Cellular & Gene Therapy Products

The Center for Biologics Evaluation and Research (CBER) regulates cellular therapy products, human gene therapy products, and certain devices related to cell and gene therapy. CBER uses both the Public Health Service Act and the Federal Food Drug and Cosmetic Act as enabling statutes for oversight.

Cellular therapy products include cellular immunotherapies, and other types of both autologous and allogeneic cells for certain therapeutic indications, including adult and embryonic stem cells. Human gene therapy refers to products that introduce genetic material into a persons DNA to replace faulty or missing genetic material, thus treating a disease or abnormal medical condition.

Although some cellular therapy products have been approved, CBER has not yet approved any human gene therapy product for sale. However, the amount of cellular and gene therapy-related research and development occurring in the United States continues to grow at a fast rate. CBER has received many requests from medical researchers and manufacturers to study cellular and gene therapies and to develop cellular and gene therapy products. In addition to regulatory oversight of clinical studies, CBER provides proactive scientific and regulatory advice to medical researchers and manufacturers in the area of novel product development.

View original post here:

Cellular & Gene Therapy Products

Gene Therapy News — ScienceDaily

In Lung Cancer, Not All HER2 Alterations Are Created Equal Jan. 28, 2016 Study shows two distinct causes of HER2 activation in lung cancer: mutation of the gene and amplification of the gene. In patient samples of lung adenocarcinoma, 3 percent were found to have HER2 ... read more Dec. 12, 2015 Results from a long-term clinical trial conducted by cancer researchers show that combining radiation treatment with 'suicide gene therapy' provides a safe and effective one-two punch ... read more Gene Therapy Used to Extend Estrogen's Protective Effects on Memory Dec. 8, 2015 The hormone estrogen helps protect memory and promote a healthy brain, but this effect wanes as women age, and even estrogen replacement therapy stops working in humans after age 65. Now researchers ... read more Shrinking Tumors With an RNA Triple-Helix Hydrogel Glue Dec. 7, 2015 An efficient and effective delivery vehicle for gene therapy has been developed by researchers who have used it to shrink tumors by nearly 90 percent in a pre-clinical model of triple-negative breast ... read more Characteristics That May Increase a Breast Cancer Survivor's Risk of Developing Leukemia Following Treatment Identified Dec. 7, 2015 A new analysis indicates that certain characteristics may increase a breast cancer survivor's risk of developing leukemia after undergoing chemotherapy and/or radiation. The findings are a first ... read more Early Gene Therapy Results in Wiskott-Aldrich Syndrome Promising Dec. 6, 2015 Researchers reported promising preliminary outcomes for the first four children enrolled in a US gene therapy trial for Wiskott-Aldrich syndrome (WAS), a life-threatening genetic blood and immune ... read more Gene Therapy Restores Immunity in Children and Young Adults With Rare Immunodeficiency Dec. 6, 2015 Gene therapy can safely rebuild the immune systems of older children and young adults with X-linked severe combined immunodeficiency (SCID-X1), a rare inherited disorder that primarily affects males, ... read more MECP2 Duplication Syndrome Is Reversible, Study Suggests Nov. 25, 2015 The MECP2 Duplication Syndrome is reversible, say researchers. Importantly their study paves the way for treating duplication patients with an antisense oligonucleotide ... read more Gene Therapy: Promising Candidate for Cystic Fibrosis Treatment Nov. 16, 2015 An improved gene therapy treatment can cure mice with cystic fibrosis (CF). Cell cultures from CF patients, too, respond well to the treatment, suggest new encouraging ... read more Link Found Between Genetic Mutations, Proliferation, Immune Surveillance in Lung Cancer Nov. 11, 2015 There are four gene mutations (KRAS, TP53, STK11, and EGFR) that most commonly occur in lung cancer; however, there are limited effective therapies to target these mutations. With this in mind, ... read more Nov. 9, 2015 Genome editing techniques for blood stem cells just got better, thanks to a team of researchers. In a new article, they describe a new, more efficient way to edit genes in blood-forming or ... read more Nov. 2, 2015 Eye drops have been used to deliver the gene for a growth factor called granulocyte colony stimulating factor (G-CSF) in a mouse model of brain ischemia. The treatment led to a significant reduction ... read more Oct. 21, 2015 Delivering the hormone leptin directly to the brain through gene therapy aids weight loss without the significant side effect of bone loss, according to new ... read more New Study Explains Why You Bulk Up With Resistance Training, Not Endurance Training Oct. 20, 2015 Resistance and endurance exercises activate the same gene, PGC-1?, but the processes stimulated for the muscles to adapt depend on the exercise type. A new study offers insight into why the physical ... read more Researchers Identify Gene That Increases Risk of Sudden Death in Patients With Mild Epilepsy Oct. 15, 2015 A gene mutation that increases the risk of sudden unexpected death in epilepsy (SUDEP) in patients with mild forms of the disease has been discovered by a group of ... read more Oct. 8, 2015 Compared with direct gene injection, cell-mediated GDNF gene delivery led to considerably more pronounced preservation of myelinated fibers in the remote segments of the spinal cord (5 vs 3 mm from ... read more 'Alarm Clock' of a Leukemia-Causing Oncogene Identified Oct. 8, 2015 Mutations in DNMT3A gene cause MEIS1 activacion, triggering leukemia, a research team ... read more Oct. 5, 2015 A novel mouse model for the vision disorder Leber hereditary optic neuropathy (LHON) has been developed by researchers who have found that they can use gene therapy to improve visual function in the ... read more Genetic Polymorphism Associated With Lung Cancer Progression Oct. 5, 2015 Genetic polymorphisms associated with cancer progression lead to variations in gene expression and may serve as prognostic markers for lung cancer, researchers show. They found that in patients with ... read more New Hope for Lou: Unexplored Therapeutic Targets for ALS Sep. 3, 2015 No cures exist for amyotrophic lateral sclerosis (ALS), and the only approved therapy slows the progression by only a few months. A new study identifies a promising unexplored avenue of treatment for ... read more

Thursday, January 28, 2016

Saturday, December 12, 2015

Tuesday, December 8, 2015

Monday, December 7, 2015

Sunday, December 6, 2015

Wednesday, November 25, 2015

Monday, November 16, 2015

Wednesday, November 11, 2015

Monday, November 9, 2015

Monday, November 2, 2015

Wednesday, October 21, 2015

Tuesday, October 20, 2015

Thursday, October 15, 2015

Thursday, October 8, 2015

Monday, October 5, 2015

Thursday, September 3, 2015

Tuesday, September 1, 2015

Wednesday, August 12, 2015

Friday, August 7, 2015

Thursday, July 30, 2015

Monday, July 20, 2015

Saturday, July 11, 2015

Friday, July 10, 2015

Thursday, July 9, 2015

Friday, July 3, 2015

Thursday, June 25, 2015

Friday, June 19, 2015

Monday, June 15, 2015

Friday, June 12, 2015

Thursday, June 11, 2015

Wednesday, June 10, 2015

Sunday, May 31, 2015

Tuesday, May 26, 2015

Thursday, May 14, 2015

Wednesday, May 13, 2015

Monday, May 11, 2015

Tuesday, May 5, 2015

Monday, May 4, 2015

Sunday, May 3, 2015

Wednesday, April 29, 2015

Monday, April 27, 2015

Wednesday, April 22, 2015

Tuesday, April 21, 2015

Friday, April 17, 2015

Thursday, April 16, 2015

Monday, April 13, 2015

Wednesday, April 8, 2015

Monday, April 6, 2015

Friday, April 3, 2015

Wednesday, March 25, 2015

Monday, March 23, 2015

Monday, March 16, 2015

Thursday, March 12, 2015

Thursday, March 5, 2015

Monday, March 2, 2015

Monday, February 23, 2015

Wednesday, February 18, 2015

Wednesday, February 4, 2015

Tuesday, February 3, 2015

Thursday, January 29, 2015

Tuesday, January 20, 2015

Monday, December 15, 2014

Monday, December 8, 2014

Thursday, December 4, 2014

Tuesday, November 25, 2014

Thursday, November 20, 2014

Tuesday, November 18, 2014

Wednesday, November 12, 2014

Wednesday, October 29, 2014

Wednesday, October 8, 2014

Thursday, October 2, 2014

Thursday, September 25, 2014

Wednesday, September 17, 2014

Tuesday, September 9, 2014

Tuesday, September 2, 2014

Friday, August 29, 2014

Thursday, August 28, 2014

Monday, August 25, 2014

Wednesday, August 20, 2014

Monday, August 11, 2014

Sunday, August 10, 2014

Tuesday, August 5, 2014

Friday, July 11, 2014

Thursday, July 10, 2014

Sunday, June 29, 2014

Thursday, June 26, 2014

Read the original:

Gene Therapy News -- ScienceDaily

Gene therapy – ScienceDaily

Gene therapy is the insertion of genes into an individual's cells and tissues to treat a disease, and hereditary diseases in which a defective mutant allele is replaced with a functional one.

Although the technology is still in its infancy, it has been used with some success.

Antisense therapy is not strictly a form of gene therapy, but is a genetically-mediated therapy and is often considered together with other methods.

In most gene therapy studies, a "normal" gene is inserted into the genome to replace an "abnormal," disease-causing gene.

A carrier called a vector must be used to deliver the therapeutic gene to the patient's target cells.

Currently, the most common type of vectors are viruses that have been genetically altered to carry normal human DNA.

Viruses have evolved a way of encapsulating and delivering their genes to human cells in a pathogenic manner.

Scientists have tried to harness this ability by manipulating the viral genome to remove disease-causing genes and insert therapeutic ones.

Target cells such as the patient's liver or lung cells are infected with the vector.

The vector then unloads its genetic material containing the therapeutic human gene into the target cell.

The generation of a functional protein product from the therapeutic gene restores the target cell to a normal state.

In theory it is possible to transform either somatic cells (most cells of the body) or cells of the germline (such as sperm cells, ova, and their stem cell precursors).

All gene therapy to date on humans has been directed at somatic cells, whereas germline engineering in humans remains controversial.

For the introduced gene to be transmitted normally to offspring, it needs not only to be inserted into the cell, but also to be incorporated into the chromosomes by genetic recombination.

Somatic gene therapy can be broadly split in to two categories: ex vivo, which means exterior (where cells are modified outside the body and then transplanted back in again) and in vivo, which means interior (where genes are changed in cells still in the body).

Recombination-based approaches in vivo are especially uncommon, because for most DNA constructs recombination has a very low probability.

