Affinia Therapeutics Announces Addition of Gene Therapy Scientific and Medical Experts to Leadership Team to Advance Novel Gene Therapy Platform and…

-- Gene editing expert Charles Albright, Ph.D., joins as chief scientific officer --

-- Gene therapy development expert Petra Kaufmann, M.D.,joins as chief medical officer

WALTHAM, Mass., Feb. 17, 2021 (GLOBE NEWSWIRE) -- Affinia Therapeutics, an innovative gene therapy company with a proprietary platform for rationally designed adeno-associated virus (AAV) vectors and gene therapies for rare and non-rare diseases, today announced the completion of its leadership team. Collectively, the executives represent a diverse team of proven leaders in gene therapy who have successfully developed novel platforms and translated them to medicines that have made a transformative difference in the lives of those affected by devastating diseases.

Our calling is to broaden the reach of gene therapies for patients in need, and this starts with our proven leadership team. Members of our team have been at the forefront of the field and come from a variety of eminent organizations to innovate in the gene therapy science and programs at Affinia Therapeutics, said Rick Modi, chief executive officer at Affinia Therapeutics. We believe in a vastly different future medical era of one-time potentially curative medicines for patients affected by diseases, rare and non-rare. But realizing this vision requires moving beyond conventional AAV serotypes. At Affinia Therapeutics, we are uniquely positioned to engineer novel vectors and gene therapies that direct tissue tropism and have the potential to improve clinical efficacy, as well as immunogenicity and safety. Together, Dr. Albright, Dr. Kaufmann and the rest of our leadership team will leverage their extensive experience to advance our platform and programs.

Dr. Albright joins Affinia Therapeutics from Editas Medicine, where he served as executive vice president and chief scientific officer and led the development of the CRISPR gene editing technology platform. In this role, he industrialized and matured the platform and translated it to pioneering programs through Investigational New Drug (IND) submissions that led to clinical trials. Prior to joining Editas, Dr. Albright spent over 12 years at Bristol Myers Squibb, where he most recently held the position of vice president, genetically defined diseases and genomics. As a research leader at both biotech and large pharmaceutical companies, he has honed his expertise across a range of therapeutic areas including neurology, neuromuscular, cardiovascular, ophthalmology and oncology. Dr. Albright earned a Ph.D. in biology at MIT and was a postdoctoral fellow at the Whitehead Institute.

Dr. Kaufmann is an expert in translational medicine and clinical development focused on neuroscience, rare disease and gene therapy. She recently served as senior vice president and head of clinical development, analytics and translational medicine at Novartis Gene Therapies. She directed clinical development activities that included the global development of Zolgensma and translational strategy for several pipeline programs. This followed many years of clinical research and development positions in academia and at the National Institutes of Health (NIH), where she held leadership roles of increasing responsibility, most recently as director of the Office of Rare Diseases Research. Dr. Kaufmann earned an M.D. at the University of Bonn and an M.S. in biostatistics at Columbia University, where she also trained in neurology and served as a tenured faculty member, advancing research and caring for patients.

It is exciting to see the platform generate advances beyond the conventional AAV serotypes discovered many years ago, said Dr. Albright. Affinia Therapeutics platform for engineering next-generation vectors with specific pharmacodynamic properties enables us to explore the potentially curative benefits of gene therapy in new indications. I look forward to leading the scientific team as we advance these insights into translational opportunities in the clinic and, ultimately, into transformative therapies for patients.

I am thrilled to join this team of gene therapy experts who are helping to broaden the reach of gene therapies, said Dr. Kaufmann. I look forward to putting my clinical research and development experience into practice as we translate our differentiated AAV vectors into transformative medicines for people suffering from diseases that have been inadequately addressed by conventional AAVs and traditional therapies.

Dr. Albright and Dr. Kaufmann join the following individuals on Affinia Therapeutics leadership and scientific advisory team:

This team has collectively authored more than 450 publications, holds more than 15 patents, held meaningful roles on more than 15 BLAs, supplemental BLAs and product launches, and has executed on more than $16 billion in value for IPOs and M&As.

About Affinia TherapeuticsAt Affinia Therapeutics, our purpose is to develop gene therapies that can have a transformative impact on people affected by devastating rare and non-rare diseases. Our proprietary platform enables us to methodically engineer novel AAV vectors and gene therapies with potentially improved tissue tropism, cell specificity, immunogenicity and safety. With our innovative science, we are working to broaden the reach of life-changing gene therapies to meaningful numbers of patients with an initial focus on central nervous system (CNS) and muscle diseases with significant unmet need. http://www.affiniatx.com.

Affinia Therapeutics Contacts

Investors: investors@affiniatx.com

Media: media@affiniatx.com

Read the original post:

Affinia Therapeutics Announces Addition of Gene Therapy Scientific and Medical Experts to Leadership Team to Advance Novel Gene Therapy Platform and...

