Stem cell gene therapy for sickle cell disease advances toward clinical trials

July 1, 2013 Researchers at UCLA's Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells (HSC) from the bone marrow of patients with sickle cell disease (SCD) to treat the disease. The study was led by Dr. Donald Kohn, professor of pediatrics and microbiology, immunology and molecular genetics in the life sciences.

Kohn introduced an anti-sickling gene into the HSC to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle. The breakthrough gene therapy technique for sickle cell disease is scheduled to begin clinical trials by early 2014. The study was published online in the Journal of Clinical Investigation.

Gene Therapy

Kohn's gene therapy approach using HSC from patient's own blood is a revolutionary alternative to current SCD treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into HSC. This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling HSC will be transplanted back into the patient's bone marrow and multiplies the corrected cells that make red blood cells without sickling.

"The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human SCD bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells." Kohn said.

Kohn and colleagues found that in the laboratory the HSC produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes. The success of this technique will allow Kohn to begin clinical trials in patients with SCD by early next year.

Sickle Cell Disease

Affecting more than 90,000 patients in the US, SCD mostly affects people of Sub-Saharan African descent. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable (like a plastic bag filled with corn oil), into a rigid sickle-shaped cell (like a corn flake). Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries and deprive the organs of oxygen, which causes organ dysfunction and failure.

Current treatments include transplanting patients with donor HSC, which is a potential cure for SCD, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

CIRM Disease Team Program

Follow this link:

Stem cell gene therapy for sickle cell disease advances toward clinical trials

Gene therapy cures a severe paediatric neurodegenerative disease in animal models

Public release date: 2-Jul-2013 [ | E-mail | Share ]

Contact: Ftima Bosch Fatima.bosch@uab.cat 34-935-814-182 Universitat Autonoma de Barcelona

Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or 5. They suffer neurodegeneration, causing mental retardation, aggressiveness, hyperactivity, sleep alterations, loss of speech and motor coordination, and they die in adolescence.

A team of researchers headed by the director of the UAB's Centre for Animal Biotechnology and Gene Therapy (CBATEG), Ftima Bosch, has developed a gene therapy treatment that cures this disease in animal models, with pre-clinical studies in mice and dogs. The treatment consists of a single surgical intervention in which an adenoassociated viral vector is injected into the cerebrospinal fluid, the liquid that surrounds the brain and the spinal cord. The virus, which is completely harmless, genetically modifies the cells of the brain and the spinal cord so that they produce sulfamidase, and then spreads to other parts of the body, like the liver, where it continues to induce production of the enzyme.

Once the enzyme's activity is restored, glycosaminoglican levels return to normal for life, their accumulation in cells disappears, along with the neuroinflammation and dysfunctions of the brain and other affected organs, and the animal's behaviour and its life expectancy return to normal. While mice with the disease lived only up to 14 months, those given the treatment survived as long as healthy ones.

This is a joint project between the UAB and the pharmaceutical company Esteve. The study has been published in the online edition of The Journal of Clinical Investigation.

###

AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.

See the article here:

Gene therapy cures a severe paediatric neurodegenerative disease in animal models

Gene therapy cures a severe pediatric neurodegenerative disease in animal models

July 2, 2013 A single session of a gene therapy developed by the Universitat Autnoma de Barcelona (UAB) cures Sanfilippo Syndrome A in animal models. This syndrome is a neurodegenerative disease that affects between 1 and 9 out of every 100,000 children, and causes the death of the child on reaching adolescence.

The study has been published in The Journal of Clinical Investigation.

Sanfilippo Syndrome type A, or Mucopolysaccharidosis type IIIA (MPSIIIA), is a neurodegenerative disease caused by mutations in the gene that encodes the enzyme sulfamidase. Mutations in this gene lead to deficiencies in the production of the enzyme, which is essential for the breakdown of substances known as glycosaminoglicans. If these substances are not broken down, they accumulate in the cells and cause neuroinflammation and organ dysfunction, mainly in the brain, but also in other parts of the body. Children born with this mutation are diagnosed from the age of 4 or 5. They suffer neurodegeneration, causing mental retardation, aggressiveness, hyperactivity, sleep alterations, loss of speech and motor coordination, and they die in adolescence.

A team of researchers headed by the director of the UAB's Centre for Animal Biotechnology and Gene Therapy (CBATEG), Ftima Bosch, has developed a gene therapy treatment that cures this disease in animal models, with pre-clinical studies in mice and dogs. The treatment consists of a single surgical intervention in which an adenoassociated viral vector is injected into the cerebrospinal fluid, the liquid that surrounds the brain and the spinal cord. The virus, which is completely harmless, genetically modifies the cells of the brain and the spinal cord so that they produce sulfamidase, and then spreads to other parts of the body, like the liver, where it continues to induce production of the enzyme.