See the original post:

Gene therapy - ScienceDaily

Gene Therapy TV the Human Genetic Revolution

Cystic fibrosis (CF) is the most common, classic mendelian autosomal recessive, life-limiting disease among the white population.1,2 It is a multisystem disease that results from loss of function in the CF transmembrane conductance regulator (CFTR) gene, classically leading to respiratory tract, gastrointestinal (GI), pancreatic, and reproductive abnormalities.2 CF was recognized as a distinct clinical entity in 1938 and was believed to be invariably fatal during infancy.3

Since the 1970s, the life spans of CF patients have been prolonged, with advances in early diagnosis, care, and disease therapy. Early diagnosis has been improved by newborn screening. Advances in care include management of meconium ileus and improved methods of sputum clearance and managing respiratory failure. Improvements in disease therapy include better antibiotics, especially macrolides, and better pancreatic enzymes. With current management, almost 80% of patients with CF will reach adulthood; thus, CF is no longer a purely pediatric disease.4-6 For patients born in the 1990s, the median survival is predicted to be greater than 40 years.5 As more CF patients are surviving longer, adult issues including careers, relationships, and family are becoming important.6 A range of comorbid conditions that are more prevalent in adult CF patients are also being encountered with increasing frequency as this population matures, including osteoporosis, diabetes, joint diseases, malnutrition, severe lung disease with bronchiectasis, colonization by resistant pathogens, severe gastric reflux, chronic sinusitis, and periportal fibrosis.7

Delivery of health care to the CF patient is now relevant to the nonpediatric physician. In fact, the multifaceted needs of the adult CF patient have led to the development of a nationwide network of more than 83 adult CF care programs in conjunction with the Cystic Fibrosis Foundation.8 These comprehensive CF centers provide patients with a multidisciplinary approach based on the original pediatric CF centers. The aims of adult CF care include delivery of optimum care, access to pertinent medical resources, coordination of care among specialists and primary care providers, and a strong emphasis on independence and improving the quality of life of the patient who has CF.5 The physician is also faced with another challenge, in which the adult CF patient presents with atypical features that might have gone unrecognized. In this chapter, we cover the salient features of CF, including prevalence and the issues surrounding neonatal screening, pathophysiology, diagnosis, and new and emerging therapies for this complex multisystem disease.

CF is a genetic disease affecting approximately 30,000 children and adults in the United States. A defective gene causes the body to produce an abnormally thick, sticky mucus that leads to airway obstruction, subsequent life-threatening lung infections, end-stage lung disease, and bronchiectasis. These thick secretions also obstruct the pancreas, preventing digestive enzymes from reaching the intestines, leading to pancreatic insufficiency, malabsorption, and, in extreme cases, malnutrition.

Back to Top

CF is a disease that occurs predominantly in the white population, with a rate of one in 2500 live births. Two percent to 5% of whites are carriers of the CFTR gene mutation (having one normal and one abnormal gene) but have no overt clinical signs of disease. CF is not rare in African American populations, but it occurs at the much lower frequency of approximately one in 17,000 live births.9 In general, mutations of the CF gene are most prevalent in persons of northern and central European ancestries or of Ashkenazi Jewish descent, and they are rarely found in Native Americans, Asians, or native Africans.10 Although the prevalence of CF is lower in the African American population, the mean age at diagnosis is younger in black patients than in white patients. Overall, the clinical manifestations are similar in both racial groups except that black patients tend to have more severe GI issues, including poor nutritional status.10 There are more than 23,000 patients with CF in the United States.6

CF occurs equally often in male and female patients. In general, female patients with CF fare significantly worse than male patients. Female patients become infected with Pseudomonas aeruginosa earlier and have worse pulmonary function, worse nutritional status, and earlier mortality.11-13 A Cystic Fibrosis Registry analysis from the University of Wisconsin14 demonstrated that CF is diagnosed in girls at a later age than boys by at least 4 months, or even later when the analysis was limited to children presenting with only respiratory symptoms (40.7 months for diagnosis in girls vs. 22.3 months for diagnosis in boys). Implications for disease outcomes caused by delayed diagnosis of CF in girls may be present based on this recent analysis, but the reason for this delay is not clear or obvious.15

Back to Top

CF is an autosomal recessive trait caused by mutations at a single gene locus on the long arm of chromosome 7. The gene product cystic fibrosis transmembrane conductance regulator (CFTR) is a 1480-amino acid polypeptide.16,17 CF reflects the loss of function of the CFTR protein. The CFTR protein normally regulates the transport of electrolytes and chloride across epithelial cell membranes.18

More than 1000 mutations of the CFTR gene have been described.19 The most common mutations of CFTR can be classified into six groups based on their known functional consequences.20 This classification allows categorization of CFTR mutations based on molecular mechanisms, but phenotypic appearance depends on the type of mutation (class), location of the gene, molecular mechanism, and interaction with other mutations, as well as genetic and environmental influences.21

The most common mutation of the CFTR gene is caused by deletion of phenylalanine at position 508 (F508) and occurs with varying frequency in different ethnic groups.22 Worldwide, this allele is responsible for approximately 66% of all CF chromosomes.23

Back to Top

About 1000 infants are born with CF every year. CF is diagnosed in most of these children at a mean age of 3 to 4 years.24 Nearly 10% of CF patients receive their diagnosis when they are older than 18 years.

Newborn screening for CF has been instituted in eight states, but national screening plans have not been mandated. In all, CF is diagnosed in 10% of infants in the United States either by prenatal diagnosis (3%) or by newborn screening (7%).25 Newborn CF screening has been advocated by clinicians and CF groups as an early means of identifying asymptomatic patients so as to initiate early therapy to prevent long-term sequelae of the disease.26 The currently available genetic screening tools for CF include the Guthrie test, in which measurements of the immunoreactive trypsinogen in dried blood are taken, and measurement of the most common CF mutations, including F508.26 F508 is the most commonly reported gene mutation and is responsible for 70% of the mutated alleles in white patients. It is caused by a 3-bp deletion in the CFTR gene, resulting in the loss of the amino acid at position 508 of the CFTR protein. Homozygosity of this mutation is severe, resulting in both pulmonary and pancreatic disease.27

Recommendations for carrier screening or population screening have been proposed by the American College of Obstetricians and Gynecologists, the National Institutes of Health, and the American College of Medical Genetics; they are designed to identify at-risk couples before the birth of a child with CF.28 Screening should be offered to adults with a family history of CF, reproductive partners of persons with CF, and white (including Ashkenazi Jewish) patients who are planning pregnancy. Screening should be made available to persons of color.

The efficacy of CF screening program is based on a multitude of factors. One factor is identification of the CF carrier status of each partner, which helps to determine the risk to the fetus. Issues to keep in mind include the gestational age at which the couple presents for prenatal care and the feasibility of pregnancy termination. These factors should be included in the CF screening discussion with parents. The screening of couples can follow two approaches: The female partner is screened first, and if she tests positive for CF carrier status, then the male partner is tested; or both partners are screened concurrently to use time efficiently for decision making, especially if more than one recessive disorder is being considered. Important information to discuss with patients before screening include the aim of screening, the voluntary nature of screening, medical and genetic issues surrounding CF, the prevalence of CF, the interpretation of the test results, and individual values.29

Carrier screening neither detects all mutations that could be present nor estimates the residual risk (the chance that the patient still carries a copy of a CFTR mutation despite negative testing). CF is an autosomal recessive disorder, and persons with CF typically have inherited one mutated allele from each parent. It is very rare to inherit two mutated alleles from one parent and none from the other.29,30

For couples who have one child with CF or who are known to be carriers, prenatal diagnosis of CF is available through chorionic villus sampling in the first trimester or by amniocentesis in the second or third trimester. Some patients undergo prenatal testing to help in deciding to terminate or continue the pregnancy.

Back to Top

Signs and symptoms of CF are listed in Box 1.

Adapted from Welsh MJ, Tsui L-C, Boat TF, etal: Cystic fibrosis. In Scriver CR, Beaudet AL, Sly WS, etal (eds): The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw-Hill, 1995, p 3801. 2005 The Cleveland Clinic Foundation.

Because the epithelial cells of an organ are affected by a variety of CFTR mutations, the consequences of the mutation vary depending on the organ involved. The pathologic changes differ in the secretory cells, sinuses, lungs, pancreas, liver, or reproductive tract. The hallmark of CF and the cause of death in more than 90% of patients is chronic pulmonary disease caused by bacterial and viral pathogens and leading to a host inflammatory response. The most profound changes occur in the lungs and airways, where chronic infections involve a limited number of organisms including P. aeruginosa, which is implicated most often, followed by Staphylococcus aureus, Haemophilus influenzae, and Stenotrophomonas maltophilia.6 Children with CF are first infected with Staphylococcus and Haemophilus species and later with Pseudomonas species.

Several theories have been proposed to explain the limited number of organisms involved in CF pulmonary infections, including the inflammation-first hypothesis,31 the infection-first hypothesis,32 the cell-receptor hypothesis,17 and the salt defensins hypothesis.33 The salt defensins hypothesis proposes that CF airway cells have properties similar to those of sweat glands that inactivate substances called defensins, leading to bacterial multiplication and infections. These theories, however, do not explain the presence of mucoid S. aureus or mucoid-type P. aeruginosa.

The isotonic fluid depletion and anoxic mucus theory proposes that water- and volume-depleted airway fluid leads to mucus viscosity, subsequent defective ciliary clearance, and a cough that is inadequate to clear the airways. Thus, bacteria in the CF lung are trapped within this viscous airway fluid and multiply within anaerobic growth conditions by changing from a nonmucoid to a mucoid type of organism.34-36 The transformation of these bacteria to a biofilm-encased form is a means of protection from normal host defenses and antibiotics, making eradication difficult.37 A neutrophil-dominated airway inflammation is certainly present in CF lung disease, even in clinically stable patients.31,38

It seems that early pediatric colonization with either P. aeruginosa or S. aureus has a significant impact on CF lung disease in adulthood. Another organism unique to CF with a significant impact on adult CF lung disease is Burkholderia cepacia. Earlier, this organism was uniformly associated with poor clinical outcomes, but now it is recognized that outcomes might depend on the actual genotype of the organism.39

Clinically, CF pulmonary exacerbations are manifested as an increase in respiratory symptoms including cough and sputum production, with associated systemic symptoms that include malaise and anorexia.40 Patients rarely have fever and leukocytosis, and in most cases radiographic changes are minimal during an exacerbation.9 An exacerbation can be documented by a decrease in pulmonary function, which usually returns to normal after the acute exacerbation resolves. As the lung disease progresses, bronchiolitis and bronchitis become evident, with bronchiectasis as a consequence of the persistent obstruction-infection insult. Overall, bronchiectasis in CF is more severe in the upper lobes than in the lower lobes. Pathologic examinations have demonstrated bronchiectatic cysts in more than 50% of end-stage CF lung on autopsy studies.41 Subpleural cysts often occur in the upper lobes and can contribute to the frequent occurrence of pneumothorax in patients with late-stage CF. The reported incidence of spontaneous pneumothorax in CF ranges between 2.8% and 18.9%.42 The patient with spontaneous pneumothorax usually presents with acute onset of chest pain or dyspnea. In one study, chest pain was the manifesting symptom in more than 50% of patients. Dyspnea occurred in more than 65% of patients.43 In the same study, hemoptysis was present in 19% of patients, probably as a result of bronchial artery enlargement, and subsequent tortuosity within ectatic airways made vessels delicate and more prone to bleed.44

Children without a prior, established diagnosis of CF often present with cough and upper respiratory tract infections that persist longer than expected. Patients whose CF is diagnosed when they are older often do not have the underlying pancreatic insufficiency that is typical of the younger patient with classic CF. Patients with CF diagnosed in adulthood usually present with chronic respiratory infections, but these are usually milder and less likely to be pseudomonal.42

Several interstitial lung diseases have been described during autopsy of the CF lung, including the usual interstitial pneumonitis, bronchiolitis obliterans organizing pneumonia, and diffuse alveolar damage.45 The upper respiratory tract is also involved in CF, most patients suffer from acute and chronic sinusitis caused by hypertrophy and hyperplasia of the secretory components of the sinus tract.46 Another common feature is the presence of pedunculated nasal polyps.47 Sleep-disordered breathing and nocturnal hypoxia, mainly during rapid-eye-movement (REM) sleep and hypoventilation, have also been described in CF patients.48

GI symptoms in CF manifest early and continue throughout the life span of a CF patient. Because of defects in CFTR, meconium ileus can occur at birth, and distal intestinal obstruction syndrome (the meconium ileus equivalent) occurs in 40% of older CF patients. The distal intestinal obstruction syndrome has been associated with inadequate use of pancreatic enzyme and dietary indiscretion without appropriate use of pancreatic enzyme.9 CF patients with obstruction can present with abdominal pain and often a palpable mass in the right lower quadrant on physical examination. Associated symptoms include anorexia, nausea, vomiting, and obstipation. With more frequent events, adhesions can develop due to inflammation, leading to a mechanically dysfunctional intestine that can eventually require surgical resection.