Avance Biosciences Expanding Houston Campus in Support of Cell and Gene Therapy Drug Development – BioSpace

HOUSTON, Feb. 16, 2021 /PRNewswire/ -- Avance Biosciences Inc., a leading CRO providing GLP/GMP-compliant assay development, assay validation, and sample testing services supporting biological drug development and manufacturing, announced today that its Houston facility, which successfully passed an inspection by the U.S. Food and Drug Administration in Oct 2018, is undergoing major expansion to handle rapidly growing demand for their services.

The new facility, expected to be completed by Q3 2021, is located adjacent to the current facility and will expand the Houston campus by an additional 5,500 square feet. The new facility will be devoted to cell-based assay services and enable Avance to better address the specific needs of their GMP clients. Additionally, Avance is expanding their mammalian cell culture related assay capabilities including: mycoplasma testing, adventitious agents testing, sterility, potency, and others.

As a provider of genomics and biological testing services, Avance Biosciences offers a broad range of molecular biology and microbiology assays in compliance with current Good Manufacturing Practices (21 CFR Parts 210 & 211) and Good Laboratory Practices (21 CFR Part 58) to support its clients' regulatory submissions.

Avance's CEO, Dr. Xuening Huang commented, "We take a partnership approach with our clients and that means an extended relationship; from discovery to development to clinical testing and on to manufacturing. Our most recent expansions will ensure that we can keep pace with our customer's increased needs when ramping up development and manufacturing activities. Our primary goals are to deliver world-class service and complete customer satisfaction."

Avance's Vice President of Sales and Marketing, Cal Froberg commented, "It's clear there is tremendous growth in the development of cell and gene therapies and we're proactively managing resources to handle increased market demand for related support services. The industry is expanding rapidly and Avance is positioned well to address the specific needs of these customers."

This most recent expansion comes on the heels of another 7,500 square foot expansion completed in 2020 which has significantly increased Avance's NGS and ddPCR capabilities. This facility has been pivotal in addressing gene therapy development support needs such as: edited gene testing, gene integration assays, and DNA/RNA biodistribution studies.

Recently, Avance Biosciences was recognized as a top 10 Genomics Solutions Company for 2020. Current and future expansion plans will serve to solidify this position among the premier providers in this space.

About Avance Biosciences

Avance offers cGMP/GLP compliant genomics biological testing services in support of drug development and manufacturing. Its leading scientists have designed, validated, and tested thousands of assays under cGMP/GLP regulations for the FDA, EPA, and European and Japanese regulatory agencies. Avance's team has extensive knowledge and experience working with scientists, QA/QC professionals and project managers from over 100 pharmaceutical and biotechnology companies and organizations throughout the world.

Contact

Xuening Huangxuening.huang@avancebio.com877-909-52109770 West Little York RoadHouston, TX 77040 USA

View original content to download multimedia:http://www.prnewswire.com/news-releases/avance-biosciences-expanding-houston-campus-in-support-of-cell-and-gene-therapy-drug-development-301226865.html

SOURCE Avance Biosciences

Read more from the original source:

Avance Biosciences Expanding Houston Campus in Support of Cell and Gene Therapy Drug Development - BioSpace

Sensorion and Institut Pasteur announce new gene therapy collaboration – BioPharma-Reporter.com

The new gene therapy target,GJB2 coding for the Connexin 26 protein, has been added to Sensorions development portfolio: with the target the third candidate to emerge from the R&D collaboration with Institut Pasteur. It represents the largest gene therapy opportunity for the French biotech to date.

The GJB2 program will focus on major new markets with an estimated patient population of 300,000 children and adults in Europe and the US alone.

Sensorion, a French clinical-stage biotech based in Montpellier, was founded in 2009 to develop novel therapies to restore, treat and prevent hearing loss disorders.

The GJB2 program draws on new research from Institut Pasteur which shows that the same genes that underly congenital deafness are also involved in severe forms of presbycusis (age-related hearing loss). These forms of presbycusis appearing to be monogenic types of hearing loss that can be potentially treated by gene therapy.

Although the types ofGJB2mutations in children and adults may differ, Sensorion says gene therapy could potentially provide a solution to both.

Mutations inGJB2are believed to alter a gap junction protein widely expressed in the inner ear, disturbing intercellular exchanges of molecules and leading to hearing loss that is severe-to-profound in a majority of cases.

Institut Pasteur research now shows three pathologies related to GJB2 mutations: congenital deafness;age-related hearing loss in adults; and progressive forms of hearing loss in children. Sensorion will prioritize the latter two forms, saying it is the first company to address these needs and offering the potential of large market opportunities.

The emergence of a new gene therapy target candidate validates our conviction that long-term solutions for restoring hereditary hearing loss will arise from an in-depth analysis of the "genetic landscape" of hearing loss," saidNawal Ouzren, CEO of Sensorion.

"It was clear that mutations in the GJB2 gene are important in severe to profound childhood hearing loss. However, the new discovery made by our collaborators at Institut Pasteur shows that alteration of this gene in adults offers new opportunities for Sensorion. It marks significant potential expansion of our pipeline and supports our goal of becoming a global leader in the field of gene therapies for hearing loss disorders.

