What is Gene Therapy? – Learn.Genetics

Could the condition be corrected by adding one or a few functional genes?For you to even consider gene therapy, the answer must be "yes." For instance, genetic disorders caused by mutations in single genes tend to be good candidates for gene therapy, while diseases involving many genes and environmental factors tend to be poor candidates.

Do you know which genes are involved?If you plan to treat a genetic flaw, you need to know which gene(s) to pursue. You must also have a DNA copy of the gene available in your laboratory.

Do you understand the biology of the disorder?To design the best possible approach, you need to learn all you can about how the gene factors into the disorder. For example, which tissues the disorder affects, what role the protein encoded by the gene plays within the cells of that tissue, and exactly how mutations in the gene affect the protein's function.

Will adding a normal copy of the gene fix the problem in the affected tissue? Or could getting rid of the defective gene fix it?Sometimes when a gene is defective, no functional protein is being made from it. In cases like these, adding a functional copy of the gene could correct the problem. But sometimes a defective gene codes for a protein that starts doing something it shouldn't or prevents another protein from doing its job. In order to correct the problem, you would need to get rid of the misbehaving protein.

Can you deliver the gene to cells of the affected tissue?The answer will come from several pieces of information, including the tissue's accessibility and molecular signatures.

Originally posted here:

What is Gene Therapy? - Learn.Genetics

Gene Therapy Research Institutes and Universities

Collaboration between Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital. Clinical research in the areas of stem cell transplantation, cellular therapy, and gene therapy.

The Center fosters a multidisciplinary approach to new research as well as collaborative research endeavors in the area of gene therapy. The Vector Core manufactures several recombinant viral vectors.

The research is focused on various aspects of gene therapy, such as understanding basic virology, efficient gene delivery into the nucleus of cells, and incorporation of these genes into the genome.

Research in the laboratory has centered on the molecular biology of adeno-associated virus (AAV) in order to exploit the unique features of this virus to develop an efficient viral vector system for use in human gene therapy.

The Harvard Gene Therapy Initiative is headed by Dr. Richard Mulligan with the objective of promoting the use of gene therapy and to conduct research developing new gene delivery vector technologies.

Diseases of the lung, cardiovascular system, muscles, brain, and skin are focus areas of research as well as the development of gene therapy vectors and the identification of disease-causing genes.

A multidisciplinary team of scientists and physicians work together to realize the full potential of virus, gene and cell therapies from basic science discovery to clinical translation.

Oncolytic virotherapy, gene therapy for diabetes and cardiovascular diseases, virus-based gene therapy vectors.

The program has brought together regulatory, quality, product development, manufacturing and facilities engineering expertise to enable the translation of novel, experimental research into medicine for use in human clinical trials.

Penn Vector offers a variety of services associated with the development and production of both non-viral vectors and viral vectors including those derived from adeno-associated virus (AAV), adenovirus, and lentivirus.

The primary mission is to merge molecular genetics research and health care delivery by developing new therapeutic strategies for the treatment of human diseases that involve gene transfer.

Original post:

Gene Therapy Research Institutes and Universities

Gene Therapy – Sickle Cell Anemia News

Gene therapy is an experimental technique that aims to treat genetic diseases by altering a disease-causing gene or introducing a healthy copy of a mutated gene to the body. The U.S. Food and Drug Administrationapprovedthe first gene therapy for an inherited disease a genetic form of blindness in December 2017.

Sickle cell anemia is caused by a mutation in the HBB gene which provides the instructions to make part of hemoglobin, the protein in red blood cells that carries oxygen.

Researchers are working on two different strategies to treat sickle cell anemia with gene therapy. Both of these strategies involve genetically altering the patients own hematopoietic stem cells. These are cells in the bone marrow that divide and specialize to produce different types of blood cells, including the red blood cells.

One strategy is to remove some of the patients hematopoietic stem cells, replace the mutated HBB gene in these cells with a healthy copy of the gene, and then transplant those cells back into the patient. The healthy copy of the gene is delivered to the cells using a modified, harmless virus. These genetically corrected cells will then hopefully repopulate the bone marrow and produce healthy, rather than sickled, red blood cells.

The other strategy is to genetically alter another gene in the patients hematopoietic stem cells so they boost production of fetal hemoglobin a form of hemoglobin produced by babies from about seven months before birth to about six months after birth. This type of hemoglobin represses sickling of cells in patients with sickle cell anemia, but most people only produce a tiny amount of it after infancy. Researchers aim to increase production of fetal hemoglobin in stem cells by using a highly specific enzyme to cut the cells DNA in the section containing one of the genes that suppress production of fetal hemoglobin. When the cell repairs its DNA, the gene no longer works and more fetal hemoglobin is produced.

Gene therapy offers an advantage over bone marrow transplant, in that complications associated with a bone marrow donation now the only cure for the disease such as finding the right match are not a concern.

Twelve clinical trials studying gene therapy to treat sickle cell anemia are now ongoing. Nine of the 12 are currently recruiting participants.

Four trials (NCT02186418, NCT03282656, NCT02247843, NCT02140554) are testing the efficacy and safety of gene therapy to replace the mutated HBB gene with a healthy HBB gene. These Phase 2 trials are recruiting both children and adults in the United States and Jamaica.

Three trials (NCT02193191, NCT02989701, NCT03226691) are investigating the use ofMozobil (plerixafor) in patients with sickle cell anemia to increase the production of stem cells to be used for gene therapy. This medication is already approved to treat certain types of cancer. All three are recruiting U.S. participants.

One trial (NCT00669305) is recruiting sickle cell anemia patients in Tennessee to donate bone marrow to be used in laboratory research to develop gene therapy techniques.

The final study(NCT00012545) is examining the best way to collect, process and store umbilical cord blood from babies with and without sickle cell anemia. Cord blood contains abundant stem cells that could be used in developing gene therapy for sickle cell anemia. This trial is open to pregnant women in Maryland both those who risk having an infant with sickle cell anemia, and those who do not.

One clinical trial (NCT02151526) conducted in France is still active but no longer recruiting participants. It is investigating the efficacy of gene therapy in seven patients. For the trial, a gene producing a therapeutic hemoglobin that functions similarly to fetal hemoglobin is introduced into the patients stem cells. A case studyfrom one of the seven was published in March 2017; it showed that the approach was safe and could be an effective treatment option for sickle cell anemia.

***

Sickle Cell Anemia News is strictly a news and information website about the disease. It does not provide medical advice, diagnosis or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website.