As a result of the CFTR defect, the biliary ducts can become plugged and clogged, leading to liver involvement and biliary cirrhosis in 25% of patients with CF. Hepatic steatosis can result from malnutrition, and congestion can result from hypoxia-induced cor pulmonale.2 Symptomatic liver disease with the sequelae of cirrhosis, including esophageal varices, is uncommon. Fecal loss of bile acids is increased in CF, leading to a reduction in the bile salt pool and a propensity for cholelithiasis. Approximately 30% of adult CF patients present with a hypoplastic, poorly functioning gallbladder, and about one third of that population develops gallstones.49,50

About 90% of patients with CF have pancreatic insufficiency. It is believed to be related to reduced volumes of pancreatic secretions and reduced concentrations of bicarbonate excretion. As a result, digestive proenzymes are retained when the pancreatic duct is blocked, leading to organ tissue destruction and fibrosis. Lipids and fat-soluble vitamins (D, E, K, and A) are therefore malabsorbed, and the malabsorption can eventually lead to a hypermetabolic state and increased endobronchial infections because of an inverse relation between metabolic states and lung function in CF patients.51 Patients with no evidence of pancreatic insufficiency usually manifest milder disease and are less likely to have the F508 mutation.9

CF-related diabetes usually develops after the second decade of life and rarely before the age of 10 years, due to sparing of Langerhans cells. Over time, pancreatic destruction and fibrosis occur, caused by obstruction of the pancreatic ducts and later leading to amyloid deposition, and diabetes ensues.52,53 Patients with CF-related diabetes experience more severe lung disease and nutritional deficiencies than CF patients without diabetes. Bone disease, including osteoporosis and osteopenia, is multifactorial in CF because of malnutrition, cytokines, and hormonal disorders in androgen (hypogonadism) and estrogen production and because of glucocorticoid therapy.54

Now that many more CF patients are surviving into their 40s, issues of family and children have gained more attention. Most male CF patients are infertile because of aspermia secondary to atretic or bilateral absence of the vas deferens or seminal vesicle abnormalities.55 It is believed that during fetal life, the vas deferens becomes plugged with mucoid secretions and subsequently gets reabsorbed. Libido and sexual performance are not affected. Artificial insemination may be used for couples desiring offspring by obtaining microscopic epididymal sperm sampling. Female CF patients usually have normal reproductive tracts, although the cervical mucus may be tenacious as a result of CFTR mutation, thus blocking the cervical canal and possibly interfering with fertility. Overall, women with CF are not as infertile as their male counterparts, and birth control must be discussed with female patients reaching sexual maturity.56 The endometrium and fallopian tubes contain very small amounts of CFTR and usually remain normal.57 Onset of menarche is usually normal except in girls who are severely ill and undernourished.

Since the 1960s, the prognosis for CF and pregnancy has improved greatly. Maternal deaths usually occur in women with the most severe lung disease. It appears from multiple case studies that the decline of lung function and the absolute value of the FEV1 may be more important in determining fetal outcome.58,59 One study, by Canny and colleagues, recommended an FEV1 of greater than 70% as a requirement for a successful pregnancy outcome.59 Normal lung function leads to a normal pregnancy. Pulmonary status can worsen in women with poor lung function during pregnancy, but this is still debated. Termination of pregnancy has been recommended if the FEV1 is less than 50%; however, reports do exist of successful pregnancies with low FEV1.60 Extremes of low body weight have resulted in terminations and premature deliveries and may be a relative contraindication.61 In terms of infant health, it should be kept in mind that all infants will be carriers of a maternal gene for CF. Case reports have reported fetal anomalies caused either by treatment, by maternal complications, or by chance itself.57

Vaginal yeast infections and urinary incontinence have now become major issues in female CF patients as they mature. Many patients have persistent yeast infections as a result of frequent antibiotic therapy. Suppression of cough in an attempt to prevent urinary leak can prevent women from aggressively continuing chest physiotherapy.62,63

During the great summer heat wave of 1939 it was discovered that patients with CF were especially susceptible to heat prostration and associated cardiovascular collapse and death after initial symptoms. This sweat defect was discovered by Di SantAgnese and eventually led to the modern day sweat test used in the diagnosis of CF. In the sweat duct, CFTR is the only channel by which chloride can be reabsorbed from sweat.63,64

Back to Top

In 1998, the Cystic Fibrosis Foundation issued a consensus statement regarding the diagnosis of CF.1 According to the panel, the diagnosis of CF should be made on the basis of one or more characteristic phenotypic features: history of a CF sibling, presence of a positive newborn screening test, and laboratory confirmation of a CFTR abnormality by an abnormal sweat chloride test, identification of mutations in a gene known to cause CF, or in vivo demonstration of an ion transport abnormality across the nasal epithelium (Figure 1). However, if these classic criteria as described by the committee are not present, CF still cannot be ruled out in its entirety. In patients who present later in childhood or in early adulthood, these classic criteria might not be present. In these patients, typical pulmonary symptoms or GI symptoms may be absent, and instead pancreatitis, male infertility, or sinusitis or nasal polyps may be present.18

Sweat testing, in which a minimally acceptable volume or weight of sweat (50mg) must be collected during a 30-minute period to ensure an average sweat rate of 1g/m2 per minute, using the Gibson and Cooke method.63,64 A sweat chloride reading of more than 60mmol/L on repeated analysis is consistent with a diagnosis of CF but must be interpreted in the context of the patients history, clinical presentation, and age.1 Approximately 5% of patients with CF have normal sweat test results.7 A negative sweat test does not rule out the possibility of CF in the presence of appropriate symptoms and clinical signs (pancreatitis, sinus disease, and azoospermia) and should be repeated. False positives can result for many reasons, but poor technique and patient nutritional status, including anorexia, can yield false results.

Nasal potential measurements measure the voltage difference and correlate with the movement of sodium across the cell membrane. In CF, the CFTR mutation renders this physiologic function abnormal, leading to a large drop in the potential in patients with CF. The presence of nasal polyps or irritated nasal mucosa can yield a false-negative result. Overall, testing using this method is complicated and time consuming.65

Because of the more than 1000 CFTR mutations associated with CF, commercially available probes test only for a limited number of mutations, which constitute more than 90% of the most common mutations known to cause CF but which can vary from region to region. A mutation can be found in most symptomatic patients, but in a small percentage the mutation can be absent.66 Therefore, clinical manifestations or family history are important to the diagnosis. If an abnormality does exist, the combination of two CF mutations plus an abnormal sweat chloride test is accepted for diagnosis. Mutation analysis can be used not only to confirm diagnosis but also to provide genetic information for family members, predict certain phenotypic features, and possibly help in allocating patients for research trials.

In patients with atypical features, a number of clinical and radiologic tests may be performed to assess for a CF phenotype, including assessment of respiratory tract microbiology, chest radiographs, computed tomography of the chest, sinus evaluation, genital tract evaluation, semen analysis, and pancreatic functional assessment. The hallmarks of CF are pancreatic insufficiency and malabsorption, which can lend themselves to laboratory examination such as measurement of serum trypsinogen or pancreas-specific elastase, and fecal fat analysis or reduced fecal concentration of chymotrypsin.67,68 In addition, pansinusitis is so common in CF patients and generally uncommon in non-CF children that the presence of this entity on examination and sinus radiographs should prompt a suspicion of CF.69 In a male patient with obstructive azoospermia confirmed with testicular biopsy, CF should be strongly considered, although other diseases, such as Youngs syndrome, can cause pulmonary disease and azoospermia.70

Airway inflammation, even in the absence of active infection, is present in young and older patients with CF. Therefore, bronchoalveolar lavage (BAL) can show a predominance of neutrophils in patients with CF. In atypical presentations, with no evidence of pulmonary disease, a BAL with evidence of a high neutrophil count can provide further support for the diagnosis of CF in the presence of azoospermia or pancreatic disease.47 Isolation of the mucoid type of P. aeruginosa by BAL or sputum analysis, oropharyngeal swab, or sinus culture is highly suggestive of CF.1

Back to Top

The cure for CF is to restore the function of CFTR. This has been attempted with in vivo gene therapy in CF patients using adenoviral vectors and cationic liposome transfer, although lasting physiologic effects have not been noted.71,72 Although it is still far from being a standard treatment, gene therapy for CF has been making significant strides.

Protein modification is based on the concept that the abnormal CFTR protein can be taught to transport water and electrolytes. The CFTR F508 protein mutation is the most common mutation responsible for CF. This abnormal mutation is recognized by the endoplasmic reticulum and degraded rather than glycosylated and transported to the cell surface. Aminoglycosides, including gentamicin, allow few of the CFTR mutations to reach the respiratory epithelial cells in patients with CF. Other compounds, including phenylbutyrate, phenybutyrate, and genistein, have been tested to act as similar chaperones to the CFTR mutation.73-76

Another ongoing approach includes gene transfer, in which both endogenous stem cells in the lung and mouse-derived cells have been noted to transform into airway and epithelial cells after systemic adminstration.77

Since the early 1990s, the Cystic Fibrosis Foundation has developed guidelines to help guide the care of patients with this complex disease (Table 1).1

Adapted from Cystic Fibrosis Foundation: Cystic Fibrosis Foundation Patient Registry Annual Data Report 2002. Bethesda, Md, Cystic Fibrosis Foundation, 2003.

Respiratory disease is the major cause of mortality and morbidity in CF. All patients with CF should be monitored for changes in respiratory disease. A persistent cough in a CF patient is not normal, and the cause should be aggressively pursued.

Spirometry is a useful tool for monitoring pulmonary status. Initial lung function in most CF patients is normal. Later, the small peripheral airways become obstructed, leading to changes on spirometry at low lung volumes. Later still, decreased flow occurs at larger lung volumes. CF usually produces an obstructive pattern on spirometry, but a restrictive pattern can indicate substantial gas trapping. In general, a 10% decrease in FEV1 is considered a sign of worsening lung function and possibly a sign of a respiratory infection.78 Patients with an FEV1 of less than 30% of predicted are at higher risks for nocturnal hypoxia and hypercapnia and should be evaluated for nocturnal desaturation.