Sensorions collaboration with Institut Pasteur initiated in 2019 has already led to gene therapy candidate programs in two other indications. Its USHER-CT gene therapy development program aims to restore inner ear function for patients suffering from Usher Syndrome Type 1 by providing a healthy copy of the USH1G gene coding for the SANS protein.

Meanwhile, the OTOF-GT gene therapy development program seeks to restore hearing in people with Otoferlin deficiency, one of the most common forms of congenital deafness.

Both of these have been proved in concept in preclinical studies.

See original here:

Sensorion and Institut Pasteur announce new gene therapy collaboration - BioPharma-Reporter.com

Gene Therapy GS010 Safe, Well-Tolerated for LHON Patients – MD Magazine

New data from GenSight Biologics showed promising results for lenadogene nolparvovec (LUMVOQ), an intravitreal gene therapy for leber hereditary optic neuropathy (LHON) caused by mutations in the mitochondrial ND4 gene.

Overall, the therapy was well-tolerated in patients, had a favorable safety profile, and was shown that it may lead to clinically meaningful improvements.

A team, led by Catherine Vignal-Clermont, MD, Rothschild Foundation Hospital, Paris, France, conducted an open-label, single-center, dose-escalation study that primarily assessed safety and tolerability of the gene therapy among 15 patients with LHON.

Therapeutic options for adolescent and adult patients with LHON are currently limited to idebenone (Raxone), a synthetic analog of coenzyme Q10, which is approved only in Europe under exceptional circumstances for treatment of LHON, Vignal-Clermont and team wrote.

They further acknowledged that no approved treatment exists in the United States.

REVEAL A Phase I/IIa Study

Among the exclusion criteria were vision loss in the fellow eye, glaucoma, diabetic retinopathy, macula edema, vitreoretinal disease, pathology of the retina or the optic nerve, retinal vein occlusion, narrow angles, optic neuropathy for other causes, or any other disease that would have an effect on visual function.

Eligible patients were divided into a dosing cohort to receive a single injection and then were followed-up immediately at day 3 for safety and efficacy assessments.

The investigators pursued further follow-up at weeks 1, 2, 4, 8, 12, 24, 36, and 48 post-treatment. Additional follow-up was performed at years 1.5, 2, 2.5, 3, 4, and 5.

The studys primary endpoint was the overall incidences of adverse events up to 5 years post-treatments for each dosing level and for the treatment as a whole.

Secondary endpoints included best corrected visual acuity (BCVA; calculated as logarithm of the minimal angle of resolution [LogMAR]), among other efficacy measurements.

Results

Throughout the follow-up period, the investigators noted no serious adverse events that were considered related to treatments.

Furthermore, patients did not experience unexpected adverse events nor grades 3 or 4 Common Terminology Criteria for Adverse Events.

Anterior chamber inflammation and vitritis were mostly managed with topical steroids, and ocular inflammation was considered to be dose limiting by the independent data safety monitoring board based on the benefits/risks for the subjects, the investigators wrote.

In terms of efficacy, the team reported that analysis of the LogMAR BCVA in both treated and untreated eyes showed clinically relevant and durable improvements compared with baseline.

As such, the mean improvement for the treated eye was -0.44 LogMAR and for the untreated eye was -0.49.

Thus, at 5 years post-treatment, the final value of LogMAR was +1.96 and +1.85, respectively, for the treated and untreated eyes.

As for those treated with the optimal dose level of 9 1010 viral genomes/eye (n = 6), the mean visual acuity improvement from baseline was 0.68 LogMAR for treated eyes and 0.64 LogMAR for untreated eyes.

The final mean value for the treated and untreated eyes were LogMAR +1.77 and +1.78, respectively.

While there was a meaningful improvement in visual acuity for REVEAL subjects, the final visual acuity was less favorable than that seen in the two subsequent pivotal phase III studies in which subjects were treated earlier during the course of their disease, Vignal-Clermont and colleagues wrote.

Nevertheless, the team acknowledged that these findings are a promising prelude to the Phase III RESCUE and REVERSE studies, which are running in tandem and currently assessing the efficacy of the single injection of the gene therapy in a larger population.

The study, "Safety of Intravitreal Gene Therapy for Treatment of Subjects with Leber Hereditary Optic Neuropathy due to Mutations in the Mitochondrial ND4 Gene: The REVEAL Study," was published online in BioDrugs.

Read more here:

Gene Therapy GS010 Safe, Well-Tolerated for LHON Patients - MD Magazine

bluebird bio ‘baffled’ after NICE rejects beta-thalassaemia gene therapy – – pharmaphorum

Its back to the drawing board for bluebird bio and its discussions with NICE, which has rejected its beta thalassaemia gene therapy Zynteglo for regular NHS use in first draft guidance.