Read more from the original source:

Gene Therapy - Sickle Cell Anemia News

About Us | Axovant Gene Therapies

Patients cant wait, and neither will we

At Axovant, we operate with a sense of urgency to develop and deliver innovative gene therapies that transform the treatment of serious neurological and neuromuscular diseases. In this critical journey, we are inspired by breakthrough science and driven to challenge the status quo on behalf of patients and their families. By harnessing the transformative power of gene therapies, our aim is to fill their unmet medical needs with one-time therapies that deliver lifelong benefits.

Axovant is an agile organization with a sharp focus on the rapid delivery of lasting, transformative gene therapies. Our decision-making is guided by our compassion for patients and their urgent need for better solutions. To that end, we approach gene therapy development by selecting the product candidates that have great potential for transformative impact. We continue to tailor these therapies to precisely address the needs of the diseases and patients we serve. Our agile operations and leading manufacturing partnerships enable us to meet our goals for rapid clinical execution.

We have assembled a leadership team of the foremost experts in gene therapy development, manufacturing and commercialization. Our growing team is committed to answering the call of patients and has proven expertise in driving scientific breakthroughs into the clinic, navigating the regulatory environment, and ensuring patients have access to life-saving therapies. For us, every day matters because every life matters.

Read the rest here:

About Us | Axovant Gene Therapies

Gene therapy might be a cure for "bubble boy disease …

They were born without a working germ-fighting system, every infection a threat to their lives. Now eight babies with "bubble boy disease" have had it fixed by a gene therapy made from one of the immune system's worst enemies HIV, the virus that causes AIDS.

Astudyout Wednesday details how scientists turned this enemy virus into a savior, altering it so it couldn't cause disease and then using it to deliver a gene the boys lacked.

"This therapy has cured the patients," although it will take more time to see if it's a permanent fix, said Dr. Ewelina Mamcarz, one of the study leaders at St. Jude Children's Research Hospital in Memphis.

Omarion Jordan, who turns 1 later this month, had the therapy in December to treat severe combined immunodeficiency syndrome, or SCID.

"For a long time we didn't know what was wrong with him. He just kept getting these infections," said his mother, Kristin Simpson. Learning that he had SCID "was just heartbreaking ... I didn't know what was going to happen to him."

Omarion now has a normal immune system. "He's like a normal, healthy baby," Simpson said. "I think it's amazing."

Study results were published by the New England Journal of Medicine. The treatment was pioneered by a St. Jude doctor who recently died, Brian Sorrentino.

SCID is caused by a genetic flaw that keeps the bone marrow from making effective versions of blood cells that comprise the immune system. It affects 1 in 200,000 newborns, almost exclusively males. Without treatment, it often kills in the first year or two of life.

"A simple infection like the common cold could be fatal," Mamcarz said.

The nickname "bubble boy disease" comes from a famous case in the 1970s a Texas boy who lived for 12 years in a protective plastic bubble to isolate him from germs. A bone marrow transplant from a genetically matched sibling can cure SCID, but most people lack a suitable donor. Transplants also are medically risky the Texas boy died after one.

Doctors think gene therapy could be a solution. It involves removing some of a patient's blood cells, using the modified HIV to insert the missing gene, and returning the cells through an IV. Before getting their cells back, patients are given a drug to destroy some of their marrow so the modified cells have more room to grow.

When doctors first tried it 20 years ago, the treatment had unintended effects on other genes, and some patients later developed leukemia. The new therapy has safeguards to lower that risk.

A small study of older children suggested it was safe. The new study tried it in infants, and doctors are reporting on the first eight who were treated at St. Jude and at UCSF Benioff Children's Hospital San Francisco.

Within a few months, normal levels of healthy immune system cells developed in seven boys. The eighth needed a second dose of gene therapy but now is well, too. Six to 24 months after treatment, all eight are making all the cell types needed to fight infections, and some have successfully received vaccines to further boost their immunity to disease.

No serious or lasting side effects occurred.

Omarion is the 10th boy treated in the study, which is ongoing. It's sponsored by the American Lebanese Syrian Associated Charities, the California Institute of Regenerative Medicine, the Assisi Foundation of Memphis and the federal government.

"So far it really looks good," but patients will have to be studied to see if the results last, said Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, which helped develop the treatment. "To me, this looks promising."

Rights to it have been licensed by St. Jude to Mustang Bio. Doctors say they have no estimate on what it might cost if it does become an approved treatment.

A similar technique harnessing a modified version of HIV is also being studied as a possible cure for sickle cell anemia, CBS News chief medical correspondent Dr. Jon LaPook reports. In a clinical trial at the National Institutes of Health, nine adults with sickle cell anemia have undergone the gene therapy. So far, all are responding well.

Link:

Gene therapy might be a cure for "bubble boy disease ...

Gene therapy restores immunity in infants with rare …

News Release

Wednesday, April 17, 2019

NIH scientists and funding contributed to development of experimental treatment

A small clinical trial has shown that gene therapy can safely correct the immune systems of infants newly diagnosed with a rare, life-threatening inherited disorder in which infection-fighting immune cells do not develop or function normally. Eight infants with the disorder, called X-linked severe combined immunodeficiency (X-SCID), received an experimental gene therapy co-developed by National Institutes of Health scientists. They experienced substantial improvements in immune system function and were growing normally up to two years after treatment. The new approach appears safer and more effective than previously tested gene-therapy strategies for X-SCID.

These interim results from the clinical trial, supported in part by NIH, were published today in The New England Journal of Medicine.

Infants with X-SCID, caused by mutations in the IL2RG gene, are highly susceptible to severe infections. If untreated, the disease is fatal, usually within the first year or two of life. Infants with X-SCID typically are treated with transplants of blood-forming stem cells, ideally from a genetically matched sibling. However, less than 20% of infants with the disease have such a donor. Those without a matched sibling typically receive transplants from a parent or other donor, which are lifesaving, but often only partially restore immunity. These patients require lifelong treatment and may continue to experience complex medical problems, including chronic infections.

"A diagnosis of X-linked severe combined immunodeficiency can be traumatic for families," said Anthony S. Fauci, M.D., director of NIHs National Institute of Allergy and Infectious Diseases (NIAID). These exciting new results suggest that gene therapy may be an effective treatment option for infants with this extremely serious condition, particularly those who lack an optimal donor for stem cell transplant. This advance offers them the hope of developing a wholly functional immune system and the chance to live a full, healthy life.

To restore immune function to those with X-SCID, scientists at NIAID and St. Jude Childrens Research Hospital in Memphis, Tennessee, developed an experimental gene therapy that involves inserting a normal copy of the IL2RG gene into the patients own blood-forming stem cells. The Phase 1/2 trial reported today enrolled eight infants aged 2 to 14 months who were newly diagnosed with X-SCID and lacked a genetically matched sibling donor. The study was conducted at St. Jude and the Benioff Childrens Hospital of the University of California, San Francisco. Encouraging early results from a separate NIAID-led study at the NIH Clinical Center informed the design of the study in infants. The NIH study is evaluating the gene therapy in older children and young adults with X-SCID who previously had received stem cell transplants.