Once the enzyme's activity is restored, glycosaminoglican levels return to normal for life, their accumulation in cells disappears, along with the neuroinflammation and dysfunctions of the brain and other affected organs, and the animal's behaviour and its life expectancy return to normal. While mice with the disease lived only up to 14 months, those given the treatment survived as long as healthy ones.

This is a joint project between the UAB and the pharmaceutical company Esteve. The study has been published in the online edition of The Journal of Clinical Investigation.

Continue reading here:

Gene therapy cures a severe pediatric neurodegenerative disease in animal models

Stem-cell gene therapy for sickle-cell disease advances

Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients with sickle cell disease to treat the disease. The study was led by Dr. Donald Kohn, professor of pediatrics and of microbiology, immunology and molecular genetics.

Sickle cell disease causes the body to produce red blood cells that are formed like the crescent-shaped blade of a sickle, which hinders blood flow in the blood vessels and deprives the body's organs of oxygen.

Kohn introduced an anti-sickling gene into the hematopoietic stem cells to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle. The breakthrough gene therapy technique for sickle cell disease is scheduled to begin clinical trials by early 2014. The study was published online today ahead of press in the Journal of Clinical Investigation.

Kohn's gene therapy approach, which uses hematopoietic stem cells from a patient's own blood, is a revolutionary alternative to current sickle cell disease treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into hematopoietic stem cells. This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling hematopoietic stem cells are transplanted back into the patient's bone marrow and multiply the corrected cells that make red blood cells without sickling.

"The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human sickle cell disease bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells," Kohn said.

Kohn and colleagues found that in the laboratory the hematopoietic stem cells produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes.

Sickle cell disease mostly affects people of Sub-Saharan African descent, and more than 90,000 patients in the U.S. have been diagnosed. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable, into a rigid, sickle-shaped cell. Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries.

Current treatments include transplanting patients with donor hematopoietic stem cells, which is a potential cure for sickle cell disease, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

This study was supported in part by a Disease Team I Award from the California Institute for Regenerative Medicine, the state's stem cell research agency, which was created by a voter initiative in 2004. The purpose of the disease team program is to support research focused on one particular disease that leads to the filing of an investigational new drug application with the FDA within four years. The program is designed to speed translational research - research that takes scientific discoveries from the laboratory to the patient bedside. This requires new levels of collaboration between basic laboratory scientists, medical clinicians, biotechnology experts and pharmacology experts, to name a few.

Other support came from UCLA's Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, and from the Ruth L. Kirschstein National Research Service Award.

See the rest here:

Stem-cell gene therapy for sickle-cell disease advances

UCLA Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials

Newswise Researchers at UCLAs Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells (HSC) from the bone marrow of patients with sickle cell disease (SCD) to treat the disease. The study was led by Dr. Donald Kohn, professor of pediatrics and microbiology, immunology and molecular genetics in the life sciences.

Kohn introduced an anti-sickling gene into the HSC to capitalize on the self-renewing potential of stem cells and create a continual source of healthy red blood cells that do not sickle. The breakthrough gene therapy technique for sickle cell disease is scheduled to begin clinical trials by early 2014. The study was published online ahead of press today in Journal of Clinical Investigation.

Gene Therapy Kohns gene therapy approach using HSC from patients own blood is a revolutionary alternative to current SCD treatments as it creates a self-renewing normal blood cell by inserting a gene that has anti-sickling properties into HSC. This approach also does not rely on the identification of a matched donor, thus avoiding the risk of rejection of donor cells. The anti-sickling HSC will be transplanted back into the patients bone marrow and multiplies the corrected cells that make red blood cells without sickling.

The results demonstrate that our technique of lentiviral transduction is capable of efficient transfer and consistent expression of an effective anti-sickling beta-globin gene in human SCD bone marrow progenitor cells, which improved the physiologic parameters of the resulting red blood cells. Kohn said.

Kohn and colleagues found that in the laboratory the HSC produced new non-sickled blood cells at a rate sufficient for significant clinical improvement for patients. The new blood cells survive longer than sickled cells, which could also improve treatment outcomes. The success of this technique will allow Kohn to begin clinical trials in patients with SCD by early next year.

Sickle Cell Disease Affecting more than 90,000 patients in the US, SCD mostly affects people of Sub-Saharan African descent. It is caused by an inherited mutation in the beta-globin gene that makes red blood cells change from their normal shape, which is round and pliable (like a plastic bag filled with corn oil), into a rigid sickle-shaped cell (like a corn flake). Normal red blood cells are able to pass easily through the tiniest blood vessels, called capillaries, carrying oxygen to organs such as the lungs, liver and kidneys. But due to their rigid structure, sickled blood cells get stuck in the capillaries and deprive the organs of oxygen, which causes organ dysfunction and failure.

