmers will need to roughly double current production levels on about the same amount of land. Genetically modified crops are more efficient and therefore use less agricultural inputs to produce the same amount of food. From 1996-2012, without GM crops the world would have needed 123 million more hectares of land for equal crop production. GM technology reduced pesticide use by 8.9 per cent in the period from 1996- 2011. Because genetically modified crops require less ploughing and chemical usage, GM technology can reduce fossil fuel and CO2 emissions. Genetic engineering can therefore help to ameliorate the effects of agriculture on the environment. Farming accounted for 24 percent of global greenhouse gas emissions in 2010 and 70 percent of freshwater use. Additionally, scientists are developing GM crops that are resistant to flood, drought, and cold, which improves agricultural resistance to climate change. GM crops also allow for greater use of no-till cultivation, which helps with carbon sequestration, soil erosion prevention, and better soil fertility.

How are GM crops related to nutrition and food security? Genetic modification can improve the nutritional profile of food and therefore serves as a key element in reducing global rates of malnutrition. For instance, golden rice is enhanced with beta-carotene and therefore provides a dose of vitamin A, a nutrient lacking in many diets around the world. Vitamin A deficiency leads to the death of nearly 700,000 children each year, so golden rice is a crucial initiative in reducing malnutrition. Additionally, in India, using BT corn led to the consumption of more nutritious foods, including fruits, vegetables, and animal products because of increased incomes. Another study in India showed that each hectare of BT cotton increased caloric intake by 74 calories per person per day and that 7.93 per cent of households using BT cotton were food insecure as opposed to 19.94 per cent of those using non-GM cotton.

What is the scientific consensus of the impact of GM foods on humans? From 2003-13, 1,783 studies showed no human or environmental dangers from genetically engineered crops, with a study concluding that the scientific research conducted thus far has not detected any significant hazard directly connected with the use of GM crops. The European Commission released a meta study of 50 research projects and found that the use of biotechnology and of GE plants per se does not imply higher risks than classical breeding methods or production technologies. One study in 2013 suggested that consumption of GM foods affected the health of lab animals, but the studys publication was subsequently pulled and its findings undermined because of digressions from standard scientific research principles.

Why use genetic engineering if other methods are just as effective at boosting productivity? Genetic engineering research has focused on overcoming problems that affect productivity, such as disease, weeds, and pests. When crops can avoid disease, weeds, and pests, crop yield is enhanced. Genetic modification is only one of the tools that farmers can use to boost productivity, and it does not eliminate the need for other advances such as hybridization, agricultural chemicals, and farm machinery. Rather, genetic modification is a technologically advanced application of biotechnology that works in conjunction with other modern agricultural practices. Dr Rose Maxwell Gidado is the Country Coordinator for Open Forum on Agricultural Biotechnology (OFAB).

Many dont know honey exportation is a goldmine NAQS boss

Prices of grains will fall soon

Read the original post:

Understanding the basics of Genetically-Modified Organisms - NIGERIAN TRIBUNE (press release) (blog)

Can genetic modification turn annual crops into perennials? – Genetic Literacy Project

The last several decades have witnessed a remarkable increase in crop yields doubling major grain crops since the 1950s. But a significant part of the world still suffers from malnutrition, and these gains in grains and other crops probably wont be enough to feed a growing global population.

These facts have put farmers and agricultural scientists on a quest to squeeze more yield from plants (and livestock), and how to make these yield increases more sustainable. The best land is already taken and could be altered by climate changes, so new crops may have to be grown in less hospitable locations, and the soils and nutrition in existing lands need to be better preserved.

Several methods are being used to boost yields with less fertilizer or pesticides, including traditional combination techniques, marker-assisted breeding, and, of course, trans- and cis-genic modifications.

One way to get more food from a plant is through another genetic switch. It may be possible to genetically, either through hybridization, mutagenesis, or genetic engineering to alter a plant so that it transforms from an annual (one you have to replant every year) to a perennial (which you plant once and can thrive for many years).

This video from Washington State University discusses some advantages of perennial crops:

Most staples, like corn, wheat, sorghum and other grains are annuals. About 75 percent of US and 69 percent of global croplands are cereal, oilseed and legumes, and all of those are annuals, said Jerry Glover, plant geneticist at the Land Institute in Salina, Kansas, and John Reganold, a geneticist at Washington State University. This means, they wrote:

They must be replanted each year from seed, require large amounts of expensive fertilizers and pesticides, poorly protect soil and water, and provide little habitat for wildlife. Their production emits significant greenhouse gases, contributing to climate change that can in turn have adverse effects on agricultural productivity.

Perennials, meanwhile, have longer growing seasons and more extensive roots, making them more productive, and more efficient at capturing nutrients and water from the soil. Replanting isnt necessary, reducing pesticide and fertilizer use, and reducing the need to use tractors and other mechanical planters in fields. Erosion also can be reduced. Its been estimated that annual grains can lose five times more water and 35 times more nitrate than perennial grains. All plants at one time were perennials, and breeders and farmers concentrated on breeding new annuals that could meet a farmers (and consumers) needs.

Now, the table has turned. Genetics may make the annual-to-perennial transformation easier. The switch to perennials is not a new avenue of research, but its been a rocky road. Scientists in the former USSR and the US tried to create perennial wheat in the 1960s, but the offspring plants were sterile and didnt deliver on desired traits. Since then, scientists worldwide have looked at deriving perennials from annual and perennial parents using molecular markers tied to desirable traits (and the genes responsible for them). This technique, and knowing the genotypes of more and more plants, has made it possible to combine desirable genes with traditional and genetic engineering methods to find these desirable perennial plants.

Glover has pointed out that molecular markers tied to desirable traits (higher yields, disease resistance, etc.) can allow for faster breeding by determining the sources of plant variation, and that plant genomics has facilitated the combination of genes without having to field test over years at a time. Genetic modifications can also help spur this along.

Andrew Paterson, head of the plant genome laboratory at the University of Georgia, has studied for years the development of perennial sorghum one of the top five cerealon the planet. Sorghums drought resistance has made it useful as a grain and biomass source in degraded soil, and a perennial version (which has happened spontaneously twice) could reduce drought losses even to other crops. Patersons genetic analysis of wild perennials and cultivated annuals has shown the genes involved in perennial ism and offered DNA markers for more precise breeding.

Techniques like CRISPR/Cas9, which can precisely edit, insert or delete genes at specific locations, are being studied for their possible role in transforming perennials, but a few challenges remain. Chung-Jui Tsai at the University of Georgia, recently showed that CRISPR could be used to alter genes in existing perennials (like fruit and nut trees, for example), once some hurdles like frequent polymorphisms and other variations could be overcome.

Still others are not so optimistic about using genetic modification to enact the perennial-annual switch. First, the whole field would require much more research funding than currently exists, Glover warns. Then, as Paterson told Brooke Borel in her article in Popular Science, perennial traits are much more complicated than those currently addressed by genetic engineering. We dont really know all of the genes involved, not yet:

We dont actually have any of the genes in hand. We know where they are in the genome and we are working on their locations more and more finely, but there arent any of these genes that we can yet point to the specific gene among the 30,000 or so in sorghum. Even if they did know the exact genes, most GMOs that are currently available only insert a single new trait rather than information from multiple genes. The technology isnt yet able to handle something so complicated as perennialism.

Andrew Porterfieldis a writer, editor and communications consultant for academic institutions, companies and non-profits in the life sciences. He is based in Camarillo, California. Follow@AMPorterfieldon Twitter.

Go here to read the rest:

Can genetic modification turn annual crops into perennials? - Genetic Literacy Project