The gene therapy approach involves first obtaining blood-forming stem cells from a patients bone marrow. Then, an engineered lentivirus that cannot cause illness is used as a carrier, or vector, to deliver the normal IL2RGgene to the cells. Finally, the stem cells are infused back into the patient, who has received a low dose of the chemotherapy medication busulfan to help the genetically corrected stem cells establish themselves in the bone marrow and begin producing new blood cells.

Normal numbers of multiple types of immune cells, including T cells, B cells and natural killer (NK) cells, developed within three to four months after gene therapy in seven of the eight infants. While the eighth participant initially had low numbers of T cells, the numbers greatly increased following a second infusion of the genetically modified stem cells. Viral and bacterial infections that participants had prior to treatment resolved afterwards. The experimental gene therapy was safe overall, according to the researchers, although some participants experienced expected side effects such as a low platelet count following chemotherapy.

"The broad scope of immune function that our gene therapy approach has restored to infants with X-SCID as well as to older children and young adults in our study at NIH is unprecedented," said Harry Malech, M.D., chief of the Genetic Immunotherapy Section in NIAIDs Laboratory of Clinical Immunology and Microbiology. Dr. Malech co-led the development of the lentiviral gene therapy approach with St. Judes Brian Sorrentino, M.D., who died in late 2018. These encouraging results would not have been possible without the efforts of my good friend and collaborator, the late Brian Sorrentino, who was instrumental in developing this treatment and bringing it into clinical trials, said Dr. Malech.

Compared with previously tested gene-therapy strategies for X-SCID, which used other vectors and chemotherapy regimens, the current approach appears safer and more effective. In these earlier studies, gene therapy restored T cell function but did not fully restore the function of other key immune cells, including B cells and NK cells. In the current study, not only did participants develop NK cells and B cells, but four infants were able to discontinue treatment with intravenous immunoglobulins infusions of antibodies to boost immunity. Three of the four developed antibody responses to childhood vaccinations an indication of robust B-cell function.

Moreover, some participants in certain early gene therapy studies later developed leukemia, which scientists suspect was because the vector activated genes that control cell growth. The lentiviral vector used in the study reported today is designed to avoid this outcome.

Researchers are continuing to monitor the infants who received the lentiviral gene therapy to evaluate the durability of immune reconstitution and assess potential long-term side effects of the treatment. They also are enrolling additional infants into the trial. The companion NIH trial evaluating the gene therapy in older children and young adults also is continuing to enroll participants.

The gene therapy trial in infants is funded by the American Lebanese Syrian Associated Charities (ALSAC), and by grants from the California Institute of Regenerative Medicine and the National Heart, Lung, and Blood Institute, part of NIH, under award number HL053749. The work also is supported by NIAID under award numbers AI00988 and AI082973, and by the Assisi Foundation of Memphis. More information about the trial in infants is available on ClinicalTrials.gov using identifier NCT01512888. More information about the companion trial evaluating the treatment in older children and young adults is available using ClinicalTrials.gov identifier NCT01306019.

NIAID conducts and supports research at NIH, throughout the United States, and worldwide to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

E Mamcarz et al. Lentiviral gene therapy with low dose busulfan for infants with X-SCID. The New England Journal of Medicine DOI: 10.1056/NEJMoa1815408 (2019).

###

Link:

Gene therapy restores immunity in infants with rare ...

Gene Therapy – REGENXBIO

A change or damage to a gene can affect the message the gene carries, and that message could be telling our cells to make a specific protein that the body needs in order to function properly. NAV Gene Therapy focuses on correcting these defects in genetic diseases by delivering a healthy, working copy of the gene to the cells in need of repair, which potentially enables the body to make the deficient protein. The NAV Technology Platform can also be used to deliver a gene that allows the body to produce a therapeutic protein to treat a specific disease.

Heres how the NAV Technology Platform works:

First, our scientists insert the gene of interest (that is, either the missing/defective gene or a gene to create a therapeutic protein) into a NAV Vector. A NAV Vector is a modified adeno-associated virus (AAV), which is not known to cause disease in humans. It is common for viruses to be used as vectors in gene and cell therapy. The NAV Vector acts as a delivery vehicle, transporting and unloading the gene into cells where the gene triggers production of the protein the body needs.

Our NAV Technology Platform includes more than 100 novel AAV vectors, including AAV8, AAV9 and AAVrh10, many of which are tailored to reach specific areas of the body where the gene is needed most. For example, gene therapy delivered to the liver has the potential to treat metabolic diseases like hemophilia, whereas gene therapy designed to reach the central nervous system (brain and spinal cord) may primarily impact symptoms of diseases that affect the brain and cognition.

Next, the NAV Vector is administered into the patient by injection or infusion, and is expected to make its way to cells that need the protein. The NAV Vector is designed to reach the target cells and deliver the gene it is carrying, enabling the cells to make the protein the body needs. These genes have the potential to correct disease by triggering production of a therapeutic protein or by allowing the bodys natural mechanisms to work the way they were intended.

Because gene therapies may have a long-term effect, a single administration of NAV Gene Therapy has the potential to do the same work as years of conventional chronic therapies.

Learn more about gene therapy below:

Read the original:

Gene Therapy - REGENXBIO

What is Gene Therapy? | Pfizer: One of the world’s premier …

Gene therapy is a technology aimed at correcting or fixing a gene that may be defective. This exciting and potentially transformative area of research is focused on the development of potential treatments for monogenic diseases, or diseases that are caused by a defect in one gene.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

Viral vectors can be developed using adeno-associated virus (AAV), a naturally occurring virus which has been adapted for gene therapy use. Its ability to deliver genetic material to a wide range of tissues makes AAV vectors useful for transferring therapeutic genes into target cells. Gene therapy research holds tremendous promise in leading to the possible development of highly-specialized, potentially one-time delivery treatments for patients suffering from rare, monogenic diseases.

Pfizer aims to build an industry-leading gene therapy platform with a strategy focused on establishing a transformational portfolio through in-house capabilities, and enhancing those capabilities through strategic collaborations, as well as potential licensing and M&A activities.

We're working to access the most effective vector designs available to build a robust clinical stage portfolio, and employing a scalable manufacturing approach, proprietary cell lines and sophisticated analytics to support clinical development.

In addition, we're collaborating with some of the foremost experts in this field, through collaborations with Spark Therapeutics, Inc., on a potentially transformative gene therapy treatment for hemophilia B, which received Breakthrough Therapy designation from the US Food and Drug Administration, and 4D Molecular Therapeutics to discover and develop targeted next-generation AAV vectors for cardiac disease.