Current treatments include transplanting patients with donor HSC, which is a potential cure for SCD, but due to the serious risks of rejection, only a small number of patients have undergone this procedure and it is usually restricted to children with severe symptoms.

CIRM Disease Team Program This study was supported in part by a Disease Team I Award from the California Institute for Regenerative Medicine (CIRM), the states stem cell research agency created by voter initiative in 2004. The purpose of the disease team program is to support research focused on one particular disease that leads to the filing of an investigational new drug application with the FDA within four years. The program is designed to encourage translational research, which means to take scientific discoveries from the laboratory to the patient bedside as quickly as possible. This requires new levels of collaboration between basic laboratory scientists, medical clinicians, biotechnology experts and pharmacology experts, to name a few.

Other support came from the UCLA Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center and the Ruth L. Kirschstein National Research Service Award.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLAs Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu

Continued here:

UCLA Stem Cell Gene Therapy for Sickle Cell Disease Advances Toward Clinical Trials

Gene therapy – prospects and limitations: Mariam Meskhi at TEDxIBEuropeanSchool – Video


Gene therapy - prospects and limitations: Mariam Meskhi at TEDxIBEuropeanSchool
The speaker talks about the method of the gene-therapy as a solution to many health problems, but at the same time underlines it #39;s insufficiency for certain ...

By: TEDxYouth

Read more:

Gene therapy - prospects and limitations: Mariam Meskhi at TEDxIBEuropeanSchool - Video

Gene Therapy for the Treatment of Hemophilia B: Andrew M. Davidoff, MD at TEDxSonomaCounty – Video


Gene Therapy for the Treatment of Hemophilia B: Andrew M. Davidoff, MD at TEDxSonomaCounty
Andrew Davidoff, MD is the Chairman of the Department of Surgery at St. Jude Children #39;s Research Hospital and the St. Jude Children #39;s Research Hospital Endow...

By: TEDxTalks

Continued here:

Gene Therapy for the Treatment of Hemophilia B: Andrew M. Davidoff, MD at TEDxSonomaCounty - Video

No danger of cancer through gene therapy virus, study suggests

June 19, 2013 In fall 2012, the European Medicines Agency (EMA) approved the modified adeno-associated virus AAV-LPL S447X as the first ever gene therapy for clinical use in the Western world. uniQure, a Dutch biotech company, had developed AAV-LPL S447X for the treatment of a rare inherited metabolic disease called lipoprotein lipase deficiency (LPLD) which affects approximately one or two out of one million people. The disease causes severe, life-threatening inflammations of the pancreas. Afflicted individuals carry a defect in the gene coding for the lipoprotein lipase enzyme which is necessary for breakdown of fatty acids. AAV-LPLS447X shall be used as a viral vector to deliver an intact gene copy to affected cells.

The viruses modified for gene therapy cannot integrate their DNA into the host cell genome, because they lack a particular enzyme needed for this. Nevertheless, integration may happen occasionally. "We had to exclude that AAV-LPLS447X tends to integrate at sites in the genome where this integration might activate cancer-promoting genes. This is exactly what had been observed with a virus used for gene therapy," says Dr. Manfred Schmidt, a molecular biologist. Schmidt leads a research group at NCT Heidelberg and DKFZ that studies the safety of gene-therapeutic methods.

In collaboration with scientists from uniQure, the Heidelberg researchers analyzed the genome of five LPLD patients who had been treated with AAV-LPLS447X . In addition, they also studied mice following intramuscular or intravenous administration of the therapeutic virus.

The analysis of 15 million individual genomes of five treated patients showed, as expected, that AAV-LPLS447X rarely integrates into the genome of the host cells (fewer than 1 out of 1,000 AAV-LPLS447X particles). In most cases, the viral genome persists in the cytoplasm as a separate structure. If it is integrated, this happens at random sites. The researchers did not find any tendency for integration at particular sites in the genome.

Christine Kaeppel and Raffaele Fronza, first authors of the article, were very surprised to discover the AAV-LPLS447X genome in the so-called mitochondrial genome. Mitochondria are tiny membrane-enclosed structures that generate energy for the cell. They are the only cellular component aside from the nucleus containing DNA. "An adeno-associated virus has never before been observed to integrate into the mitochondrial genome on its own," reported the scientists.

"For the first time, we have thoroughly analyzed in AAV-treated patients whether and where the viral genome integrates. Now we can regard AAV-LPLS447X as safe. Those few cases where we have observed integration of viral DNA in muscle cells are barely relevant in view of all the reconstructions and rearrangements that are permanently taking place in our DNA anyway," says study director Schmidt.

AAV-LPLS447X is considered to be a prototype vector for gene therapy. "If AAV-LPLS447X stands the test, other gene therapies against more common diseases such as Huntington's disease or Parkinson's might also become possible," says Schmidt. In addition, a growing number of diseases have been found to be linked to alterations in mitochondrial genes. The newly discovered property of the AAV vector might also prove useful for correcting genetic defects in human mitochondrial DNA.