NICE is assessing Zynteglo (betibeglogene autotemcel), a one-off gene therapy for the condition, which can have life-threatening consequences and is associated with a curtailed life expectancy.

There is a curative treatment for people who rely on blood transfusions to survive and maintain their levels of red blood cells.

But haematopoietic stem cell transplantation is only possible when a donor with a matching human leukocyte antigen signature, within the correct age range, is available.

In this first draft guidance NICE raised a series of issues with Zynteglo, which bluebird has already agreed to supply at a confidential discount from its hefty price tag, which is around 1.57 million in Europe.

NICE said that data came from a small sample of patients and is using its standard discount rate of 3.5% to calculate the long-term benefits of the treatment.

The company has unsuccessfully pushed for a rate of 1.5%, which would attach more value to the long-term benefits of the therapy over a patients lifetime.

There was also a long list of other technical issues raised by NICE that count against Zynteglo in the assessment, including costs of fertility preservation and the number of simulated profiles in bluebirds data.

Nicola Redfern, bluebird bios UK general manager, said the first step is to present a new analysis of data addressing issues raised by NICE before there are any discussions about lowering the price again.

She pointed out that the dossier presented to NICE was compiled in 2019 and the company now has six years worth of follow-up data.

Redfern also added that this is the first time that NICE had assessed a gene therapy using its single technology assessment process, which is used for medicines likely to be used more widely on the NHS.

However Redfern was still surprised the rejection given the discussions with NICE so far in the process.

She said: Some of the specifics we thought we had covered off with them and discussed. The thing that baffled me most was the lack of understanding of this disease upon the people living with it.

The UK Thalassaemia Society noted NICEs citation of a UK patient reference report stating that 37% of respondents would immediately accept a referral to a transplant specialist and betibeglogene autotemcel if offered it.

Romaine Maharaj, executive director at UKTS, said: Most of our members are very excited about the new therapy developments and are keen to explore these treatment options.

Bone marrow transplant is only an option for a very small proportion of people with thalassaemia and so gene therapy offers a real potential alternative as a one-off resolution to this life-limiting condition.

See the article here:

bluebird bio 'baffled' after NICE rejects beta-thalassaemia gene therapy - - pharmaphorum

GenSight Biologics’ gene therapy proves safe in LHON trial – Clinical Trials Arena

GenSight Biologics has reported that results from the Phase I/IIa REVEAL clinical trial of LUMEVOQ (lenadogene nolparvovec) gene therapy demonstrated a favourable safety profile in individuals with ND4 Leber hereditary optic neuropathy (LHON).

The trial also determined the dose used in the Phase III RESCUE and REVERSE trials.

Launched in 2014, the open-label, single-centre, dose escalation study analysed the safety and tolerability of LUMEVOQ in 15 participants with ND4 LHON who were followed for up to five years after administering a single intravitreal injection to their worst-affected eye.

Participants were enrolled in four cohorts of three subjects each, with each cohort given increasing doses of the gene therapy.

Dose escalation continued only after a safety evaluation by an independent data safety monitoring board (DSMB). A final extension cohort received the dose that the DSMB determined to have the best benefit-risk ratio among those administered to the four previous cohorts.

Data showed that LUMEVOQ was well-tolerated over the follow-up period of five years, with no serious adverse events noted.

These results are the first to show the favourable safety profile of the gene therapy while hinting at the efficacy analysed in the Phase III trials.

This safety profile was then affirmed in the Phase III RESCUE and REVERSE trials.

GenSight co-founder Dr Jos-Alain Sahel said: This study confirms the gene therapys favourable long-term safety and further demonstrates that the trends that were initially observed have been maintained for at least five years.

GlobalData's TMT Themes 2021 Report tells you everything you need to know about disruptive tech themes and which companies are best placed to help you digitally transform your business.

The company noted that REVEAL trial data and analyses were main components of the evidence package submitted to the European Medicines Agency (EMA) last September.

The submission was made seeking Marketing Authorisation Application (MAA) for LUMEVOQ for treating patients with visual loss due to ND4 LHON. The EMA decision is expected in the fourth quarter of this year.

Functional Service Provider

28 Aug 2020

Digital Solutions for Medical Adherence and Patient Retention

28 Aug 2020

Read the original:

GenSight Biologics' gene therapy proves safe in LHON trial - Clinical Trials Arena

Global Gene Therapy Market Outlook to 2030 – by Therapeutic Approach, Type of Gene Therapy, Type of Vectors Used, Therapeutic Areas, Route of…

Dublin, Feb. 15, 2021 (GLOBE NEWSWIRE) -- The "Gene Therapy Market by Therapeutic Approach, Type of Gene Therapy, Type of Vectors Used, Therapeutic Areas, Route of Administration, and Key Geographical Regions: Industry Trends and Global Forecasts, 2020-2030" report has been added to ResearchAndMarkets.com's offering.