Gene therapy holds the promise of bringing true disease modification for patients suffering from devastating diseases, a promise were working to seeing become a reality in the years to come.

Continue reading here:

What is Gene Therapy? | Pfizer: One of the world's premier ...

Gene Therapy Technology Explanied

Virtually all cells in the human body contain genes, making them potential targets for gene therapy. However, these cells can be divided into two major categories: somatic cells (most cells of the body) or cells of the germline (eggs or sperm). In theory it is possible to transform either somatic cells or germ cells.

Gene therapy using germ line cells results in permanent changes that are passed down to subsequent generations. If done early in embryologic development, such as during preimplantation diagnosis and in vitro fertilization, the gene transfer could also occur in all cells of the developing embryo. The appeal of germ line gene therapy is its potential for offering a permanent therapeutic effect for all who inherit the target gene. Successful germ line therapies introduce the possibility of eliminating some diseases from a particular family, and ultimately from the population, forever. However, this also raises controversy. Some people view this type of therapy as unnatural, and liken it to "playing God." Others have concerns about the technical aspects. They worry that the genetic change propagated by germ line gene therapy may actually be deleterious and harmful, with the potential for unforeseen negative effects on future generations.

Somatic cells are nonreproductive. Somatic cell therapy is viewed as a more conservative, safer approach because it affects only the targeted cells in the patient, and is not passed on to future generations. In other words, the therapeutic effect ends with the individual who receives the therapy. However, this type of therapy presents unique problems of its own. Often the effects of somatic cell therapy are short-lived. Because the cells of most tissues ultimately die and are replaced by new cells, repeated treatments over the course of the individual's life span are required to maintain the therapeutic effect. Transporting the gene to the target cells or tissue is also problematic. Regardless of these difficulties, however, somatic cell gene therapy is appropriate and acceptable for many disorders, including cystic fibrosis, muscular dystrophy, cancer, and certain infectious diseases. Clinicians can even perform this therapy in utero, potentially correcting or treating a life-threatening disorder that may significantly impair a baby's health or development if not treated before birth.

In summary, the distinction is that the results of any somatic gene therapy are restricted to the actual patient and are not passed on to his or her children. All gene therapy to date on humans has been directed at somatic cells, whereas germline engineering in humans remains controversial and prohibited in for instance the European Union.

Somatic gene therapy can be broadly split into two categories:

Continue reading here:

Gene Therapy Technology Explanied

Gene Therapy in Muscular Dystrophy – Muscular Dystrophy News

Gene therapy, the use of genetic material to treat a disease or disorder, is making strides in muscular dystrophy. Although the approach is still considered experimental, studies in animal models have shown promising results and clinical trials in humans are underway.

Gene therapy has the potential to help people with inherited disorders, in which a gene mutation causes cells to produce a defective protein or no protein at all, leading to disease symptoms.

To deliver the genetic material to the cells, scientists use a tool called a vector. This is typically a virus that has been modified so that it doesnt cause disease. It is hoped that the vector will carry the therapeutic gene into the cells nucleus, where it will provide the instructions necessary to make the desired protein.

The most common form of muscular dystrophy, Duchenne muscular dystrophy, is caused by a mutation in the DMD gene, which codes for a protein called dystrophin. Dystrophin is part of a protein complex that strengthens and protects muscle fibers. When the cells dont have functional dystrophin due to the gene mutation, muscles progressively weaken. Scientists think that supplying a gene that codes for a functional form of dystrophin might be an effective treatment for Duchenne muscular dystrophy.

Using gene therapy to deliver a correct form of the dystrophin gene has been challenging because of the size of the DMD gene, which is the largest gene in the human genome so it does not fit into commonly used vectors.

Scientists are having more success with a shortened version of the DMD gene that produces a protein called micro-dystrophin. Even though its a smaller version of dystrophin, micro-dystrophin includes key elements of the protein and is functional.

Administering a gene for micro-dystrophin to golden retriever dogs that naturally develop muscular dystrophy showed promising results in a study published in July 2017. Muscular dystrophy symptoms were reduced for more than two years following the treatment and the dogs muscle strength improved. The gene was delivered using a recombinant adeno-associated virus, or rAAV, as the vector.

A similar therapy is now being tested in people in a Phase 1/2 clinical trial (NCT03375164)at Nationwide Childrens Hospital in Columbus, Ohio. A single dose of the gene therapytreatment containing the gene encoding for micro-dystrophinwill be infused into the blood system of 12 patients in two age groups: 3 months to 3 years, and 4 to 7 years. The first patient in the trial, which is recruiting participants, already has received the treatment, according to a January 2018 press release.

The biopharmaceutical company Sarepta Therapeutics is contributing funding and other support to the project.

Sarepta is developing another potential gene therapy for Duchenne muscular dystrophy where rather than targeting the DMD gene that codes for dystrophin, the therapy will be used to try to increase the expression of a gene called GALGT2. The overproduction of this gene is thought to produce changes in muscle cell proteins that strengthen them and protect them from damage, even in the absence of functional dystrophin.

A Phase 1/2a clinical trial (NCT03333590) was launched in November 2017 at Nationwide Childrens Hospital for the therapy, called rAAVrh74.MCK.GALGT2.

***

Muscular Dystrophy Newsis strictly a news and information website about the disease. It does not provide medical advice, diagnosis, or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website.

See the original post here:

Gene Therapy in Muscular Dystrophy - Muscular Dystrophy News

Gene Therapy Basics | Education | ASGCT American Society …

Gene therapy has been studied for more than 40 years and can help stop or slow the effects of disease on the most basic level of the human bodyour genes. And to understand how it works, well start at the basics.

Genes are made up of DNA, which are blueprints to build enzymes and proteins that make our body work. As far as we know, humans have between 20,000 and 25,000 genes. We typically get two copies of each gene from our parents. They influence everything from the color of our hair to our immune system, but genes arent always built correctly. A small adjustment to them can change how our proteins work, which then alter the way we breathe, walk or even digest food. Genes can change as they go through inherited mutations, as they age, or by being altered or damaged by chemicals and radiation.

In the case that a gene changesalso known as mutatingin a way that causes disease, gene therapy may be able to help. Gene therapy is the introduction, removal or change in genetic materialspecifically DNA or RNAinto the cells of a patient to treat a specific disease. The transferred genetic material changes how a proteinor group of proteinsis produced by the cell.

This new genetic material or working gene is delivered into the cell by using a vector. Typically, viruses are used as vectors because they have evolved to be very good at sneaking into and infecting cells. But in this case, their motive is to insert the new genes into the cell. Some types of viruses being used are typically not known to cause disease and other times the viral genes known to cause disease are removed. Regardless of the type, all viral vectors are tested many times for safety prior to being used. The vector can either be delivered outside the body (ex-vivo treatment) or the vectors can be injected into the body (in-vivo treatment).