Follow this link:

No danger of cancer through gene therapy virus, study suggests

No danger of cancer through gene therapy virus

Public release date: 19-Jun-2013 [ | E-mail | Share ]

Contact: Dr. Sibylle Kohlstdt s.kohlstaedt@dkfz.de Helmholtz Association of German Research Centres

In fall 2012, the European Medicines Agency (EMA) approved the modified adeno-associated virus AAV-LPL S447X as the first ever gene therapy for clinical use in the Western world. uniQure, a Dutch biotech company, had developed AAV-LPL S447X for the treatment of a rare inherited metabolic disease called lipoprotein lipase deficiency (LPLD) which affects approximately one or two out of one million people. The disease causes severe, life-threatening inflammations of the pancreas. Afflicted individuals carry a defect in the gene coding for the lipoprotein lipase enzyme which is necessary for breakdown of fatty acids. AAV-LPLS447X shall be used as a viral vector to deliver an intact gene copy to affected cells.

The viruses modified for gene therapy cannot integrate their DNA into the host cell genome, because they lack a particular enzyme needed for this. Nevertheless, integration may happen occasionally. "We had to exclude that AAV-LPLS447X tends to integrate at sites in the genome where this integration might activate cancer-promoting genes. This is exactly what had been observed with a virus used for gene therapy," says Dr. Manfred Schmidt, a molecular biologist. Schmidt leads a research group at NCT Heidelberg and DKFZ that studies the safety of gene-therapeutic methods.

In collaboration with scientists from uniQure, the Heidelberg researchers analyzed the genome of five LPLD patients who had been treated with AAV-LPLS447X . In addition, they also studied mice following intramuscular or intravenous administration of the therapeutic virus.

The analysis of 15 million individual genomes of five treated patients showed, as expected, that AAV-LPLS447X rarely integrates into the genome of the host cells (fewer than 1 out of 1,000 AAV-LPLS447X particles). In most cases, the viral genome persists in the cytoplasm as a separate structure. If it is integrated, this happens at random sites. The researchers did not find any tendency for integration at particular sites in the genome.

Christine Kaeppel and Raffaele Fronza, first authors of the article, were very surprised to discover the AAV-LPLS447X genome in the so-called mitochondrial genome. Mitochondria are tiny membrane-enclosed structures that generate energy for the cell. They are the only cellular component aside from the nucleus containing DNA. "An adeno-associated virus has never before been observed to integrate into the mitochondrial genome on its own," reported the scientists.

"For the first time, we have thoroughly analyzed in AAV-treated patients whether and where the viral genome integrates. Now we can regard AAV-LPLS447X as safe. Those few cases where we have observed integration of viral DNA in muscle cells are barely relevant in view of all the reconstructions and rearrangements that are permanently taking place in our DNA anyway," says study director Schmidt.

AAV-LPLS447X is considered to be a prototype vector for gene therapy. "If AAV-LPLS447X stands the test, other gene therapies against more common diseases such as Huntington's disease or Parkinson's might also become possible," says Schmidt. In addition, a growing number of diseases have been found to be linked to alterations in mitochondrial genes. The newly discovered property of the AAV vector might also prove useful for correcting genetic defects in human mitochondrial DNA.

###

Read the original here:

No danger of cancer through gene therapy virus

Plastic Surgery – Is Gene Therapy the Future?

Los Angeles, California (PRWEB) June 16, 2013

According to a May 29, 2013 NBC News article, titled Gene Therapies for Regenerative Surgery Are Getting Closer, Says Review in Plastic and Reconstructive Surgery, researchers have made significant progress in the development of gene therapy techniques that can grow skin, bone and tissue for reconstructive surgery. Researchers from Padua University Hospital in Italy who conducted the review claim the potential benefits of using gene therapy in reconstructive surgery are numerous. (Go to goo.gl/kYjFa)

According to the article, gene therapy may be instrumental in solving a problem that most plastic and reconstructive surgeons face, which is the lack of sufficient tissue to correct deformities that patients have in certain areas of their body. For example, while most surgeons can effectively treat small burns, they often face major challenges while trying to treat patients with large burns, because such patients generally lack sufficient tissue to develop skin flaps that can adequately cover the affected area(s).

What this means, says Dr. Simon Ourian, Medical Director of Epione Beverly Hills, is that despite undergoing plastic surgery, some patients still need to use cosmetics to improve the appearance of their burns. However, by using gene therapy to promote the growth of specific tissue, reconstructive surgeons can, in future, improve the quality of plastic surgery treatments.

Further according to the report, in addition to improving the effectiveness of regenerative surgery through growth of different tissue, gene therapy can be used to control the growth factors that aid in skin healing, in the bone formation process, and the regeneration of injured nerves.