Oxygen saturation should be monitored routinely to assess the need for supplemental oxygen in patients with moderate to severe disease. Structural changes can also be noted using radiographic studies. Annual chest radiographs are recommended for unstable CF patients and may be useful in documenting the progression of disease or response to treatment. In patients with stable clinical states, chest radiographs should be performed every 2 to 4 years instead of annually. If bronchiectasis is suspected, high-resolution computed tomography is indicated (see Fig. 1).78

Inhaled bronchodilators, specifically agonists, can be administered by nebulizer, metered-dose inhaler, or oral inhaler in CF patients with a documented drop in FEV1 by 12% or 200mL, indicating bronchodilator response in the effort to treat airway hyperreactivity.79 Few studies show significant improvement in clinical pulmonary function with routine use of bronchodilator therapy. Long-term use of agonists should be approached with caution, because animal studies have shown submucosal gland hypertrophy and a possible hypersecretory state with prolonged use, although no human studies have duplicated this finding.80 Salmeterol, a long-acting agonist, is effective in decreasing nocturnal hypoxia in patients with CF.81 Hypertonic saline, either a 6% or a 3% solution, has been shown to reduce sputum viscoelasticity and to increase cough clearance in CF patients.82

Dornase alfa (recombinant human deoxyribonuclease I; Pulmozyme) in addition to hypertonic saline is believed to improve mucociliary clearance by hydrolyzing extracellular DNA, which is present at high levels in CF patients. Improved lung function has been noted with the use of this drug. In a multicenter placebo-controlled study, patients treated with dornase alfa had a 12.4% improvement in FEV1 above baseline and a 2.1% increase compared with those receiving placebo (P

Airway clearance techniques should be routinely performed on a daily basis by all CF patients86 before eating, and usually bronchodilators are used during or before airway clearance treatment. Inhaled corticosteroids and antibiotics should usually be reserved until the airway clearance technique is completed so that airways have fewer secretions, allowing greater penetration of medications. In selecting a particular treatment, the patients age, preference, and lifestyle should be taken into account, because no one technique is superior.

Chest physiotherapy consisting of chest percussion and postural drainage (chest clapping) is the primary method of secretion clearance. The patient is usually positioned so that gravity assists in draining mucus from areas of the lung while avoiding the head-down position. Using cupped hands or a clapping device, the chest wall is vibrated or percussed to clear mucus. The therapy can be used on patients of all ages and can be concentrated in certain areas of the lungs that need more attention. Usually, an additional caregiver is needed to provide this treatment, but patients who are independent may be able to perform their own percussion on the front and sides of the chest.87 Assisting the cough of a CF patient through external application of pressure to the epigastric or thoracic cage can assist in the clearance.87

A forced exhalation, or huff, during mid or low lung volumes can improve mucus clearance. A technique called forced expiration consists of two huffs followed by relaxed breathing. Unlike postural drainage, the active cycle of breathing treatment improves lung function without decreasing oxygenation and does not need an assistant.88 This airway clearance technique is a combination of breathing control, thoracic expansion, and the forced expiration technique. It improves oxygen delivery to the alveoli and distal airways and promotes clearance of mucus to the proximal airways, to be cleared by huffing.89

Autogenic drainage is a method of breathing performed at three different lung volumes to augment airflow in the different divisions of the airways. Air needs to be moved in rapidly to unstick mucus and avoid airway collapse. No desaturations occur during this technique, but it does require concentration and might not be appropriate for young CF patients.88

The application of positive expiratory pressure (PEP) by mechanical ventilation or by intermittent positive pressure breathing devices can assist in airway collapse in CF. Bronchiectasis resulting in wall weakness can lead to collapse and retained secretions. Low-pressure PEP, high-pressure PEP, and oscillation PEP are three methods to help reduce airway collapse, all using a device that provides expiratory lengthening and manometric measurements at the mouth.87 Oscillating PEP can enhance clearance of secretions in a way that is relatively easy for the patient. It is low cost, and it is easily movable.90

High-frequency chest wall compression is performed using a compression vest that allows therapy to large chest-wall areas simultaneously. No assistance is needed with this therapy, and it may be ideal for the independent CF patient.91

Intrapulmonary percussive ventilation provides frequent, small, low-pressure breaths to the airways in an oscillatory manner. This method is limited by its high cost and lack of portability, but unlike some other devices it can be used to deliver medications.78

The effect of exercise in CF is not clear. Whether it enhances mucus clearance is debatable, but quality of life improves and there is a lower mortality rate among CF patients who exercise regularly.78 Regular exercise enhances cardiovascular fitness, improves functional capacity, and improves quality of life; therefore, exercise should be advocated strongly in the adult CF patient.5

Some of the contraindications to airway therapy include poorly controlled reflux disease, massive hemoptysis, and the presence of an untreated pneumothorax.

Improved antibiotics against bacterial infections, especially P. aeruginosa, have resulted in an increased life span for the CF patient. The aim of CF therapy should be prevention of bacterial lung infections. Environmental hygiene measures, including cohorting patients according to infection status, can limit cross-reaction.92 The most important bacterial organisms in CF are S. aureus, P. aeruginosa, and B. cepacia, but others have also emerged including S. maltophilia, Achromobacter xylosoxidans, and nontuberculous bacteria.93 Intravenous antibiotics are the mainstay of therapy for acute exacerbations. The choice of antibiotic is difficult in CF because of resistance patterns; therefore, the choice should be based on the most recent sensitivities of the surveillance sputum cultures. If a recent culture is not available, antibiotic coverage should include treatment for both Staphylococcus and Pseudomonas species. Most centers typically choose a third-generation cephalosporin and an aminoglycoside, given for 2 to 3 weeks intravenously at higher doses because of the volume of distribution in CF patients.

Inhaled antibiotic aerosols can effectively minimize toxicity and allow certain aminoglycosides to be administered at ome. Limiting factors include cost, taste, and distribution in severe disease and acute exacerbations.9 Many CF centers have adopted the Copenhagen Protocol in dealing with infection when, with the first isolation of Pseudomonas species, oral ciprofloxacin and inhaled colistin are started, with intravenous antibiotics given every 4 months to prevent reinfection. Cohorting and environmental and nutritional issues are monitored as well, leading to a significant reduction of chronic infection with Pseudomonas species and better pulmonary function.76

Several large randomized studies have demonstrated a benefit of macrolides in CF patients. The results of these investigations seem to indicate that the immunomodulatory effect of these medications and not the antibacterial effect is responsible for the outcomes of the medication. Experts have suggested using macrolides for 6 months (azithromycin or clarithromycin) in CF children or in adults not improving on conventional therapy.94 Azithromycin has been shown to be highly effective in improving pulmonary function over a 6-month period in CF patients homozygous for F508 and not receiving dornase alfa.95

In patients with allergic bronchopulmonary aspergillosis or asthma, oral corticosteroids can be used. Although alternate-day steroids have been used in the past for CF exacerbations to reduce airway inflammation, experts agree that this method should be used more cautiously. Ibuprofen has been used as an anti-inflammatory agent, and in one trial lung function declined more slowly in ibuprofen users.96 Other therapies currently undergoing trials include surfactant to reduce sputum adhesiveness, gelsolin to sever F-actin bonds in sputum (thus reducing the tenacity of sputum), and thymosin B 4 to improve sputum transport.76

In advanced lung disease resulting from CF, the options for treatment are limited. Lung transplantation is the only effective therapeutic option not only to prolong survival (1 year survival >80%; 5-year survival, 60%97 ) but also to improve quality of life. The International Lung Transplant Committee issued guidelines in 1998 for the selection of lung transplantation candidates.98 Based on these criteria, CF patients should be referred for transplantation when the FEV1 is less than 30% of predicted, if hypoxia or hypercapnia is present, if hospitalizations increase in frequency, or if hemoptysis or cachexia is an issue (Box 2). Early in the history of lung transplantation, CF patients colonized with B. cepacia were not candidates for transplantation, but recent advances in careful, specific taxonomic testing of B. cepacia have allowed this patient population to be eligible for transplantation at many centers, including our own.99

Note: Young female patients should be referred earlier due to overall poor prognosis. Adapted from Boehler A: Update on cystic fibrosis selected aspects related to lung transplantation. Swiss Med Wkly 2003;133:111-117.

Severe liver disease, including portal hypertension, is present in 3% of the CF population. In this population, combined liver and lung transplantation should be considered. Overall survival in combined liver and lung transplantation is 64% at 1 year and 56% after 5 years.100 Patients with severe cachexia and a low body mass index (

Pleural adhesion and previous pleurodesis are not contraindications to transplantation. If pleurodesis is indicated, we recommend that it be performed in conjunction with a transplantation center to minimize any complications that can occur at the time of transplantation.

Unstable CF patients requiring mechanical ventilation are not candidates for lung transplantation at any transplant center. Meyers and colleagues reported 1-year outcomes in stable, mechanically ventilated patients who underwent transplantation.102 Currently, only a limited number of centers perform lung transplantation in ventilator-dependent patients.

Recent attention has focused on living lobar transplantation, which involves the removal of a lower lobe from each of two donors and subsequent transplant into a child or small adult.103 Short-term outcomes have been comparable with those using cadaveric transplants. This procedure involves three patients and thus a possible increase in the potential morbidity and mortality, although no donor deaths have been reported.104

For more information on identifying which patients are more likely to benefit from receiving a lung transplant, contact the Cleveland Clinic Foundation Lung Transplant Center or the Cystic Fibrosis Foundations website. More than 1400 people have received lung transplants since 1988.6

CF patients should eat a well-balanced diet (a standard North American diet with 35%-40% fat calories) without fat restriction, always given with enteric-coated pancreatic enzymes. Anthropomorphic measurements should be made every 3 to 4 months, and CF patients should be educated regarding their ideal body weight range. Annual complete blood cell count, albumin, retinol, and tocopherol measurements are recommended. Pancreatic enzymes should be given with each meal and snack, along with vitamin A 10,000IU/day, vitamin E 200-400IU/day, vitamin D 400-800IU/day with adequate sunlight exposure, and vitamin K 2.5 to 5.0mg/week. If the body mass index decreases, enteral feeding should be considered through gastrostomy tubes or jejunostomy tubes.

For CF patients with partial obstructions or distal intestinal obstructive syndrome, early recognition is vital to avoid surgical intervention. In addition, aggressive hydration, addition of pancreatic enzymes, H2 blockers, and agents to thin bowel contents (including the radiographic contrast solution diatrizoate) may be used. Complete obstructions should be treated with enemas, oral mineral oil, and oral polyethylene glycol-3350 solutions.9

Back to Top

Overall, the life expectancy in CF has risen since the 1980s. Recent figures show the median age of survival increased by 14 years in 2000 compared with figures from 1980; the predicted mean survival age was 31.6 years in 2000.6 In 1990, 30% of patients in the CF Registry were older than 18 years. This has continued to rise: 40.2% of patients in 2002 were older than 18 years. Although overall survival rates have improved, female patients have had consistently poorer survival rates than male CF patients in the age range from 2 to 20 years. It is not clear why this is the case.105

Lung function predictions over time are difficult to estimate, but CF patients often have extended periods of stabilized lung function that can last for 5 years or more. Most patients have full-time or part-time jobs, and many are married and have children. In the patient registry,6 more than 185 women who had CF were pregnant in 2002.8

Many patients have normal life spans, and end-of-life options need to be addressed with patients and their families. Advance-care planning should be done early in the disease course. The goal of advance-care planning is to respect the patients wishes.5

Back to Top

Back to Top

Back to Top

See more here: Cystic Fibrosis Cleveland Clinic

Read more here:

Gene Therapy TV the Human Genetic Revolution

Gene therapy – PBS

A treatment for Cystic Fibrosis. A cure for AIDS. The end of cancer. That's what the newspapers promised us in the early 1990's. Gene therapy was the answer to what ailed us. Scientists had at last learned how to insert healthy genes into unhealthy people. And those healthy genes would either replace the bad genes causing diseases like CF, sickle-cell anemia and hemophilia or stimulate the body's own immune system to rid itself of HIV and some forms of cancer. A decade later, none of these treatments have come to fruition and research into gene therapy has become politically unpopular, making clinical trials hard to approve and research dollars hard to come by. But some researchers who are taking a different approach to gene therapy could be on the road to more success than ever before. - - - - - - - - - - - -

Early Promise

Almost as soon as Watson and Crick unwound the double helix in the 1950's, researchers began considering the possibility- and ethics- of gene therapy. The goals were lofty- to fix inherited genetic diseases such as Cystic Fibrosis and hemophilia forever.