Other types of drugs are typically used to manage disease or infection symptoms to relieve pain, while gene therapy targets the cause of the disease. It is not provided in the form of a pill, inhalation or surgery, it is provided through an injection or IV.

What Counts as a Rare Disease?

Gene therapy treats diseases in patients that are rare and often life threatening. Rare is defined as any disease or disorder affecting fewer than 200,000 people in the U.S. by the National Institutes of Health. As of now, there are around 7,000 rare diseases, affecting a total of approximately one in ten people. Many of these rare diseases are caused by a simple genetic mutation inherited from one or both parents.

Show Answer

Which Diseases Have Gene Therapies?

Of gene therapies up for approval over the next five years, 45 percent are anticipated to focus on cancer treatments and 38 percent are expected to treat rare inherited genetic disorders. Gene therapy can help add to or change non-functioning genescreating a great opportunity to assist with rare inherited disorders, which are passed along from parents. The mutation might be present on one or both chromosomes passed along to the children. The majority of gene therapies are currently being studied in clinical trials.

Some of these inherited diseases include (but are not limited to):

Show Answer

Why Do We Use Viral Vectors?

As you know from cold and flu season, viruses are quite skilled in the art of invading our bodiesadding their genetic material into our cells. However, researchers have learned to harness this sneaky ability to our advantage. Viruses are often used as a vehicle to deliver good genes into our cells, as opposed to the ones that cause disease.

Viruses are sometimes modified into vectors as researchers remove disease-causing material and add the correct genetic material. In gene therapy, researchers often use adeno-associated viruses (AAV) as vectors. AAV is a small virus that isnt typically known to cause disease in the first place, significantly reducing a chance of a negative reaction.

Show Answer

See the original post:

Gene Therapy Basics | Education | ASGCT American Society ...

Gene Therapy Retrovirus Vectors Explained

A retrovirus is any virus belonging to the viral family Retroviridae. All The genetic material in retroviruses is in the form of RNA molecules, while the genetic material of their hosts is in the form of DNA. When a retrovirus infects a host cell, it will introduce its RNA together with some enzymes into the cell. This RNA molecule from the retrovirus must produce a DNA copy from its RNA molecule before it can be considered part of the genetic material of the host cell. Retrovirus genomes commonly contain these three open reading frames that encode for proteins that can be found in the mature virus. Group-specific antigen (gag) codes for core and structural proteins of the virus, polymerase (pol) codes for reverse transcriptase, protease and integrase, and envelope (env) codes for the retroviral coat proteins (see figure 1). Figure 1. Genome organisation of retroviruses.

The process of producing a DNA copy from an RNA molecule is termed reverse transcription. It is carried out by one of the enzymes carried in the virus, called reverse transcriptase. After this DNA copy is produced and is free in the nucleus of the host cell, it must be incorporated into the genome of the host cell. That is, it must be inserted into the large DNA molecules in the cell (the chromosomes). This process is done by another enzyme carried in the virus called integrase (see figure 2).

Now that the genetic material of the virus is incorporated and has become part of the genetic material of the host cell, we can say that the host cell is now modified to contain a new gene. If this host cell divides later, its descendants will all contain the new genes. Sometimes the genes of the retrovirus do not express their information immediately.

Retroviral vectors are created by removal op the retroviral gag, pol, and env genes. These are replaced by the therapeutic gene. In order to produce vector particles a packaging cell is essential. Packaging cell lines provide all the viral proteins required for capsid production and the virion maturation of the vector. These packaging cell lines have been made so that they contain the gag, pol and env genes. Early packaging cell lines contained replication competent retroviral genomes and a single recombination event between this genome and the retroviral DNA vector could result in the production of a wild type virus. Following insertion of the desired gene into in the retroviral DNA vector, and maintainance of the proper packaging cell line, it is now a simple matter to prepare retroviral vectors (see figure 3).

One of the problems of gene therapy using retroviruses is that the integrase enzyme can insert the genetic material of the virus in any arbitrary position in the genome of the host. If genetic material happens to be inserted in the middle of one of the original genes of the host cell, this gene will be disrupted (insertional mutagenesis). If the gene happens to be one regulating cell division, uncontrolled cell division (i.e., cancer) can occur. This problem has recently begun to be addressed by utilizing zinc finger nucleases or by including certain sequences such as the beta-globin locus control region to direct the site of integration to specific chromosomal sites.

Gene therapy trials to treat severe combined immunodeficiency (SCID) were halted or restricted in the USA when leukemia was reported in three of eleven patients treated in the French X-linked SCID (X-SCID) gene therapy trial. Ten X-SCID patients treated in England have not presented leukemia to date and have had similar success in immune reconstitution. Gene therapy trials to treat SCID due to deficiency of the Adenosine Deaminase (ADA) enzyme continue with relative success in the USA, Italy and Japan.

As a reaction to the adverse events in the French X-SCID gene therapy trial, the Recombinant DNA Advisory Committee (RAC) sent a letter to Principal Investigators Conveying RAC Recommendations in 2003. In addition, the RAC published conclusions and recommendations of the RAC Gene Transfer Safety Symposium in 2005. A joint working party of the Gene Therapy Advisory Committee and the Committee on Safety of Medicines (CSM) in the UK lead to the publication of an updated recommendations of the GTAC/CSM working party on retroviruses in 2005.

Link:

Gene Therapy Retrovirus Vectors Explained

Gene Therapy | Pfizer: One of the world’s premier …

Gene therapy is a technology aimed at correcting or fixing a gene that may be defective. This exciting and potentially transformative area of research is focused on the development of potential treatments for monogenic diseases, or diseases that are caused by a defect in one gene.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

Viral vectors can be developed using adeno-associated virus (AAV), a naturally occurring virus which has been adapted for gene therapy use. Its ability to deliver genetic material to a wide range of tissues makes AAV vectors useful for transferring therapeutic genes into target cells. Gene therapy research holds tremendous promise in leading to the possible development of highly-specialized, potentially one-time delivery treatments for patients suffering from rare, monogenic diseases.

Pfizer aims to build an industry-leading gene therapy platform with a strategy focused on establishing a transformational portfolio through in-house capabilities, and enhancing those capabilities through strategic collaborations, as well as potential licensing and M&A activities.

We're working to access the most effective vector designs available to build a robust clinical stage portfolio, and employing a scalable manufacturing approach, proprietary cell lines and sophisticated analytics to support clinical development.

In addition, we're collaborating with some of the foremost experts in this field, through collaborations with Spark Therapeutics, Inc., on a potentially transformative gene therapy treatment for hemophilia B, which received Breakthrough Therapy designation from the US Food and Drug Administration, and 4D Molecular Therapeutics to discover and develop targeted next-generation AAV vectors for cardiac disease.