I look forward to seeing the results of future research and hope that the day we have practical ways to apply this technology isnt too far off, says Dr. Ourian.

Dr. Ourian has been a pioneer in laser technology and non-invasive aesthetic procedures including Restylane, Juvderm, Radiesse and Sculptra. These treatments are used for the correction or reversal of a variety of conditions such as acne, acne scars, skin discoloration, wrinkles, stretch marks, varicose veins, cellulite, and others. More information about gene therapy can be found on Epiones website.

See original here:

Plastic Surgery – Is Gene Therapy the Future?

Clinical Grade RetroNectin® Reagent Available To Support Gene Therapy Clinical Research

MOUNTAIN VIEW, Calif., June 17, 2013 /PRNewswire/ --In an effort to aid progress in gene therapy clinical research, representatives of Clontech laboratories, Inc. and its parent company Takara Bio Inc. announce the availability of clinical grade RetroNectin reagent for direct supply to biomedical researchers.

RetroNectin reagent is designed to enable efficient retroviral transduction of genes into hematopoietic stem cells as well as lymphocytes and other blood cells. The RetroNectin method has been recognized as a standard gene transduction method in ex vivo gene therapy around the world. In addition, RetroNectin reagent has another remarkable feature that can also be useful for cell therapies: during the expansion culture of human T lymphocytes, RetroNectin reagent helps to increase proportion of nave T cells. This RetroNectin induced T cell method has already become available as a cancer therapy in three Japanese clinics under technical support from Takara Bio.

Takara Bio is the exclusive supplier of RetroNectin reagent, a recombinant human fibronectin fragment developed in 1995 by Takara Bio in collaboration with Indiana University. It has been used in 68 gene therapy clinical trials in 44 institutes and hospitals in 10 countries to date.

Previously, access to clinical-grade RetroNectin reagent required a Material Transfer Agreement (MTA) between a research institution and Takara Bio. Researchers may now submit direct orders to Clontech or local Takara Bio subsidiaries for RetroNectin (GMP), which is manufactured as a quality-assured product according to guidelines for Good Manufacturing Practice (GMP). The Drug Master File for RetroNectin (GMP) has been filed with the U.S. Food and Drug Administration. In a recent study published in Science Translational Medicine in March 2013, scientists at Memorial Sloan-Kettering Cancer Center reported an immunotherapy strategy for the treatment of five adult patients with acute lymphoblastic leukemia. Each patient's T cells were extracted, altered by introduction of DNA that would cause the cells to attack tumor cells, and infused back into the patient's bloodstream. According to researchers, all patients achieved tumor eradication and complete remission. RetroNectin reagent was used during T cell transduction.

Corresponding author Dr. Renier J. Brentjens said, "It was very clear to us even 10 years ago that the use of RetroNectin coated plates markedly, massively improved gene transfer." Dr. Brentjens continued, "The methodologies that many of us now use have been developed over a number of years. Once you have a system that works, you become very reliant and dependent on those reagents."

"RetroNectin reagent has become a standard reagent for many gene transfer protocols worldwide," said Carol Lou, General Manager of Clontech. "We are sure that such direct access to RetroNectin (GMP) without MTA execution will make this reagent available much more easily to any scientists or clinicians interested in RetroNectin clinical applications, which aligns with Takara Bio's mission of contributing to the health of mankind through gene therapy."

About Clontech Laboratories, Inc.Clontech Laboratories, Inc., a wholly-owned subsidiary of Takara Bio Inc., develops, manufactures, and distributes a wide range of life science research reagents under the Clontech and Takara brands. Key products include the Living Colors fluorescent proteins; high-performance qPCR and PCR reagents (including theTaKaRa Ex Taq,TaKaRa LA Taq, Titanium, and Advantage enzymes); RT enzymes and SMART library construction kits; the innovative In-Fusion cloning system; Tet-based inducible gene expression systems; and a range of Macherey-Nagel nucleic acid purification tools. These and other products support applications including gene discovery, regulation, and function; protein expression and purification; RNAi and stem cell studies; and plant and food research. For more information, visit http://www.clontech.com.

About Takara Bio Inc.Takara Bio Inc. is an innovative biotechnology company based in Shiga, Japan. As a world leader in biotechnology research and development, Takara Bio was the first company to market PCR technology in Japan and is also the developer of the RetroNectin reagent, which is used as a world-standard in gene therapy protocols. In addition to providing research reagents and equipment to the life science research market, Takara Bio has active research and product development activities in the fields of gene and cell-based therapy, and agricultural biotechnology; and is committed to preventing disease and improving the quality of life for all people through the use of biotechnology. Through strategic alliances with other industry leaders, the Company aims to extend its reach around the world. More information is available athttp://www.takara-bio.com.