Over time, several gene therapies have been developed for the treatment of both simple and complex genetic disorders. In fact, there are 10 approved gene therapies (recent examples include Zolgensma, ZyntegloT and Collategene) to date, and more than a thousand product candidates being evaluated in clinical trials, worldwide. Considering the current pace of research and product development activity in this field, experts believe that the number of clinical research initiatives involving gene therapies are likely to grow by 17% annually. In this context, the USFDA released a notification, mentioning that it now expects to receive twice as many gene therapy applications each year, starting 2020. Despite the ongoing pandemic, it is worth highlighting that gene therapy companies raised approximately USD 5.5 billion in capital investments, in 2020 alone. This is indicative of the promising therapeutic potential of this emerging class of pharmacological interventions, which has led investors to bet heavily on the success of different gene therapy candidates in the long term.

Several technology platforms are currently available for discovery and development of various types of gene therapies. In fact, advances in bioanalytical methods and genome editing and manipulation technologies, have enabled the development of novel therapy development tools/platforms. In fact, technology licensing is a lucrative source of income for stakeholders in this industry, particularly for those with proprietary gene editing platforms. Given the growing demand for interventions that focus on the amelioration of the underlying (genetic) causes of diseases, it is expected that the gene therapy pipeline will continue to steadily expand. Moreover, promising results from ongoing clinical research initiatives are likely to bring in more investments to support therapy product development initiatives in this domain. Therefore, we are led to believe that the global gene therapy market is poised to witness significant growth in the foreseen future.

Story continues

The report features an extensive study of the current market landscape of gene therapies, primarily focusing on gene augmentation-based therapies, oncolytic viral therapies, immunotherapies and gene editing therapies. The study also features an elaborate discussion on the future potential of this evolving market.

Key Questions Answered

Who are the leading industry players engaged in the development of gene therapies?

How many gene therapy candidates are present in the current development pipeline? Which key disease indications are targeted by such products?

Which types of vectors are most commonly used for effective delivery of gene therapies?

What are the key regulatory requirements for gene therapy approval, across various geographies?

Which commercialization strategies are most commonly adopted by gene therapy developers, across different stages of development?

What are the different pricing models and reimbursement strategies currently being adopted for gene therapies?

What are the various technology platforms that are either available in the market or are being designed for the development of gene therapies?

Who are the key CMOs/CDMOs engaged in supplying viral/plasmid vectors for gene therapy development?

What are the key value drivers of the merger and acquisition activity in the gene therapy industry?

Who are the key stakeholders that have actively made investments in the gene therapy domain?

Which are the most active trial sites related to this domain?

How is the current and future market opportunity likely to be distributed across key market segments?

Key Topics Covered:

1. PREFACE

2. EXECUTIVE SUMMARY

3. INTRODUCTION

4. GENE DELIVERY VECTORS

5. REGULATORY LANDSCAPE AND REIMBURSEMENT SCENARIO

6. MARKET OVERVIEW

7. COMPETITIVE LANDSCAPE

8. MARKETED GENE THERAPIES

9. KEY COMMERCIALIZATION STRATEGIES

10. LATE STAGE GENE THERAPIES

11. EMERGING TECHNOLOGIES

12. KEY THERAPEUTICS AREAS

13. PATENT ANALYSIS

14. MERGERS AND ACQUISITIONS

15. FUNDING AND INVESTMENT ANALYSIS

16. CLINICAL TRIAL ANALYSIS

17. COST PRICE ANALYSIS

18. BIG PHARMA PLAYERS: ANALYSIS OF GENE THERAPY RELATED INITIATIVES

19. DEMAND ANALYSIS

20. MARKET FORECAST AND OPPORTUNITY ANALYSIS

21. VECTOR MANUFACTURING

22. CASE STUDY: GENE THERAPY SUPPLY CHAIN

23. CONCLUSION

A Selection of Companies Mentioned Include:

For more information about this report visit https://www.researchandmarkets.com/r/c6r4ih

About ResearchAndMarkets.comResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Excerpt from:

Global Gene Therapy Market Outlook to 2030 - by Therapeutic Approach, Type of Gene Therapy, Type of Vectors Used, Therapeutic Areas, Route of...

Sio Gene Therapies to Present at the 10th Annual SVB Leerink Global Healthcare Conference – GlobeNewswire

NEW YORK and RESEARCH TRIANGLE PARK, N.C., Feb. 16, 2021 (GLOBE NEWSWIRE) -- Sio Gene Therapies Inc. (NASDAQ: SIOX), a clinical-stage company focused on developing gene therapies to radically improve the lives of patients with neurodegenerative diseases, announced today that the company will present at the 10th Annual SVB Leerink Global Healthcare Conference taking place February 22-26, 2021. Details on the presentation can be found below.

Company management will also participate in one-on-one investor meetings at the conference.