Gene therapy holds the promise of bringing true disease modification for patients suffering from devastating diseases, a promise were working to seeing become a reality in the years to come.

Continue reading here:

Gene Therapy | Pfizer: One of the world's premier ...

How does gene therapy work? – Scientific American

Gene therapy is the addition of new genes to a patient's cells to replace missing or malfunctioning genes. Researchers typically do this using a virus to carry the genetic cargo into cells, because thats what viruses evolved to do with their own genetic material.

The treatment, which was first tested in humans in 1990, can be performed inside or outside of the body. When its done inside the body, doctors may inject the virus carrying the gene in question directly into the part of the body that has defective cells. This is useful when only certain populations of cells need to be fixed. For example, researchers are using it to try to treat Parkinson's disease, because only part of the brain must be targeted. This approach is also being used to treat eye diseases and hemophilia, an inherited disease that leads to a high risk for excess bleeding, even from minor cuts.

Early in-the-body gene therapies used a virus called adenovirusthe virus behind the common coldbut the agent can cause an immune response from the body, putting a patient at risk of further illness. Today, researchers use a virus called adeno-associated virus, which is not known to cause any disease in humans. In nature, this agent needs to hitch a ride with an adenovirus, because it lacks the genes required to spread itself on its own. To produce an adeno-associated virus that can carry a therapeutic gene and live on its own, researchers add innocuous DNA from adenovirus during preparation.

In-the-body gene therapies often take advantage of the natural tendency of viruses to infect certain organs. Adeno-associated virus, for example, goes straight for the liver when it is injected into the bloodstream. Because blood-clotting factors can be added to the blood in the liver, this virus is used in gene therapies to treat hemophilia.

In out-of-the-body gene therapy, researchers take blood or bone marrow from a patient and separate out immature cells. They then add a gene to those cells and inject them into the bloodstream of the patient; the cells travel to the bone marrow, mature and multiply rapidly, eventually replacing all of the defective cells. Doctors are working on the ability to do out-of-the-body gene therapy to replace all of a patient's bone marrow or the entire blood system, as would be useful in sickle-cell anemiain which red blood cells are shaped like crescents, causing them to block the flow of blood.

Out-of-the-body gene therapy has already been used to treat severe combined immunodeficiencyalso referred to as SCID or boy-in-the-bubble syndromewhere patients are unable to fight infection and die in childhood. In this type of gene therapy, scientists use retroviruses, of which HIV is an example. These agents are extremely good at inserting their genes into the DNA of host cells. More than 30 patients have been treated for SCID, and more than 90 percent of those children have been cured of their disorderan improvement over the 50 percent chance of recovery offered by bone marrow transplants.

A risk involved with retroviruses is that they may stitch their gene anywhere into DNA, disrupting other genes and causing leukemia. Unfortunately, five of the 30 children treated for SCID have experienced this complication; four of those five, however, have beaten the cancer. Researchers are now designing delivery systems that will carry a much lower risk of causing this condition.

Although there are currently no gene therapy products on the market in the U.S., recent studies in both Parkinson's disease and Leber congenital amaurosis, a rare form of blindness, have returned very promising results. If these results are borne out, there could be literally hundreds of diseases treated with this approach.

Here is the original post:

How does gene therapy work? - Scientific American

The Forever Fix: Gene Therapy and the Boy Who Saved It …

In this impressive, meticulously researched study of the exciting new developments in gene therapy, geneticist and journalist Lewis (Human Genetics) looks closely at the history of setbacks plaguing the treatment of rare genetic diseases as well as recent breakthroughs...Yet with each success, as Lewis recounts in this rigorous, energetic work, possibilities in treating HIV infection and dozens of other diseases might be around the next corner. Publisher's Weekly (starred review)

A fascinating account of groundbreaking science and the people who make it possible. Kirkus

Ricki Lewis gives us the inspiring story of gene therapy as told through Corey's eyes--literally. Her book delves into the challenges modern medicine faces--both in its bitter disappointments and great successes--but it goes much deeper than that. With empathy and grace, Lewis shows us the unimaginable strength of parents with sick children and the untiring devotion of the physicians who work to find the forever fix' to save them. But best of all Lewis gives us a story of profound hope. Molly Caldwell Crosby, author of The American Plague: The Untold Story of Yellow Fever, the Epidemic that Shaped Our History and Asleep: The Forgotten Epidemic that Remains One of Medicine's Greatest Mysteries

The Forever Fix is a wonderful story told by one of our most gifted science and medical writers. In the tradition of Siddhartha Mukherjee's The Emperor of All Maladies, Ricki Lewis explains complex biological processes in extremely understandable ways, ultimately providing crucial insights into the modeling of disease and illustrating how gene therapy can treat and even potentially cure the most challenging of our health conditions. Dennis A. Steindler, Ph.D., former Executive Director of the McKnight Brain Institute, University of Florida

Ricki Lewis has written a remarkable book that vividly captures the breathtaking highs and devastating lows of gene therapy over the past decade while giving ample voice to all sides -- the brave patient volunteers, their parents and physicians. The Forever Fix is required reading as we dare to dream of curing a host of genetic diseases. Kevin Davies, Founding editor of Nature Genetics; author of The $1,000 Genome and Cracking the Genome

In 'The Forever Fix,' Ms. Lewis chronicles gene therapy's climb toward the Peak of Inflated Expectations over the course of the 1990s. A geneticist and the author of a widely used textbook, she demonstrates a mastery of the history. The Wall Street Journal

An engaging and accessible look at gene therapy. Times Union

Medical writer Ricki Lewis interweaves science, the history of medical trial and error, and human stories from the death in 1999 of teenager Jesse Gelsinger, from a reaction to gene therapy intended to combat his liver disease, to radical successes in some children with adenosine deaminase deficiency. Nature

Lewis adeptly traverses the highs and lows of gene therapy and explores its past, present, and future through the tales of those who've tested its validity. The Scientist

Follow this link:

The Forever Fix: Gene Therapy and the Boy Who Saved It ...

Gene therapy | Cancer in general | Cancer Research UK

Gene therapy is a cancer treatment that is still in the early stages of research.

Genes are coded messages that tell cells how to make proteins. Proteins are the molecules that control the way cells behave. Our genes decide what we look like and how our body works.We have many thousands of separate genes.

Genes are made ofDNAand they are in the nucleus of the cell. The nucleus is the cell's control centre.Genes are grouped together to make chromosomes. We inherit half our chromosomes from our mother and half from our father.