Gene therapists planned to isolate the relevant gene in question, prepare good copies of that gene, then deliver them to patients' cells. The hope was that the treated cells would give rise to new generations of healthy cells for the rest of the patient's life. The concept was elegant, but would require decades of research to locate the genes that cause illnesses.

By 1990, it was working in the lab. By inserting healthy genes into cells from CF patients, scientists were able to transmogrify the sick cells as if by magic into healthy cells.

That same year, four-year-old Ashanti DeSilva became the first person in history to receive gene therapy. Dr. W. French Anderson of the National Heart, Lung and Blood Institute and Dr. Michael Blaese and Dr. Kenneth Culver, both of the National Cancer Institute, performed the historic and controversial experiment.

DeSilva suffered from a rare immune disorder known as ADA deficiency that made her vulnerable to even the mildest infections. A single genetic defect- like a typo in a novel- left DeSilva unable to produce an important enzyme. Without that enzyme, DeSilva was likely to die a premature death.

Anderson, Blaese and Culver drew the girl's blood and treated her defective white blood cells with the gene she lacked. The altered cells were then injected back into the girl, where- the scientists hoped- they would produce the enzyme she needed as well as produce future generations of normal cells.

Though the treatment proved safe, its efficacy is still in question. The treated cells did produce the enzyme, but failed to give rise to healthy new cells. DeSilva, who is today relatively healthy, still receives periodic gene therapy to maintain the necessary levels of the enzyme in her blood. She also takes doses of the enzyme itself, in the form of a drug called PEG-ADA, which makes it difficult to tell how well the gene therapy would have worked alone.

"It was a very logical approach," says Dr. Jeffrey Isner, Chief of Vascular Medicine and Cardiovascular Research at St. Elizabeth's Medical Center in Boston as well as Professor of Medicine at Tufts University School of Medicine. "But in most cases the strategy failed, because the vectors we have today are not ready for prime time." - - - - - - - - - - - - 4 pages: | 1 | 2 | 3 | 4 |

Photo: Dr. W. French Anderson

See the original post:

Gene therapy - PBS

Gene Therapy Successes – Learn Genetics

Researchers have been working for decades to bring gene therapy to the clinic, yet very few patients have received any effective gene-therapy treatments. But that doesn't mean gene therapy is an impossible dream. Even though gene therapy has been slow to reach patients, its future is very encouraging. Decades of research have taught us a lot about designing safe and effective vectors, targeting different types of cells, and managing and minimizing immune responses in patients. We've also learned a lot about the disease genes themselves. Today, many clinical trials are underway, where researchers are carefully testing treatments to ensure that any gene therapy brought into the clinic is both safe and effective.

Below are some gene therapy success stories. Successes represent a variety of approachesdifferent vectors, different target cell populations, and both in vivo and ex vivo approachesto treating a variety of disorders.

Sebastian Misztal was a patient in a hemophilia gene therapy trial in 2011. Following the treatment, Misztal no longer had spontaneous bleeding episodes. Credit: UCLH/UCL NIHR Biomedical Research Centre

Several inherited immune deficiencies have been treated successfully with gene therapy. Most commonly, blood stem cells are removed from patients, and retroviruses are used to deliver working copies of the defective genes. After the genes have been delivered, the stem cells are returned to the patient. Because the cells are treated outside the patient's body, the virus will infect and transfer the gene to only the desired target cells.

Severe Combined Immune Deficiency (SCID) was one of the first genetic disorders to be treated successfully with gene therapy, proving that the approach could work. However, the first clinical trials ended when the viral vector triggered leukemia (a type of blood cancer) in some patients. Since then, researchers have begun trials with new, safer viral vectors that are much less likely to cause cancer.

Adenosine deaminase (ADA) deficiency is another inherited immune disorder that has been successfully treated with gene therapy. In multiple small trials, patients' blood stem cells were removed, treated with a retroviral vector to deliver a functional copy of the ADA gene, and then returned to the patients. For the majority of patients in these trials, immune function improved to the point that they no longer needed injections of ADA enzyme. Importantly, none of them developed leukemia.

Gene therapies are being developed to treat several different types of inherited blindnessespecially degenerative forms, where patients gradually lose the light-sensing cells in their eyes. Encouraging results from animal models (especially mouse, rat, and dog) show that gene therapy has the potential to slow or even reverse vision loss.

The eye turns out to be a convenient compartment for gene therapy. The retina, on the inside of the eye, is both easy to access and partially protected from the immune system. And viruses can't move from the eye to other places in the body. Most gene-therapy vectors used in the eye are based on AAV (adeno-associated virus).

In one small trial of patients with a form of degenerative blindness called LCA (Leber congenital amaurosis), gene therapy greatly improved vision for at least a few years. However, the treatment did not stop the retina from continuing to degenerate. In another trial, 6 out of 9 patients with the degenerative disease choroideremia had improved vision after a virus was used to deliver a functional REP1 gene.

Credit: Jean Bennett, MD, PhD, Perelman School of Medicine, University of Pennsylvania; Manzar Ashtari, Ph.D., of The Children's Hospital of Philadelphia, Science Translational Medicine.

People with hemophilia are missing proteins that help their blood form clots. Those with the most-severe forms of the disease can lose large amounts of blood through internal bleeding or even a minor cut.

In a small trial, researchers successfully used an adeno-associated viral vector to deliver a gene for Factor IX, the missing clotting protein, to liver cells. After treatment, most of the patients made at least some Factor IX, and they had fewer bleeding incidents.

Patients with beta-Thalassemia have a defect in the beta-globin gene, which codes for an oxygen-carrying protein in red blood cells. Because of the defective gene, patients don't have enough red blood cells to carry oxygen to all the body's tissues. Many who have this disorder depend on blood transfusions for survival.

In 2007, a patient received gene therapy for severe beta-Thalassemia. Blood stem cells were taken from his bone marrow and treated with a retrovirus to transfer a working copy of the beta-globin gene. The modified stem cells were returned to his body, where they gave rise to healthy red blood cells. Seven years after the procedure, he was still doing well without blood transfusions.

A similar approach could be used to treat patients with sickle cell disease.

In 2012, Glybera became the first viral gene-therapy treatment to be approved in Europe. The treatment uses an adeno-associated virus to deliver a working copy of the LPL (lipoprotein lipase) gene to muscle cells. The LPL gene codes for a protein that helps break down fats in the blood, preventing fat concentrations from rising to toxic levels.

Several promising gene-therapy treatments are under development for cancer. One, a modified version of the herpes simplex 1 virus (which normally causes cold sores) has been shown to be effective against melanoma (a skin cancer) that has spread throughout the body. The treatment, called T-VEC, uses a virus that has been modified so that it will (1) not cause cold sores; (2) kill only cancer cells, not healthy ones; and (3) make signals that attract the patient's own immune cells, helping them learn to recognize and fight cancer cells throughout the body. The virus is injected directly into the patient's tumors. It replicates (makes more of itself) inside the cancer cells until they burst, releasing more viruses that can infect additional cancer cells.

A completely different approach was used in a trial to treat 59 patients with leukemia, a type of blood cancer. The patients' own immune cells were removed and treated with a virus that genetically altered them to recognize a protein that sits on the surface of the cancer cells. After the immune cells were returned to the patients, 26 experienced complete remission.

Patients with Parkinson's disease gradually lose cells in the brain that produce the signaling molecule dopamine. As the disease advances, patients lose the ability to control their movements.

A small group of patients with advanced Parkinson's disease were treated with a retroviral vector to introduce three genes into cells in a small area of the brain. These genes gave cells that don't normally make dopamine the ability to do so. After treatment, all of the patients in the trial had improved muscle control.

Excerpt from:

Gene Therapy Successes - Learn Genetics

Center for Gene Therapy :: The Research Institute at …

The mission of the Center for Gene Therapy is to investigate and employ the use of gene and cell based therapeutics for prevention and treatment of human diseases including: neuromuscular and neurodegenerative diseases, lysosomal storage disorders, ischemia and re-perfusion injury, neonatal hypertension, cancer and infectious diseases.

Learn about our areas of focus and featured research.

The National Institutes of Health has designated the Center for Gene Therapy as a Paul D. Wellstone Muscular Dystrophy Cooperative Research Center (MDCRC). MDCRCs promote basic, translational and clinical research and provide important resources that can be shared within the national muscle biology and neuromuscular research communities.

The MDCRC will allow Nationwide Children's researchers to further develop methods to overcome immune barriers to gene correction for Duchenne muscular dystrophy.

The Center for Gene Therapy and the Viral Vector Core are home to a Good Manufacturing Practice (GMP) production facility for manufacture of clinical-grade rAAV vectors.View the Viral Vector Core & Clinical Manufacturing Facility site.

Investigators with the Center for Gene Therapy currently are conducting numerous clinical research studies, especially for neuromuscular disorders.

The OSU and Nationwide Children's Muscle Group brings together investigators with diverse research interests in skeletal muscle, cardiac muscle, and neuromuscular biology.

Learn how the 24 labs within OSU/Nationwide Children's Muscle Group are working to improve approaches to treat muscle injury and disease. Read about how their collaborations are changing the way we treat neuromuscular diseases.

Hosted by Kevin Flanigan, MD, "This Month in Muscular Dystrophy" podcasts highlight the latest in muscular dystrophy and other inherited neuromuscular disease research. During each podcast, authors of recent publications discuss how their work improves our understanding of inherited neuromuscular diseases, and what their work might mean for treatment of these diseases.

Parent Project Muscular Dystrophy, an advocacy group founded by parents and family members of patients with Duchenne muscular dystrophy, recently submitted the first-ever patient-initiated guidance to the U.S. Food and Drug Administration for pharmaceutical companies to help expedite drug development for Duchenne.Kevin Flanigan, MD, principal investigator in the Center for GeneTherapy at The Research Institute, specializes in inherited muscular disorders and their potential therapies, and chaired one of seven working groups on the steering committee that drafted the guidance.

Read the full story on Pediatrics Nationwide.

LivLife Foundationrecently donated $30,000 to Nationwide Childrens Hospital to support the collaborative MPS III biomarker research in the laboratories of Dr. Haiyan Fu and Dr. McCarty in the Center for Gene Therapy at The Research Institute. Dr. Fu said, We truly appreciated the support from the MPS III community through LivLife. It comes at a critical moment. As we are moving our MPS IIIA and B gene therapy approaches forward towards clinical trials in patients, lack of biomarkers has become a challenge for the evaluation of therapeutic outcome.

LivLife is a private foundation started by Mr. and Mrs. Jake and Kelly Hubert, in honor of their daughter Livia who suffers from MPS IIIA (Sanfilippo syndrome A), a devastating neurodegenerative lysosomal storage disease. LivLife has made great progress in raising public awareness about MPS III and raising funds to support MPS III research.