For more information, contact:

Lorna Neilson, Ph.D. Director, Business Development Clontech Laboratories, Inc. A TakaraBio Company lorna_neilson@clontech.com (650) 919-7372

The rest is here:

Clinical Grade RetroNectin® Reagent Available To Support Gene Therapy Clinical Research

Global Gene Therapy Market Analysis

NEW YORK, June 17, 2013 /PRNewswire/ --Reportlinker.com announces that a new market research report is available in its catalogue:

Global Gene Therapy Market Analysis

http://www.reportlinker.com/p0324817/Global-Gene-Therapy-Market-Analysis.html#utm_source=prnewswire&utm_medium=pr&utm_campaign=Biological_Therapy

Gene therapy is the treatment of a disease by replacing, altering, or supplementing a gene that is absent or abnormal and whose absence or abnormality is causing the disease. It has evolved as one of the most sought after research objectives for 'difficult to cure' diseases. The gene therapy market in spite of presenting few marketable products and being nascent in terms of revenue generation holds tremendous growth potential. As per a new estimation carried out in our latest study, the global gene therapy industry has the potential to become a multi-million dollar industry by the end of 2017 as new products, especially those in the advanced stage of clinical studies or with pending approvals, may enter the market to boost the growth.

According to RNCOS' new research report, "Global Gene Therapy Market Analysis", major focus has been made on the ongoing clinical trials for the development of innovative products. Majority trials are focused on oncology and they prove promising on global scale for US. In this context, the study provides a comprehensive overview of the various aspects of clinical trials in the gene therapy market such as phases, geographies, vector types etc.

The report provides an in-depth and prudent analysis of the industry and research developments taking place at the global level. Primarily the market is presently dominated by oncology applications with several companies and academic institutions focusing on novel and 'difficult to treat' cancers. Other therapeutic areas seeing developments on gene therapy include cardiac conditions, genetic disorders and neurological diseases. An effective analysis of the key therapeutic areas has been included in the report.

Brief overview of the key geographies in the gene therapy market and the regulatory scenario governing the industry has also been included in the study to present a balanced outlook. The report covers how major trends and drivers, including gene silencing, advanced therapies etc will propel the industry's growth. With a view to understanding the competitive landscape, the profiles of key market players are included in the report to present a complete picture of the global gene therapy market.1. Analyst View

2. Research Methodology

3. Gene Therapy - An Introduction3.1 Classification of Gene Therapy Techniques3.2 Physical Methods of Gene Transfer3.2.1 Electroporation3.2.2 Hydrodynamic3.2.3 Microinjection3.2.4 Particle Bombardment3.2.5 Ultrasound-mediated Transfection3.3 Vectors for Gene Therapy3.3.1 Adenoviral Vectors3.3.2 Adeno-associated Virus Vectors3.3.3 Retroviral Vectors3.3.4 Lentiviral Vectors3.3.5 Plasmid DNA

4. Industry Trends and Drivers

See the article here:

Global Gene Therapy Market Analysis

Gene Therapy – Technologies, Markets and Companies 2013

DUBLIN, June 17, 2013 /PRNewswire/ --

Research and Markets (http://www.researchandmarkets.com/research/dfcq6z/gene_therapy) has announced a new report "Gene Therapy - Technologies, Markets and Companies" to its offering.

(Logo: http://photos.prnewswire.com/prnh/20130307/600769 )

Gene therapy can be broadly defined as the transfer of defined genetic material to specific target cells of a patient for the ultimate purpose of preventing or altering a particular disease state. Genes and DNA are now being introduced without the use of vectors and various techniques are being used to modify the function of genes in vivo without gene transfer. If one adds to this the cell therapy particularly with use of genetically modified cells, the scope of gene therapy becomes much broader. Gene therapy can now be combined with antisense techniques such as RNA interference (RNAi), further increasing the therapeutic applications. This report takes a broad overview of gene therapy and is the most up-to-date presentation from the author on this topic built-up from a series of gene therapy reports written by him during the past decade, including a textbook of gene therapy and a book on gene therapy companies. This report describes the setbacks of gene therapy and renewed interest in the topic.

Gene therapy technologies are described in detail including viral vectors, nonviral vectors and cell therapy with genetically modified vectors. Gene therapy is an excellent method of drug delivery and various routes of administration, as well as targeted gene therapy, are described. There is an introduction to technologies for gene suppression as well as molecular diagnostics to detect and monitor gene expression.

Clinical applications of gene therapy are extensive and cover most systems and their disorders. Full chapters are devoted to genetic syndromes, cancer, cardiovascular diseases, neurological disorders and viral infections with emphasis on AIDS. Applications of gene therapy in veterinary medicine, particularly for treating cats and dogs, are included.

Research and development is in progress in both the academic and the industrial sectors. The National Institutes of Health (NIH) of the US is playing an important part. As of 2012, over 2030 clinical trials have been completed, are ongoing or have been approved worldwide. A breakdown of these trials is shown according to the areas of application.