Cancer cells are different from normal cells. They have changes (called faults or mutations) in several of their genes which make them divide too often and form a tumour. The genes that are damaged mightbe:

Many gene changes thatmake a cell become cancerous are caused by environmental or lifestyle factors. A small numberof people haveinherited faulty genes that increase their risk of particular types of cancer.

Gene therapy is a type of treatment which uses genes to treat illnesses. Researchers have been developing differenttypes of gene therapyto treat cancer.

The ideas for these new treatments have come about because we are beginning to understand how cancer cells are different from normal cells. It is stillearly days for this type of treatment. Some of these treatments are being looked at in clinical trials. Otherscan now be used for some people with types of cancer such as melanoma skin cancer.

Getting genes into cancer cells is one of the most difficult aspects of gene therapy. Researchers are working on finding new and better ways of doing this. The gene is usually taken into the cancer cell by a carrier called a vector.

The most common types of carrier used in gene therapy are viruses because they can enter cells and deliver genetic material. The viruses have been changed so that they cannot cause serious disease but they may still cause mild, flu-like symptoms.

Some viruses have been changed in the laboratory so that they target cancer cells and not healthy cells. So they only carry the gene into cancer cells.

Researchers are testing other types of carrier such as inactivated bacteria.

Researchers are looking at different ways of using gene therapy:

Some types of gene therapy aim to boost the body's natural ability to attack cancer cells. Ourimmune systemhas cells that recognise and kill harmful things that can cause disease, such as cancer cells.

There are many different types of immune cell. Some of them produce proteins that encourage other immune cells to destroy cancer cells. Some types of therapy add genes to a patient's immune cells. Thismakes them better at finding or destroying particular types of cancer.

There are a few trials using this type of gene therapy in the UK.

Some gene therapies put genes into cancer cells to make the cells more sensitive to particular treatments. The aim is to make treatments,such as chemotherapy or radiotherapy, work better.

Some types of gene therapy deliver genes into the cancer cells that allow the cells to change drugs from an inactive form to an active form. The inactive form of the drug is called a pro drug.

First of all you have treatment with thecarrier containing the gene, then you havethe pro drug.The pro drug circulates in the body and doesn't harm normal cells. But when it reaches the cancer cells, it is activated by the gene and the drug kills the cancer cells.

Some gene therapies block processes that cancer cells use to survive. For example, most cells in the body are programmed to die if their DNA is damaged beyond repair. This is called programmed cell death or apoptosis. Cancer cells block this process so they don't die even when they are supposed to.

Some gene therapy strategies aim to reverse this blockage. Researchers are looking at whetherthese new types of treatment will make the cancer cells die.

Some viruses infect and kill cells. Researchers are working on ways to change these viruses so they only target and kill cancer cells, leaving healthy cells alone.

This sort of treatment uses the viruses to kill cancer cells directly rather than to deliver genes. So it is not cancer gene therapy in the true sense of the word. But doctors sometimes refer to it as gene therapy.

An example is a drug called T-VEC (talimogene laherparepvec), also known as Imlygic. It uses a strain of the cold sore virus (herpes simplex virus) that has been changed by altering the genes that tell the virus how to behave. It tells the virus to destroy the cancer cells and ignore the healthy cells.

T-VEC is now available as a treatment for melanoma skin cancer. It can be used to treat some people with melanomawhose cancer cannot be removed with surgery. It is also being looked at in trials for head and neck cancer. You have T-VEC as an injection directly into the melanoma or head and neck cancer.

Use the tabs along the top to look at recruiting, closed and results.

Follow this link:

Gene therapy | Cancer in general | Cancer Research UK

How Does Gene Therapy Work?

Scientists have promised that gene therapy will be the next big leap for medicine. It's a term that's tossed about regularly, but what is it exactly? Trace shows us how scientists can change your very genetic code.

Read More:

How does gene therapy work?http://ghr.nlm.nih.gov/handbook/thera..."Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. If a mutated gene causes a necessary protein to be faulty or missing, gene therapy may be able to introduce a normal copy of the gene to restore the function of the protein."

Gene therapy trial 'cures children'http://www.bbc.co.uk/news/health-2326..."A disease which robs children of the ability to walk and talk has been cured by pioneering gene therapy to correct errors in their DNA, say doctors."

Gene therapy cures diabetic dogshttp://www.newscientist.com/article/d..."Five diabetic beagles no longer needed insulin injections after being given two extra genes, with two of them still alive more than four years later."

Gene Therapy for Cancer: Questions and Answershttp://www.cancer.gov/cancertopics/fa..."Gene therapy is an experimental treatment that involves introducing genetic material into a person's cells to fight or prevent disease."

How does gene therapy work?http://www.scientificamerican.com/art..."Gene therapy is the addition of new genes to a patient's cells to replace missing or malfunctioning genes. Researchers typically do this using a virus to carry the genetic cargo into cells, because that's what viruses evolved to do with their own genetic material."

Gene therapy cures leukaemia in eight dayshttp://www.newscientist.com/article/m...eight-days.htmlWITHIN just eight days of starting a novel gene therapy, David Aponte's "incurable" leukaemia had vanished. For four other patients, the same happened within eight weeks, although one later died from a blood clot unrelated to the treatment, and another after relapsing.

Cell Therapy Shows Promise for Acute Type of Leukemiahttp://www.nytimes.com/2013/03/21/hea..."A treatment that genetically alters a patient's own immune cells to fight cancer has, for the first time, produced remissions in adults with an acute leukemia that is usually lethal, researchers are reporting."

Watch More:Tricking the Immune Systemhttp://www.youtube.com/watch?v=Kr_HRl...Babies with 3 Parents?!http://www.youtube.com/watch?v=jQxsW_...Pick Your Poison: Cyanidehttp://www.youtube.com/watch?v=JDBrdE...____________________

DNews is dedicated to satisfying your curiosity and to bringing you mind-bending stories & perspectives you won't find anywhere else! New videos twice daily.

Watch More DNews on TestTube http://testtube.com/dnews

Subscribe now! http://www.youtube.com/subscription_c...

DNews on Twitter http://twitter.com/dnews

Anthony Carboni on Twitter http://twitter.com/acarboni

Laci Green on Twitter http://twitter.com/gogreen18

Trace Dominguez on Twitter http://twitter.com/trace501

DNews on Facebook http://facebook.com/dnews

DNews on Google+ http://gplus.to/dnews

Discovery News http://discoverynews.com

See the rest here:

How Does Gene Therapy Work?

Gene Therapy for Pediatric Diseases | DNA Therapy – Dana …

Gene therapy delivers DNAinto a patients cells to replace faulty or missing genes or adds new genes in an attempt to cure diseases or to make changes so the body is better able tofight off disease. The DNA for a gene or genes is carried into a patientscells by a delivery vehicle called a vector, typically a specially engineeredvirus. The vector then inserts the gene(s) into the cells' DNA.