About Sio Gene Therapies

Sio Gene Therapies combines cutting-edge science with bold imagination to develop genetic medicines that aim to radically improve the lives of patients. Our current pipeline of clinical-stage candidates includes the first potentially curative AAV-based gene therapies for GM1 gangliosidosis and Tay-Sachs/Sandhoff diseases, which are rare and uniformly fatal pediatric conditions caused by single gene deficiencies. We are also expanding the reach of gene therapy to highly prevalent conditions such as Parkinsons disease, which affects millions of patients globally. Led by an experienced team of gene therapy development experts, and supported by collaborations with premier academic, industry and patient advocacy organizations, Sio is focused on accelerating its candidates through clinical trials to liberate patients with debilitating diseases through the transformational power of gene therapies. For more information, visit http://www.siogtx.com.

Contacts:

Media

Josephine Belluardo, Ph.D. LifeSci Communications(646) 751-4361jo@lifescicomms.cominfo@siogtx.com

Investors and Analysts

Parag V. Meswani, Pharm.D.Sio Gene Therapies Inc.Chief Commercial Officerinvestors@siogtx.com

Continue reading here:

Sio Gene Therapies to Present at the 10th Annual SVB Leerink Global Healthcare Conference - GlobeNewswire

Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions – OncLive

Betibeglogene autotemcel (beti-cel), a one-time gene therapy, enabled durable transfusion independence in most patients with transfusion-dependent -thalassemia (TDT) who were treated across 4 clinical studies.

Of 60 patients enrolled overall, 17 of 22 (77%) treated in the 2 phase 1/2 studies were able to stop packed red blood cell transfusions. In the 2 phase 3 studies, which used a refined manufacturing process resulting in improved beti-cel characteristics, 89% (n = 31/35) of patients with at least 6 months of follow-up achieved transfusion independence for more than 6 months,1 reported Suradej Hongeng, MD, during the virtual 2021 Transplantation & Cellular Therapy Meetings.

The median follow-up after beti-cel infusion in the 4 studies has been 24.8 months (range, 1.1-71.8).

With up to 6 years of follow-up, 1-time beti-cel gene therapy enabled durable transfusion independence in the majority of patients, said Hongeng, from Ramathibodi Hospital of Mahidol University, in Bangkok, Thailand.

Patients who achieved transfusion independence experienced a 38% median reduction in liver iron concentration (LIC) from baseline to month 48. The median reduction in LIC was 59% in patients with a baseline LIC more than 15 mg/g dw. A total of 21 of 37 (57%) patients who achieved transfusion independence have stopped iron chelation for 6 months or longer, with a median duration of 18.5 months from stopping iron chelation to last follow-up.

Erythropoiesis as determined by soluble transferrin receptor level was also improved in transfusion-independent patients. Bone marrow biopsies showed improvement in the myeloid:erythroid ratio.

Beti-cel adds functional copies of a modified form of the -globin (A-T87Q-globin) gene into a patients own hematopoietic stem cells (HSCs) through transduction of autologous CD34+ cells using a BB305 lentiviral vector. Following single-agent busulfan myeloablative conditioning, beti-cel is infused, after which the transduced HSCs engraft and reconstitute red blood cells containing functional adult hemoglobin derived from the gene therapy.

Of the 60 patients treated, 43 were genotype non-/ and 17 were / . The median age at consent was 20 years in the phase 1/2 trials and 15 years in the phase 3 trials. Median LIC at baseline was 7.1 and 5.5 mg Fe/g dw, respectively, and median cardiac T2 was 34 and 37 msec, respectively. The vector copy number was 0.8 in the phase 1/2 trial and 3.0 in the phase 3 study. Additionally, 32t and 78t CD34+ cells were transduced, respectively.

The phase 1/2 studies showed promising results but lower achievement of transfusion independence in patients with the / genotype, leading to a refinement in the manufacturing process, which resulted in a higher number of transduced cells and a higher number of vector copy number, said Hongeng.

The median time to neutrophil engraftment was 22.5 days and the median time to platelet engraftment was 44 days. Lymphocyte subsets were generally within the normal range after beti-cel infusion, which is different from allogeneic stem cell [transplantation], which is probably around 6 months to a year to get complete recovery of immune reconstitution, he said. The median duration of hospitalization was 42 days.

All patients were alive at the last follow-up (March 3, 2020). Eleven of 60 (18%) of patients experienced at least 1 adverse event (AE) considered related or possibly related to beti-cel, the most common being abdominal pain (8%) and thrombocytopenia (5%). Serious AEs were those expected after myeloablative conditioning: veno-occlusive liver disease (8%), neutropenia (5%), pyrexia (5%), thrombocytopenia (5%), and appendicitis, febrile neutropenia, major depression, and stomatitis (3% each).

Of the 7 patients experiencing veno-occlusive liver disease, 3 were of grade 4 and 2 were of grade 3. Two other patients had grade 2 veno-occlusive disease. There were no cases of insertional oncogenesis.

Persistent vector-positive hematopoietic cells and durable HbaT87Q levels supported stable total hemoglobin over time. In phase 3 trials, the median peripheral blood vector copy number was 1.2 c/dg at month 12 and 2.0 c/dg at month 24, and the median total hemoglobin was 11.5 g/dL at month 12 and 12.9 g/dL at month 24.