Results from a clinical trial of eteplirsen, a drug designed to treat Duchenne muscular dystrophy, suggest that the therapy allows participants to walk farther than people treated with placebo and dramatically increases production of a protein vital to muscle growth and health. The study, led by a team in The Research Institute at Nationwide Childrens Hospital, is the first of its kind to show these results from an exon-skipping druga class of therapeutics that allows cells to skip over missing parts of the gene and produce protein naturally.

Ive been doing this for more than 40 years and this is one of the most exciting developments weve seen, says Jerry Mendell, MD, lead author of the study and director of the Center for Gene Therapy at Nationwide Childrens. It offers great hope to patients with Duchenne muscular dystrophy and their families.

Read more.

Center for Gene Therapy investigators Doug McCarty, PhD, and Kevin Flanigan, MD, were recently quoted in a Wall Street Journal article, "Families Push for New Ways to Research Rare Diseases." Our researchers will soon launch a study related to the rare disorder, Sanfilippo Syndrome, a disease where the child is missing or has insufficient amounts of one of four enzymes needed to break down sugar molecules. Children with Sanfilippo Syndrome will ultimately lose their ability to walk, talk and eat.

Read the article here.

Results from a Phase IIb extension trial of the drug eteplirsen show an increased ability to walk in boys with Duchenne muscular dystrophy.

Read more

Investigators in the Center for Gene Therapy have developed an approach to newborn screening for the life-threatening genetic disorder, Duchenne muscular dystrophy (DMD), and potentially other muscular dystrophies.

Read more

Using tissue samples collected from patients with amyotrophic lateral sclerosis, scientists have created a new in vitro model for the disease that is providing insights into the mechanism of the disorder. Findings appear in Nature Biotechnology.

Access the study abstract

Access the JAMA commentary

Access a summary of this study

Follow this link:

Center for Gene Therapy :: The Research Institute at ...

Gene Therapy – A Revolution in Progress: Human Genetics and …

Gene therapy attempts to treat genetic diseases at the molecular level by correcting what is wrong with defective genes. Clinical research into gene therapys safety and effectiveness has just begun. No one knows if gene therapy will work, or for what diseases. If gene therapy is successful, it could work by preventing a protein from doing something that causes harm, restoring the normal function of a protein, giving proteins new functions, or enhancing the existing functions of proteins. How Do You Do It? Gene therapy relies on finding a dependable delivery system to carry the correct gene to the affected cells. The gene must be delivered inside the target cells and work properly without causing adverse effects. Delivering genes that will work correctly for the long term is the greatest challenge of gene therapy.

Human ex vivo Gene Therapy

1986

1989

1993

Present

Read the rest here:

Gene Therapy - A Revolution in Progress: Human Genetics and ...

Gene Therapy – Biotechnology – Science and Research

Gene therapy is using "genes as medicine". It is an experimental approach to treating genetic disease where the faulty gene is fixed, replaced or supplemented with a healthy gene so that it can function normally. Most genetic diseases cannot be treated, but gene therapy research gives some hope to patients and their families as a possible cure. However, this technology does not come without risks and many clinical trials to evaluate its effectiveness need to be done before gene therapy can be put to regular medical use.

To get a new gene into a cell's genome, it must be carried in a molecule called a vector. The most common vectors currently being used are viruses, which naturally invade cells and insert their genetic material into that cell's genome. To use a virus as a vector, the virus' own genes are removed and replaced with the new gene destined for the cell. When the virus attacks the cell, it will insert the genetic material it carries. A successful transfer will result in the target cell now carrying the new gene that will correct the problem caused by the faulty gene.

Viruses that can be used as vectors include retroviruses like HIV, adenoviruses (one of which causes the common cold), adeno-associated viruses and herpes simplex viruses. There are also many non-viral vectors being tested for gene therapy uses. These include artificial lipid spheres called liposomes, DNA attached to a molecule that will bind to a receptor on the target cell, artificial chromosomes and naked DNA that is not attached to another molecule at all and can be directly inserted into the cell.

The actual transfer of the new gene into the target cell can happen in two ways: ex vivo and in vivo. The ex vivo approach involves transferring the new gene into cells that have been removed from the patient and grown in the laboratory. Once the transfer is complete, the cells are returned to the patient, where they will continue to grow and produce the new gene product. The in vivo approach delivers the vector directly to the patient, where transfer of the new gene will occur in the target cells within the body.

Conditions or disorders that result from mutations in a single gene are potentially the best candidates for gene therapy. However, the many challenges met by researchers working on gene therapy mean that its application is still limited while the procedure is being perfected.

Before gene therapy can be used to treat a certain genetic condition or disorder, certain requirements need to be met:

Clinical trials for gene therapy in other countries (for example France and the United Kingdom) have shown that there are still several major factors preventing gene therapy from becoming a routine way to treat genetic conditions and disorders. While the transfer of the new gene into the target cells has worked, it does not seem to have a long-lasting effect. This suggests that patients would have to be treated multiple times to control the condition or disorder. There is also always a risk of a severe immune response, since the immune cells are trained to attack any foreign molecule in the body. Working with viral vectors has proven to be challenging because they are difficult to control and the body immediately recognizes and attacks common viruses. Recent work has focussed on potential non-viral vectors to avoid the complications associated with the viral vectors. Finally, while there are thousands of single-gene disorders, the more common genetic disorders are actually caused by multiple genes, which do not make them good candidates for gene therapy.

One promising application of gene therapy is in treating type I diabetes. Researchers in the United States used an adenovirus as a vector to deliver the gene for hepatocyte growth factor (HGF) to pancreatic islet cells removed from rats. They injected the altered cells into diabetic rats and, within a day, the rats were controlling their blood glucose levels better than the control rats. This model mimics the transplantation of islet cells in humans and shows that the addition of the HGF gene greatly enhances the islet cells' function and survival.

In Canada, researchers in Edmonton, Alberta also developed a protocol to treat type I diabetes. Doctors use ultrasound to guide a small catheter through the upper abdomen and into the liver. Pancreatic islet cells are then injected through the catheter into the liver. In time, islets are established in the liver and begin releasing insulin.

Another application for gene therapy is in treating X-linked severe combined immunodeficiency (X-SCID), a disease where a baby lacks both T and B cells of the immune system and is vulnerable to infections. The current treatment is bone marrow transplant from a matched sibling, which is not always possible or effective in the long term. Researchers in France and the United Kingdom, knowing the disease was caused by a faulty gene on the X chromosome, treated 14 children by replacing the faulty gene ex vivo. Upon receiving the altered cells, the patients showed great improvements in their immune system functions. Unfortunately, two of the children developed a form of leukemia several years after the treatment. Further investigation showed that the vector had inserted the gene near a proto-oncogene, which led to uncontrolled growth of the T cells. The clinical trials were put on hold until a safer method can be designed and tested.

Link:

Gene Therapy - Biotechnology - Science and Research

Gene Therapy for Diseases | ASGCT – American Society of Gene …

Gene Therapy for Diseases

Gene Therapy has made important medical advances in less than two decades. Within this short time span, it has moved from the conceptual stage to technology development and laboratory research to clinical translational trials for a variety of deadly diseases. Among the most notable advancements are the following:

Severe Combined Immune Deficiency (ADA-SCID) ADA-SCID is also known as the bubble boy disease. Affected children are born without an effective immune system and will succumb to infections outside of the bubble without bone marrow transplantation from matched donors. A landmark study representing a first case of gene therapy "cure," or at least a long-term correction, for patients with deadly genetic disorder was conducted by investigators in Italy. The therapeutic gene called ADA was introduced into the bone marrow cells of such patients in the laboratory, followed by transplantation of the genetically corrected cells back to the same patients. The immune system was reconstituted in all six treated patients without noticeable side effects, who now live normal lives with their families without the need for further treatment.

Chronic Granulomatus Disorder (CGD) CGD is a genetic disease in the immune system that leads to the patients' inability to fight off bacterial and fungal infections that can be fatal. Using similar technologies as in the ADA-SCID trial, investigators in Germany treated two patients with this disease, whose reconstituted immune systems have since been able to provide them with full protection against microbial infections for at least two years.

Hemophilia Patients born with Hemophilia are not able to induce blood clots and suffer from external and internal bleeding that can be life threatening. In a clinical trial conducted in the United States , the therapeutic gene was introduced into the liver of patients, who then acquired the ability to have normal blood clotting time. The therapeutic effect however, was transient because the genetically corrected liver cells were recognized as foreign and rejected by the healthy immune system in the patients. This is the same problem faced by patients after organ transplantation, and curative outcome by gene therapy might be achievable with immune-suppression or alternative gene delivery strategies currently being tested in preclinical animal models of this disease.

Other genetic disorders After many years of laboratory and preclinical research in appropriate animal models of disease, a number of clinical trials will soon be launched for various genetic disorders that include congenital blindness, lysosomal storage disease and muscular dystrophy, among others.

Cancer Multiple gene therapy strategies have been developed to treat a wide variety of cancers, including suicide gene therapy, oncolytic virotherapy, anti-angiogenesis and therapeutic gene vaccines. Two-thirds of all gene therapy trials are for cancer and many of these are entering the advanced stage, including a Phase III trial of Ad.p53 for head and neck cancer and two different Phase III gene vaccine trials for prostate cancer and pancreas cancer. Additionally, numerous Phase I and Phase II clinical trials for cancers in the brain, skin, liver, colon, breast and kidney among others, are being conducted in academic medical centers and biotechnology companies, using novel technologies and therapeutics developed on-site.

Neurodegenerative Diseases Recent progress in gene therapy has allowed for novel treatments of neurodegenerative diseases such as Parkinson's Disease and Huntington's Disease, for which exciting treatment results have been obtained in appropriate animal models of the corresponding human diseases. Phase I clinical trials for these neurodegenerative disorders have been, or will soon be, launched.

Other acquired diseases The same gene therapeutic techniques have been applied to treat other acquired disorders such as viral infections (e.g. influenza, HIV, hepatitis), heart disease and diabetes, among others. Some of these have entered, or will soon be entering, into early phase clinical trials.

See the rest here:

Gene Therapy for Diseases | ASGCT - American Society of Gene ...

Gene Therapy and Cell Therapy Defined | ASGCT – American …

Gene therapy and cell therapy are overlapping fields of biomedical research with the goals of repairing the direct cause of genetic diseases in the DNA or cellular population, respectively. These powerful strategies are also being focused on modulating specific genes and cell subpopulations in acquired diseases in order to reestablish the normal equilibrium. In many diseases, gene and cell therapy are combined in the development of promising therapies.

In addition, these two fields have helped provide reagents, concepts, and techniques that are elucidating the finer points of gene regulation, stem cell lineage, cell-cell interactions, feedback loops, amplification loops, regenerative capacity, and remodeling.

Gene therapy is defined as a set of strategies that modify the expression of an individuals genes or that correct abnormal genes. Each strategy involves the administration of a specific DNA (or RNA).

Cell therapy is defined as the administration of live whole cells or maturation of a specific cell population in a patient for the treatment of a disease.