Although gene therapy is relativelynew and often still considered experimental, it can provide a cure for life-threateningdiseases that dont respond well to other therapies (includingimmunodeficiencies, metabolic disorders, and relapsed cancers) and for acuteconditions that currently rely on complex and expensive life-long medicationand management (such as sickle cell disease and hemophilia).

CAR T-Cell Therapy for Relapsed Acute Lymphoblastic Leukemia (ALL)

Dana-Farber/Boston Childrens is a certified treatment center for providing the recently-FDA-approved CAR T-cell therapy called KYMRIAH for relapsed B-cell acute lymphoblastic leukemia (ALL). This promising new treatment entails genetic engineering of the patients own T-cells to increase targeting of a specific leukemia protein and then accelerate killing of the target. After modification, they are returned to the patient via IV where they can immediately begin destroying circulating cancer cells.

For more information about CAR T-cell therapy, contact our gene therapy program.

Our Gene Therapy Clinical Trials

Learn more about our gene therapy clinical trials.

Dana-Farber/BostonChildrens has one the most extensive and long-running pediatric gene therapyprograms in the world. Since 2010, wehave treated 36 patients from 11 countries through eight gene therapy clinicaltrials.

Why choose Dana-Farber/BostonChildrens:

Learn more

Read more:

Gene Therapy for Pediatric Diseases | DNA Therapy - Dana ...

Gene Therapy and Children – KidsHealth

Gene therapy carries the promise of cures for many diseases and for types of medical treatment that didn't seem possible until recently. With its potential to eliminate and prevent hereditary diseases such as cystic fibrosis and hemophilia and its use as a possible cure for heart disease, AIDS, and cancer, gene therapy is a potential medical miracle-worker.

But what about gene therapy for children? There's a fair amount of risk involved, so thus far only seriously ill kids or those with illnesses that can't be cured by standard medical treatments have been involved in clinical trials using gene therapy.

As those studies continue, gene therapy may soon offer hope for children with serious illnesses that don't respond to conventional therapies.

Our genes help make us unique. Inherited from our parents, they go far in determining our physical traits like eye color and the color and texture of our hair. They also determine things like whether babies will be male or female, the amount of oxygen blood can carry, and the likelihood of getting certain diseases.

Genes are composed of strands of a molecule called DNA and are located in single file within the chromosomes. The genetic message is encoded by the building blocks of the DNA, which are called nucleotides. Approximately 3 billion pairs of nucleotides are in the chromosomes of a human cell, and each person's genetic makeup has a unique sequence of nucleotides. This is mainly what makes us different from one another.

Scientists believe that every human has about 25,000 genes per cell. A mutation, or change, in any one of these genes can result in a disease, physical disability, or shortened life span. These mutations can be passed from one generation to another, inherited just like a mother's curly hair or a father's brown eyes. Mutations also can occur spontaneously in some cases, without having been passed on by a parent. With gene therapy, the treatment or elimination of inherited diseases or physical conditions due to these mutations could become a reality.

Gene therapy involves the manipulation of genes to fight or prevent diseases. Put simply, it introduces a "good" gene into a person who has a disease caused by a "bad" gene.

The two forms of gene therapy are:

Currently, gene therapy is done only through clinical trials, which often take years to complete. After new drugs or procedures are tested in laboratories, clinical trials are conducted with human patients under strictly controlled circumstances. Such trials usually last 2 to 4 years and go through several phases of research. In the United States, the U.S. Food and Drug Administration (FDA) must then approve the new therapy for the marketplace, which can take another 2 years.

The most active research being done in gene therapy for kids has been for genetic disorders (like cystic fibrosis). Other gene therapy trials involve children with severe immunodeficiencies, such as adenosine deaminase (ADA) deficiency (a rare genetic disease that makes kids prone to serious infection), sickle cell anemia, thalassemia, hemophilia, and those with familial hypercholesterolemia (extremely high levels of serum cholesterol).

Gene therapy does have risks and limitations. The viruses and other agents used to deliver the "good" genes can affect more than the cells for which they're intended. If a gene is added to DNA, it could be put in the wrong place, which could potentially cause cancer or other damage.

Genes also can be "overexpressed," meaning they can drive the production of so much of a protein that they can be harmful. Another risk is that a virus introduced into one person could be transmitted to others or into the environment.

Gene therapy trials in children present an ethical dilemma, according to some gene therapy experts. Kids with an altered gene may have mild or severe effects and the severity often can't be determined in infants. So just because some kids appear to have a genetic problem doesn't mean they'll be substantially affected by it, but they'll have to live with the knowledge of that problem.

Kids could be tested for disorders if there is a medical treatment or a lifestyle change that could be beneficial or if knowing they don't carry the gene reduces the medical surveillance needed. For example, finding out a child doesn't carry the gene for a disorder that runs in the family might mean that he or she doesn't have to undergo yearly screenings or other regular exams.

To cure genetic diseases, scientists must first determine which gene or set of genes causes each disease. The Human Genome Project and other international efforts have completed the initial work of sequencing and mapping virtually all of the 25,000 genes in the human cell. This research will provide new strategies to diagnose, treat, cure, and possibly prevent human diseases.

Although this information will help scientists determine the genetic basis of many diseases, it will be a long time before diseases actually can be treated through gene therapy.

Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its role in ;curing and preventing childhood diseases. One day it may be possible to treat an unborn child for a genetic disease even before symptoms appear.

Scientists hope that the human genome mapping will help lead to cures for many diseases and that successful clinical trials will create new opportunities. For now, however, it's a wait-and-see situation, calling for cautious optimism./p>

Date reviewed: April 2014

See the rest here:

Gene Therapy and Children - KidsHealth

What is Gene Therapy? – Dana-Farber/Boston Children’s …

Gene therapy is a technique throughwhich genes are added or replaced to treat or prevent disease.

Our genes, which hold the code for all of our body's functions, aremade of DNA. Damage to DNA, such as a mutation, is an underlying cause of thegenetic defects that lead to cancers, blood disorders, and other conditions.Gene therapy delivers DNA into a patients cells to replace faulty or missinggenes or add new genes in an attempt to cure cancer or make changes so thebody is better able to fight off disease.

Scientists are investigating a number of different ways to do this:

How does gene therapy deliver new genes into cells?

With gene therapy, the DNA for the new or corrected gene or genes iscarried into a patients cells by a delivery vehicle called a vector, typicallya specially engineered virus. The vector then inserts the gene(s) into thecells' DNA.

For patients, the process for delivering genes to cells is fairlysimple.

View gene therapy video:

...or click to see an image of the gene therapy process:

Learn more

Visit link:

What is Gene Therapy? - Dana-Farber/Boston Children's ...