The weighted average of hemoglobin during transfusion independence in the phase 1/2 trials was 10.4 g/dL, and patients were transfusion-independent for a median of 51.2 months. In the phase 3 studies, the weighted average of hemoglobin during transfusion independence was 11.9 g/dL, and patients were transfusion-independent for a medium 17.7 months.

Hongeng S, Thompson AA, Kwiatkowski JL, et al. Efficacy and safety of betibeglogene autotemcel (beti-cel; LentiGlobin for -thalassemia) gene therapy in 60 patients with transfusion-dependent -thalassemia (TDT) followed for up to 6 years post-infusion. Presented at: 2021 Transplantation & Cellular Therapy Meetings; February 8-12, 2021; virtual. Abstract 1.

More here:

Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions - OncLive

Forge Biologics Receives FDA Fast Track, Orphan Drug, and Rare Pediatric Disease Designations for FBX-101 Gene Therapy for Patients with Krabbe…

COLUMBUS, Ohio, Feb. 16, 2021 /PRNewswire/ --Forge Biologics Inc., a fully integrated clinical stage gene therapy manufacturing and development company, today announced that the U.S. Food and Drug Administration (FDA) has granted Fast Track, Orphan Drug, and Rare Pediatric Disease (RPD) designations to FBX-101 for the treatment of patients with Krabbe disease. Forge is now actively recruiting patients for enrollment in the RESKUE phase 1/2 clinical trial of FBX-101, a novel, first-in-human AAV gene therapy for the disease. FBX-101 is the first intraveniousgene therapy program for patients with Krabbe disease and marks a major step forward in building out the company's hybrid model as a gene therapy manufacturing and development engine.

"FDA's decision to grant these designations to our first-in-human investigational gene therapy highlights the urgency of developing a treatment for Krabbe patients," said Timothy J. Miller, Ph.D., CEO, President and Co-Founder of Forge Biologics. "Krabbe is a devastating disease, and it is imperative to develop treatment options like FBX-101 that may address all manifestations of the disease."

Fast Track Designation is given when the FDA determines that a drug demonstrates the potential to address unmet medical needs for a serious or life-threatening disease or condition. This designation is intended to facilitate development and expedite review of drugs to treat serious and life-threatening conditions, and may also allow for priority or rolling review of a company's Biologics License Application (BLA).

The FDA grants Orphan Drug designation to drugs and biological products intended for the treatment of patients with rare diseases that affect fewer than 200,000 people in the United States. RPD designation is granted by the FDA to encourage treatments for serious or life-threatening diseases primarily affecting children 18 years of age and younger and fewer than 200,000 people in the United States. On December 27, 2020, the Rare Pediatric Disease Priority Review Voucher Program was extended by Congress after it was scheduled to sunset in 2020. Under the newly extended RPD program, if FBX-101 is approved by the FDA, Forge Biologics will qualify for a voucher that can be redeemed to receive a priority review of a subsequent marketing application for a different product.

"Infantile Krabbe is a progressive and devastating leukodystrophy," said Jessie Barnum, M.D., AssistantProfessor,Department of Pediatrics,Division of Blood and Marrow Transplantation and Cellular Therapies and Principal Investigator of the FBX-101 trial at UMPC. "FBX-101 is an AAV gene therapy that has shown promising preclinical efficacy in Krabbe animal models of disease by extending survival and improving neuromuscular function when administered early in the disease course."

"The FBX-101 preclinical data brings a new wave of hope to the Krabbe community," said Anna Grantham, Director of Leukodystrophy Care Network Programs at Hunter's Hope. "These FDA designations for FBX-101 underscore a beautiful and collective effort to accelerate the timelines of bringing this potential therapy to patients who urgently need them."

"To see a promising new treatment for Krabbe receive these designations so quickly brings us one step closer to what everyone in our disease community is ultimately working towards: an FDA-approved treatmentfor Krabbe disease to reach the beside of all patients impacted by this disease," said Stacy Pike-Langenfeld, Director of Programs and Administration at The Legacy of Angels Foundation. "Our mission has always been to promote research to develop and enhance treatments for Krabbe disease, so it's very encouraging to see that Forge and FBX-101 have made so much progress in such a short amount of time."

Patients and families can learn more about clinical trials for FBX-101 by visiting https://www.forgebiologics.com/science/#krabbe.

About Krabbe diseaseKrabbe disease is a rare, inherited leukodystrophy affecting approximately 1:12,500 - 100,000 people in the U.S.A. Krabbe disease is caused by loss-of-function mutations in the galactosylceramidase (GALC) gene, a lysosomal enzyme responsible for the breakdown of certain types of lipids such as psychosine. Without functional GALC, psychosine accumulates to toxic levels in cells. The psychosine toxicity is most severe in the myelin cells surrounding the nerves in the brain and in the peripheral nervous system, eventually leading to the death of these cells. The disease initially manifests as physical delays in development, muscle weakness and irritability and advances rapidly to difficulty swallowing, breathing problems, cognitive, vision and hearing loss. Early onset or "Infantile", Krabbe disease cases usually results in death by age 2-4 years, while later onset or "Late Infantile" cases have a more variable course of progressive decline. There is currently no approved treatment for Krabbe disease.