Gene therapy: Historically, the discovery of recombinant DNA technology in the 1970s provided the tools to efficiently develop gene therapy. Scientists used these techniques to readily manipulate viral genomes, isolate genes, identify mutations involved in human diseases, characterize and regulate gene expression, and engineer various viral vectors and non-viral vectors. Many vectors, regulatory elements, and means of transfer into animals have been tried. Taken together, the data show that each vector and set of regulatory elements provides specific expression levels and duration of expression. They exhibit an inherent tendency to bind and enter specific types of cells as well as spread into adjacent cells. The effect of the vectors and regulatory elements are able to be reproduced on adjacent genes. The effect also has a predictable survival length in the host. Although the route of administration modulates the immune response to the vector, each vector has a relatively inherent ability, whether low, medium or high, to induce an immune response to the transduced cells and the new gene products.

The development of suitable gene therapy treatments for many genetic diseases and some acquired diseases has encountered many challenges and uncovered new insights into gene interactions and regulation. Further development often involves uncovering basic scientific knowledge of the affected tissues, cells, and genes, as well as redesigning vectors, formulations, and regulatory cassettes for the genes.

While effective long-term treatments for anemias, hemophilia, cystic fibrosis, muscular dystrophy, Gauschers disease, lysosomal storage diseases, cardiovascular diseases, diabetes, and diseases of the bones and joints are elusive today, some success is being observed in the treatment of several types of immunodeficiency diseases, cancer, and eye disorders. Further details on the status of development of gene therapy for specific diseases are summarized here.

Cell therapy: Historically, blood transfusions were the first type of cell therapy and are now considered routine. Bone marrow transplantation has also become a well-established protocol. Bone marrow transplantation is the treatment of choice for many kinds of blood disorders, including anemias, leukemias, lymphomas, and rare immunodeficiency diseases. The key to successful bone marrow transplantation is the identification of a good "immunologically matched" donor, who is usually a close relative, such as a sibling. After finding a good match between the donors and recipients cells, the bone marrow cells of the patient (recipient) are destroyed by chemotherapy or radiation to provide room in the bone marrow for the new cells to reside. After the bone marrow cells from the matched donor are infused, the self-renewing stem cells find their way to the bone marrow and begin to replicate. They also begin to produce cells that mature into the various types of blood cells. Normal numbers of donor-derived blood cells usually appear in the circulation of the patient within a few weeks. Unfortunately, not all patients have a good immunological matched donor. Furthermore, bone marrow grafts may fail to fully repopulate the bone marrow in as many as one third of patients, and the destruction of the host bone marrow can be lethal, particularly in very ill patients. These requirements and risks restrict the utility of bone marrow transplantation to some patients.

Cell therapy is expanding its repertoire of cell types for administration. Cell therapy treatment strategies include isolation and transfer of specific stem cell populations, administration of effector cells, induction of mature cells to become pluripotent cells, and reprogramming of mature cells. Administration of large numbers of effector cells has benefited cancer patients, transplant patients with unresolved infections, and patients with chemically destroyed stem cells in the eye. For example, a few transplant patients cant resolve adenovirus and cytomegalovirus infections. A recent phase I trial administered a large number of T cells that could kill virally-infected cells to these patients. Many of these patients resolved their infections and retained immunity against these viruses. As a second example, chemical exposure can damage or cause atrophy of the limbal epithelial stem cells of the eye. Their death causes pain, light sensitivity, and cloudy vision. Transplantation of limbal epithelial stem cells for treatment of this deficiency is the first cell therapy for ocular diseases in clinical practice.

Several diseases benefit most from treatments that combine the technologies of gene and cell therapy. For example, some patients have a severe combined immunodeficiency disease (SCID) but unfortunately, do not have a suitable donor of bone marrow. Scientists have identified that patients with SCID are deficient in adenosine deaminase gene (ADA-SCID), or the common gamma chain located on the X chromosome (X-linked SCID). Several dozen patients have been treated with a combined gene and cell therapy approach. Each individuals hematopoietic stem cells were treated with a viral vector that expressed a copy of the relevant normal gene. After selection and expansion, these corrected stem cells were returned to the patients. Many patients improved and required less exogenous enzymes. However, some serious adverse events did occur and their incidence is prompting development of theoretically safer vectors and protocols. The combined approach also is pursued in several cancer therapies.

Further information on the progress and status of gene therapy and cell therapy on various diseases is listed here.

Read more:

Gene Therapy and Cell Therapy Defined | ASGCT - American ...

Gene Therapy – Cancer Treatments – Moores Cancer Center, UC …

Gene therapy is an experimental treatment that involves inserting genetic material into your cells to give them a new function or restore a missing function, as cancer may be caused by damaged or missing genes, also known as gene mutations. Although gene therapy may be one way to overcome these changes and treat or prevent cancer, it is currently only available through clinical trials.

Cancer is caused by changes in our genes. Genes are inherited from our parents, and determine our traits and characteristics. They are made of biological molecules called deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA and RNA are responsible for making proteins, which have many functions, such as helping a cell to maintain its shape or controlling its growth and division. Changes or mutations in genes can affect the proteins and may sometimes lead to diseases, such as cancer.

Gene therapy is designed to modify cancer cells at the molecular level and replace a missing or bad gene with a healthy one. The new gene is delivered to the target cell via a vector, which is usually an inactive virus or liposome, a tiny fat bubble.

Gene therapy can be done in two ways: outside (ex vivo) or inside (in vivo) your body. Ex-vivo techniques involve taking some of the cancer cells out of your body, injecting them with good genes, and then putting them back into your body. The in-vivo process requires that good genes be put directly into a tumor, which may be difficult depending on its location or if the cancer has spread. Scientists generally use two types of cells in gene therapy the tumor cells themselves and immune system cells that attack the tumors.

Researchers from Moores Cancer Center at UC San Diego Health System are studying several gene therapy techniques for breast cancer, melanoma, leukemia and pancreatic cancer.

For example, they have been integrally involved in the development of Herceptin, a targeted therapy that is proving to be effective in curing localized human epidermal growth factor receptor-2 (HER2) breast cancer. HER2 controls how cells grow, divide and repair themselves.

Researchers have also been injecting a modified herpes virus into melanoma tumors, with the intention of improving the bodys immune defenses against the disease.

Gene therapy called TNFerade Biologic involves a DNA carrier containing the gene for tumor necrosis factor-alpha, an immune system protein with potent and well-documented anti-cancer effects. TNFerade is being studied in combination with radiation therapy for first-time treatment of inoperable pancreatic cancer.

TNFerade and the herpes strategies use gene therapy to enhance the killing effect of the primary mechanism radiation in TNFerade and viral induced cell lysis, or splitting, in the herpes virus.

When will gene therapy be available? Gene therapy is only available as a cancer treatment through clinical trials.

Are there any risks associated with gene therapy clinical trials? Yes. Viral vectors might infect healthy cells as well as cancer cells, a new gene might be inserted in the wrong location in the DNA, or the transferred genes could be overexpressed and produce too much of the missing protein, causing harm. All risks for any procedure should be discussed with your doctor.

Continued here:

Gene Therapy - Cancer Treatments - Moores Cancer Center, UC ...

Articles about Gene Therapy – latimes

NEWS

October 24, 2012 | By Karen Kaplan, Los Angeles Times

Scientists have demonstrated a new type of gene therapy that would - in principle - allow mothers to avoid saddling their children with rare diseases that could result in heart problems, dementia, diabetes, deafness and other significant health issues. The disorders in question are all due to mutations in one of the 37 genes in our mitochondrial DNA. Mitochondria are structures within cells that convert the energy from food into a form that cells can use, according to this explainer from the NIH's National Library of Medicine.

HEALTH

September 13, 2012 | By Elaine Herscher

Genes make us who we are - in sickness and in health. We get our genetic makeup from our parents, of course, but in the future, we might be getting genes from our doctors too. Imagine your doctor promising to cure your cancer or heart disease by prescribing some new snippets of DNA. For some diseases, gene therapy is already a reality. In other cases, genetic cures are still years away. Despite many challenges and setbacks - including some that are surely yet to come - experts predict that gene therapy will eventually become a crucial and even common part of healthcare.

SCIENCE

August 15, 2012 | By Rosie Mestel, Los Angeles Times

Dog lovers may be interested in an article published this week in the New England Journal of Medicine: It highlights the discoveries scientists are making about diseases that various dog breeds are prone to -- and how those findings can benefit human health as well as that of canines. It's written by longtime dog genetics researcher Elaine Ostrander of the National Human Genome Research Institute. The discoveries are possible because of several things: First off, both the human genome and dog genomes have been sequenced.

SCIENCE

July 20, 2012 | By Thomas H. Maugh II, Los Angeles Times

The long-frustrated field of gene therapy is about to reach a major milestone: the first regulatory approval of a gene therapy treatment for disease in the West. The European Medicine Agency's Committee for Medicinal Products for Human Use said Friday that it is recommending approval of Glybera, a treatment for lipoprotein lipase deficiency manufactured by uniQure of Amsterdam. The European Commission generally follows the recommendations of the agency, and if it does so this time, the product could be available in all 27 members of the European Union by the end of the year.

SCIENCE

July 18, 2012 | By Jon Bardin, Los Angeles Times

We like to think of the Olympics as a level playing field - that's why doping is banned. But scientific research complicates this view: There are numerous genetic factors known to confer advantages in athletic contests, from mutations that increase the oxygen carrying capacity of blood to gene variants that confer an incredible increase in endurance, and these mutations appear to be especially common in Olympic athletes. In other words, we may want an egalitarian Olympic games, but it probably isn't in the cards.

NEWS

June 29, 2012 | By Jon Bardin, Los Angeles Times / For the Booster Shots blog

Can't kick cigarettes? A vaccine may one day help by preventing nicotine from reaching its target in the brain, according to research published this week. Most smoking therapies do a poor job of stopping the habit - 70% to 80% of smokers who use an approved drug therapy to quit relapse. Scientists say this is because the targets of existing therapies are imperfect, only slightly weakening nicotine's ability to find its target in the brain. So some scientists have been trying a different approach - creation of a vaccine.

See original here:

Articles about Gene Therapy - latimes

University of Pennsylvania || Gene Therapy Program

Gene Therapy Program > Home

Providing a foundation for basic research necessary to assure the success of gene therapy.

Given all the developments in molecular genetics, the isolation and cloning of genes is now a relatively common procedure. Research now centers on somatic gene therapy, referring to the techniques used to insert a functioning gene into the somatic (non-reproductive) cells of a patient to correct an inborn genetic error or to provide a new function to the cell. Having individual genes available opens the way for gene therapy to take place. And yet, after an initial period of about six years of preclinical work and another thirteen years involving clinical trials, effective gene delivery still remains one of the central challenges in the field.

The Gene Therapy Program of the University of Pennsylvania comprises basic scientific research and core lab research services. Our focus is on developing effective gene vectors derived from recombinant viruses. Much of our current effort is in the development of new adeno-associated virus (AAV) vectors, although some of our research involves both adenoviruses and lentiviruses. Several basic science core laboratories work together to support the development of new vectors.

Contact: Gene Therapy Program Suite 2000, Translational Research Laboratories (TRL) 125 S. 31st Street Philadelphia, PA 19104-3403 Phone: 215-898-0226 Fax: 215-494-5444 GTP@mail.med.upenn.edu

More:

University of Pennsylvania || Gene Therapy Program

How does gene therapy work? – Genetics Home Reference

Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. If a mutated gene causes a necessary protein to be faulty or missing, gene therapy may be able to introduce a normal copy of the gene to restore the function of the protein.