The voluminous literature on gene therapy was reviewed and selected 750 references are appended in the bibliography. The references are constantly updated. The text is supplemented with 73 tables and 15 figures.

Profiles of 181 companies involved in developing gene therapy are presented, along with 204 collaborations. There were only 44 companies involved in this area in 1995. In spite of some failures and mergers, the number of companies has increased more than 4-fold within a decade. These companies have been followed up since they were the topic of a book on gene therapy companies by the author of this report. John Wiley & Sons published the book in 2000 and from 2001 to 2003, updated versions of these companies (approximately 160 at mid-2003) were available on Wiley's web site. Since that free service was discontinued and the rights reverted to the author, this report remains the only authorized continuously updated version on gene therapy companies.

Benefits of this report

Read more:

Gene Therapy - Technologies, Markets and Companies 2013

National Tay-Sachs & Allied Diseases Association Receives U.S. Orphan Drug Designation for Novel Gene Therapy

BOSTON, June 13, 2013 (GLOBE NEWSWIRE) -- The U.S. Food and Drug Administration (FDA) has granted orphan drug designation to National Tay-Sachs and Allied Diseases Association (NTSAD) for development of the first-ever treatment for Tay-Sachs and Sandhoff, rare diseases that are fatal in young children and extremely debilitating in their late-onset form.

The gene therapy in development would correct an enzyme deficiency that causes the progressive neurodegeneration that marks these diseases. Both Tay Sachs and Sandhoff are lysosomal storage diseases, a group of more than 50 genetically inherited disorders characterized by deficiency of a vital enzyme that prevents the proper breakdown of undigested material inside cells.

Orphan drug designation, which is intended to facilitate drug development for rare diseases, provides substantial benefits to the sponsor, including the potential for funding of certain clinical studies, study-design assistance and several years of market exclusivity for the product upon regulatory approval.

"This orphan drug designation is a giant step forward in our efforts to bring hope to Tay-Sachs patients and their families, as today there are no treatments," said NTSAD President, Shari Ungerleider. "Gene therapy has the potential to be a one-time transformative therapy for patients suffering from rare neurodegenerative genetic disorders such as Tay-Sachs. NTSAD, along with its funding partners, is committed to advancing the clinical and commercial development of our gene therapy platform because of the potential life-changing benefit it could have for patients and their families."

Based on promising results of animal studies that have been ongoing since 2007, the Tay-Sachs Gene Therapy Consortium research team is completing pre-clinical studies in advance of a Phase I clinical trial.

About the Tay-Sachs Gene Therapy Consortium

The Tay-Sachs Gene Therapy (TSGT) Consortium was founded in 2007 to advance human clinical trials in the quest for a gene therapy treatment for Tay-Sachs and Sandhoff diseases. The multidisciplinary team, led by Miguel Sena Esteves, Ph.D., recipient of the 2011 Outstanding New Investigator Award from the American Society of Gene & Cell Therapy, includes scientists and clinicians from Auburn University, Boston College, Cambridge University-UK, Massachusetts General Hospital/Harvard Medical School, University of Massachusetts Medical School, and New York University Medical School.

About NTSAD

The oldest rare disease advocacy organization in the nation, National Tay-Sachs and Allied Diseases Association (NTSAD) was founded in 1957 by concerned parents whose children were affected by Tay-Sachs disease or related rare genetic lysosomal storage diseases and leukodystrophies. Today NTSAD continues its multifaceted support of affected families and funds research seeking a treatment or cure. NTSAD also pioneered the development of community education about carrier screening programs for Tay-Sachs and related diseases, which became models for all genetic diseases. More information is available at http://www.ntsad.org.

See the rest here:

National Tay-Sachs & Allied Diseases Association Receives U.S. Orphan Drug Designation for Novel Gene Therapy

Scientists find one lab virus in millions that could improve gene therapy for retinal diseases

From millions of random mutations, scientists identify a virus that could make gene therapy for inherited retinal diseases safer and more effective.

A new delivery mechanism shuttles gene therapy deep into the eyes retina to repair damaged light-sensing cells without requiring a surgeon to put a needle through this delicate tissue. The approach could make it substantially easier to treat inherited forms of eye disease with this approach.

Although still largely experimental, gene therapy is gradually moving to the hospital. The technology is involved in some 2,000 completed and ongoing clinical trials, and last December the European Union approved a gene therapy treatment for a metabolic disorder (see Gene Therapy on the Mend as Treatment Gets Western Approval). But until recently, most gene therapy has involved using naturally occurring viruses to deliver a genetic payload, says David Schaffer, a biomedical engineer at the University of California, Berkeley, and a 2002 MIT Technology Review Innovator Under 35, who was involved in the work. These viruses have evolved to succeed in a natural setting, and we are using them to do something completely different, he says.