A gene that is inserted directly into a cell usually does not function. Instead, a carrier called a vector is genetically engineered to deliver the gene. Certain viruses are often used as vectors because they can deliver the new gene by infecting the cell. The viruses are modified so they cant cause disease when used in people. Some types of virus, such as retroviruses, integrate their genetic material (including the new gene) into a chromosome in the human cell. Other viruses, such as adenoviruses, introduce their DNA into the nucleus of the cell, but the DNA is not integrated into a chromosome.

The vector can be injected or given intravenously (by IV) directly into a specific tissue in the body, where it is taken up by individual cells. Alternately, a sample of the patients cells can be removed and exposed to the vector in a laboratory setting. The cells containing the vector are then returned to the patient. If the treatment is successful, the new gene delivered by the vector will make a functioning protein.

Researchers must overcome many technical challenges before gene therapy will be a practical approach to treating disease. For example, scientists must find better ways to deliver genes and target them to particular cells. They must also ensure that new genes are precisely controlled by the body.

A new gene is injected into an adenovirus vector, which is used to introduce the modified DNA into a human cell. If the treatment is successful, the new gene will make a functional protein.

The Genetic Science Learning Center at the University of Utah provides information about various technical aspects of gene therapy in Gene Delivery: Tools of the Trade. They also discuss other approaches to gene therapy and offer a related learning activity called Space Doctor.

The Better Health Channel from the State Government of Victoria (Australia) provides a brief introduction to gene therapy, including the gene therapy process and delivery techniques.

Penn Medicines Oncolink describes how gene therapy works and how it is administered to patients.

Next: Is gene therapy safe?

See the original post here:

How does gene therapy work? - Genetics Home Reference

Types of Gene Therapy Treatment | MD Anderson Cancer Center

Much of today's cancer research is devoted to finding missing or defective genes that cause cancer or increase an individual's risk for certain types of cancer. Gene research at MDAnderson has resulted in many important discoveries. We identified the mutated multiple advanced cancers gene (MMAC1) involved in some common cancers. We also performed the first successful correction of a defective tumor suppressor gene (p53) in human lung cancer. Current gene therapies are experimental, and many are still tested only on animals. There are some clinical trials involving a very small number of human subjects.

The potential benefits of gene therapy are two-fold:

The focus of most gene therapy research is the replacement of a missing or defective gene with a functional, healthy copy, which is delivered to target cells with a "vector." Viruses are commonly used as vectors because of their ability to penetrate a cells DNA. These vector viruses are inactivated so they cannot reproduce and cause disease. Gene transfer therapy can be done outside the body (ex vivo) by extracting bone marrow or blood from the patient and growing the cells in a laboratory. The corrected copy of the gene is introduced and allowed to penetrate the cells DNA before being injected back into the body. Gene transfers can also be done directly inside the patients body (in vivo).

Other therapies include:

Gene therapy is a complicated area of research, and many questions remain unanswered. Some cancers are caused by more than one gene, and some vectors, if used incorrectly, can actually cause cancer or other diseases. Replacing faulty genes with working copies also brings up ethical issues that must be addressed before these therapies can be accepted for preventing cancer. Talk to your cancer specialist about the implications of gene therapy.

Excerpt from:

Types of Gene Therapy Treatment | MD Anderson Cancer Center

Gene therapy | Cancer Research UK

Researchers are looking at different ways of using gene therapy, including

Some types of gene therapy aim to boost the body's natural ability to attack cancer cells. Our immune system has cells that recognise and kill harmful things that can cause disease, such as cancer cells.

There are many different types of immune cell. Some of them produce proteins that encourage other immune cells to destroy cancer cells. Some types of therapy add genes to a patient's immune cells to make them better at finding or destroying particular types of cancer. There are a few trials using this type of gene therapy in the UK.

Some gene therapies put genes into cancer cells to make the cells more sensitive to particular treatments such as chemotherapy or radiotherapy. This type of gene therapy aims to make the other cancer treatments work better.

Some types of gene therapy deliver genes into the cancer cells that allow the cells to change drugs from an inactive form to an active form. The inactive form of the drug is called a pro drug.

After giving the carrier containing the gene, the doctor gives the patient the pro drug. The pro drug may be a tablet or capsule that you swallow, or you may have it into the bloodstream.

The pro drug circulates in the body and doesn't harm normal cells. But when it reaches the cancer cells, the gene activates it and the drug kills the cancer cells.

Some gene therapies block processes that cancer cells use to survive. For example, most cells in the body are programmed to die if their DNA is damaged beyond repair. This is called programmed cell death or apoptosis. But cancer cells block this process so they don't die even when they are supposed to. Some gene therapy strategies aim to reverse this blockage. Doctors hope that these new types of treatment will make the cancer cells die.

Some viruses infect and kill cells. Researchers are working on ways to change these viruses so that they only target and kill cancer cells, leaving healthy cells alone. This sort of treatment uses the viruses to kill cancer cells directly rather than to deliver genes. So it is not cancer gene therapy in the true sense of the word. But doctors sometimes refer to it as gene therapy.

One example of this type of research uses the cold sore virus (herpes simplex virus). The changed virus is called Oncovex. It has been tested in early clinical trials for advanced melanoma, pancreatic cancer and head and neck cancers.

Read this article:

Gene therapy | Cancer Research UK

Gene Therapy I – RCN

Many human diseases are caused by defective genes.

All of these diseases are caused by a defect at a single gene locus. (The inheritance is recessive so both the maternal and paternal copies of the gene must be defective.) Is there any hope of introducing functioning genes into these patients to correct their disorder? Probably.

Other diseases also have a genetic basis, but it appears that several genes must act in concert to produce the disease phenotype. The prospects of gene therapy in these cases seems far more remote.

It is a disease of young children because, until recently, the absence of an immune system left them prey to infections that ultimately killed them.

Once the virus has infected the target cells, this RNA is reverse transcribed into DNA and inserted into the chromosomal DNA of the host.

The first attempts at gene therapy for SCID children (in 1990), used their own T cells (produced following ADA-PEG therapy) as the target cells.

In June of 2002, a team of Italian and Israeli doctors reported on two young SCID patients that were treated with their own blood stem cells that had been transformed in vitro with a retroviral vector carrying the ADA gene. After a year, both children had fully-functioning immune systems (T, B, and NK cells) and were able to live normal lives without any need for treatment with ADA-PEG or immune globulin (IG). The doctors attribute their success to first destroying some of the bone marrow cells of their patients to "make room" for the transformed cells.

Nine years later (August 2011) these two patients are still thriving and have been joined by 28 other successfully-treated children most of whom no longer need to take ADA-PEG.

Gene therapy has also succeeded for 20 baby boys who suffered from another form of severe combined immunodeficiency called X-linked SCID because it is caused by a mutated X-linked gene encoding a subunit called c (gamma-c) of the receptor for several interleukins, including interleukin-7 (IL-7).

IL-7 is essential for converting blood stem cells into the progenitors of T cells. [View]. Boys with X-linked SCID can make normal B cells, but because B cells need T-helper cells to function, these boys could make neither cell-mediated nor antibody-mediated immune responses and had to live in a sterile bubble before their treatment.

Link:

Gene Therapy I - RCN

Challenges in Gene Therapy – Learn Genetics

HOME

Gene Therapy

Challenges in Gene Therapy?

Gene therapy is not a new field; it has been evolving for decades. Despite the best efforts of researchers around the world, however, gene therapy has seen only limited success. Why?

Gene therapy poses one of the greatest technical challenges in modern medicine. It is very hard to introduce new genes into cells of the body and keep them working. And there are financial concerns: Can a company profit from developing a gene therapy to treat a rare disorder? If not, who will develop and pay for these life-saving treatments?

Let's look at some of the main challenges in gene therapy.

For some disorders, gene therapy will work only if we can deliver a normal gene to a large number of cellssay several millionin a tissue. And they have to the correct cells, in the correct tissue. Once the gene reaches its destination, it must be activated, or turned on, to make the protein it encodes. And once it's turned on, it must remain on; cells have a habit of shutting down genes that are too active or exhibiting other unusual behaviors.

Introducing changes into the wrong cells Targeting a gene to the correct cells is crucial to the success of any gene therapy treatment. Just as important, though, is making sure that the gene is not incorporated into the wrong cells. Delivering a gene to the wrong tissue would be inefficient, and it could cause health problems for the patient.

For example, improper targeting could incorporate the therapeutic gene into a patient's germline, or reproductive cells, which ultimately produce sperm and eggs. Should this happen, the patient would pass the introduced gene to his or her children. The consequences would vary, depending on the gene.

Our immune systems are very good at fighting off intruders such as bacteria and viruses. Gene-delivery vectors must be able to avoid the body's natural surveillance system. An unwelcome immune response could cause serious illness or even death.

Excerpt from:

Challenges in Gene Therapy - Learn Genetics

What is Gene Therapy ? – Learn Genetics

Gene therapy could be a way to fix a genetic problem at its source. By adding a corrected copy of a defective gene, gene therapy promises to help diseased tissues and organs work properly. This approach is different from traditional drug-based approaches, which may treat symptoms but not the underlying genetic problems.

Most commonly, gene therapy uses a vector, typically a virus, to deliver a gene to the cells where it's needed. Once it's inside, the cell's gene-reading machinery uses the information in the gene to build RNA and protein molecules. The proteins (or RNA) can then carry out their job in the cells.

But gene therapy is not a molecular bandage that will automatically fix any genetic problem. While many disorders or medical conditions can potentially be treated using gene therapy, others are not suitable for this approach. So what makes a condition a good candidate for gene therapy?

Could the condition be corrected by adding one or a few functional genes? For you to even consider gene therapy, the answer must be "yes." For instance, genetic disorders caused by mutations in single genes tend to be good candidates for gene therapy, while diseases involving many genes and environmental factors tend to be poor candidates.

Do you know which genes are involved? If you plan to treat a genetic flaw, you need to know which gene(s) to pursue. You must also have a DNA copy of the gene available in your laboratory.

Do you understand the biology of the disorder? To design the best possible approach, you need to learn all you can about how the gene factors into the disorder. For example, which tissues the disorder affects, what role the protein encoded by the gene plays within the cells of that tissue, and exactly how mutations in the gene affect the protein's function.

Will adding a normal copy of the gene fix the problem in the affected tissue? Or could getting rid of the defective gene fix it? Sometimes when a gene is defective, no functional protein is being made from it. In cases like these, adding a functional copy of the gene could correct the problem. But sometimes a defective gene codes for a protein that starts doing something it shouldn't or prevents another protein from doing its job. In order to correct the problem, you would need to get rid of the misbehaving protein.

Can you deliver the gene to cells of the affected tissue? The answer will come from several pieces of information, including the tissue's accessibility and molecular signatures.

APA format: Genetic Science Learning Center (2014, June 22) What is Gene Therapy?. Learn.Genetics. Retrieved July 08, 2015, from http://learn.genetics.utah.edu/content/genetherapy/gtintro/ MLA format: Genetic Science Learning Center. "What is Gene Therapy?." Learn.Genetics 8 July 2015 <http://learn.genetics.utah.edu/content/genetherapy/gtintro/> Chicago format: Genetic Science Learning Center, "What is Gene Therapy?," Learn.Genetics, 22 June 2014, <http://learn.genetics.utah.edu/content/genetherapy/gtintro/> (8 July 2015)

The rest is here:

What is Gene Therapy ? - Learn Genetics