The naturally occurring viruses that have been used to deliver therapy to the eye must be injected directly into the damaged retina, which can cause additional damage by detaching light-detecting photoreceptors from their supporting layer. To build a better system, Schaffer and colleagues turned to whats known as directed evolution. The researchers produced millions of random variations of the adeno-associated virus, a harmless virus often used as a vector for gene therapy. From this vast pool, they ultimately identified the single strain that was the best at delivering new genes into damaged retinas. The work is published today in the journal Science Translational Medicine.

Working with mice that had two different genetic forms of retinal disease, the Berkeley researchers injected the millions of viruses into the fluid that fills the main body of the eye. From this fluid, naturally occurring adeno-associated viruses cannot reach the light-sensing cells of the retina because they get caught up on other surrounding cells. But by removing the rodent retinas and examining them, the team was able to identify strains that with mutations that enabled them to reach the critical tissue. Repeating the process led them to the strain that was most successful at reaching mouse photoreceptors.

In one of the conditions the group studied, called X-linked retinoschisis, a bad copy of a gene that makes a glue-like protein causes layers of the retina to rip apart, resulting in loss of vision. The experiments suggest that a working version of that gene, carried in the lab-identified virus, could potentially reverse that damage.

The virus carried it across the whole retina, and as the retina glued itself back together, its response to light returned, says John Flannery, a neurobiologist at the University of California, Berkeley, who was also involved with the work. The team also found that the viral vector was able to deliver a gene into the retina of a monkey, although not as effectively as in mice. The researchers are currently using directed evolution to find the best strain for delivering genes to primate retinas.

Directed evolution now has been used by a number of groups, and its turning out to be a very robust way to find vectors that have novel properties that could be useful in gene-therapy settings, says Mark Kay, director of the Human Gene Therapy program at Stanford University School of Medicine. The technique has already been used to identify engineered viruses that can better deliver gene therapies to the heart and other tissues, says Kay, and its likely to become more widely used in the future.

The next big hurdle, Kay adds, will be to test these DNA-delivering viruses in patients. Lab animal results dont always replicate in humans, even when using close species, he says.

Read more here:

Scientists find one lab virus in millions that could improve gene therapy for retinal diseases

Easy and effective therapy to restore sight: Engineered virus will improve gene therapy for blinding eye diseases

June 12, 2013 Researchers at UC Berkeley have developed an easier and more effective method for inserting genes into eye cells that could greatly expand gene therapy to help restore sight to patients with blinding diseases ranging from inherited defects like retinitis pigmentosa to degenerative illnesses of old age, such as macular degeneration.

Unlike current treatments, the new procedure is quick and surgically non-invasive, and it delivers normal genes to hard-to-reach cells throughout the entire retina.

Over the last six years, several groups have successfully treated people with a rare inherited eye disease by injecting a virus with a normal gene directly into the retina of an eye with a defective gene. Despite the invasive process, the virus with the normal gene was not capable of reaching all the retinal cells that needed fixing.

"Sticking a needle through the retina and injecting the engineered virus behind the retina is a risky surgical procedure," said David Schaffer, professor of chemical and biomolecular engineering and director of the Berkeley Stem Cell Center at UC Berkeley. "But doctors have no choice, because none of the gene delivery viruses can travel all the way through the back of the eye to reach the photoreceptors -- the light sensitive cells that need the therapeutic gene.

"Building upon 14 years of research, we have now created a virus that you just inject into the liquid vitreous humor inside the eye, and it delivers genes to a very difficult-to-reach population of delicate cells in a way that is surgically non-invasive and safe. "It's a 15-minute procedure, and you can likely go home that day."

The engineered virus works far better than current therapies in rodent models of two human degenerative eye diseases, and can penetrate photoreceptor cells in monkeys' eyes, which are like those of humans.

Schaffer said he and his team are now collaborating with physicians to identify the patients most likely to benefit from this gene delivery technique and, after some preclinical development, hope soon to head into clinical trials.

Schaffer and John Flannery, UC Berkeley professor of molecular and cell biology and of optometry, along with colleagues from UC Berkeley's Helen Wills Neuroscience Institute and the Flaum Eye Institute at the University of Rochester in New York, published the results of their study on June 12 in the journal Science Translational Medicine.

Harnessing a benign virus for gene therapy

Three groups of researchers have successfully restored some sight to more than a dozen people with a rare disease called Leber's congenital amaurosis, which leads to complete loss of vision in early adulthood. They achieved this by inserting a corrective gene into adeno-associated viruses (AAV), and injecting these common but benign respiratory viruses directly into the retina. The photoreceptor cells take up the viruses and incorporate the functional gene into their chromosomes to make a critical protein that the defective gene could not, rescuing the photoreceptors and restoring sight.

See more here:

Easy and effective therapy to restore sight: Engineered virus will improve gene therapy for blinding eye diseases