About FBX-101Forge is developing FBX-101 to treat patients with infantile Krabbe disease. FBX-101 is an adeno-associated viral (AAV) gene therapy that is delivered after a hematopoietic stem cell transplant. FBX-101 delivers a functional copy of the GALC gene to cells in both the central and peripheral nervous system. FBX-101 has been shown to functionally correct the central and peripheral neuropathy and correct the behavioral impairments associated with Krabbe disease in animal models, and to drastically improve the lifespan of treated animals. This approach has the potential to overcome some of the immunological safety challenges observed in traditional AAV gene therapies.

About Forge BiologicsForge Biologics is a hybrid gene therapy contract manufacturing and therapeutic development company. Forge's mission is to enable access to life changing gene therapies and help bring them from idea into reality. Forge has a 175,000 ft2 facility in Columbus, Ohio, "The Hearth", to serve as their headquarters. The Hearth is the home of a custom-designed cGMP facility dedicated to AAV viral vector manufacturing and will host end-to-end manufacturing services to accelerate gene therapy programs from preclinical through clinical and commercial stage manufacturing.By taking a patients-first approach, Forge aims to accelerate the timelines of these transformative medicines for those who need them the most.

For more information, please visit https://www.forgebiologics.com.

Patient, Pediatrician, Genetic Counselors & Family InquiriesDr. Maria EscolarChief Medical OfficerForge Biologics Inc.medicalaffairs@forgebiologics.com

Media Inquiries:Dan SalvoDirector of Communications and Community DevelopmentForge Biologics Inc.media@forgebiologics.com

Investor Relations and Business DevelopmentChristina PerryVice President, Finance and OperationsForge Biologics Inc.Investors@forgebiologics.com

View original content:http://www.prnewswire.com/news-releases/forge-biologics-receives-fda-fast-track-orphan-drug-and-rare-pediatric-disease-designations-for-fbx-101-gene-therapy-for-patients-with-krabbe-disease-301228668.html

SOURCE Forge Biologics

View post:

Forge Biologics Receives FDA Fast Track, Orphan Drug, and Rare Pediatric Disease Designations for FBX-101 Gene Therapy for Patients with Krabbe...

CDMO Vigene plots cell and gene therapy manufacturing expansion, adding 245 new jobs along the way – FiercePharma

Close to a year after Maryland-based CDMO Vigene Biosciences cut the ribbon on its headquarters, spiking demand for cell and gene therapy has prompted the company to lay out a major manufacturing upgrade in its home state.

Vigene is picking up a lease for 52,000 square feet of manufacturing space in Montgomery County, Maryland, situated near its existing headquarters in Rockville. The expansion is set to bring the company's total lab and production space up to 110,000 square feet and, by 2025, will see up to 245 new hires join Vigene's current workforce of 125.

The new facility, located at 14200 Shady Grove Road, will complement existing R&D and manufacturing operations at Vigene's home base as the company faces growing demand for its cell and gene therapy products. Vigene's expansion has snared some financial perks from the state, too, including a $1,225,000 loan from the Maryland Department of Commerce, which is contingent on job creation and capital investment.

Innovation in Rare Disease: Making Progress with Cell & Gene Therapies A Webinar Series from the Rare Disease Innovations Institute and Syneos Health

Join patients and their families, legislators, industry experts, advocates and sponsors to discuss education initiatives, recent advancements and the future promise of cell and gene medicine, and current patient experiences with these therapies.

RELATED: Cognate beefs up cell, gene therapy manufacturing with new plants in U.S., EU

The company is keeping its own spending on the site under wraps, Jeffrey Hung, Ph.D., chief commercial officer of Vigene, said over email. "It suffices to say that we are going to invest heavily on the facility to qualify and commission it for commercial production purpose," he added.

With the new site, Vigene will add five more GMP suites to the 10 it operates now, Hung said. Specifically, the company plans to commission and set up two 2,000-liter single-use bioreactor suites, where upstream and downstream production trains will be located on the same floor for commercial viral vector production. Another floor will house multiple large-scale fermenters for commercial plasma production, he said.

Formed in 2012, Vigene specializes in gene therapies for patients with cancers and serious genetic disorders. It develops, manufactures and distributes adeno-associated viruses, lentiviruses, retroviruses, adenoviruses and plasmid viral vectors for gene delivery.

RELATED: Fujifilm continues CMDO expansion spree with $76M in funding for new Boston site

The company has checked into the COVID-19 fight, too, signing on to produce clinical materials for Maryland compatriot Altimmune's nasal vaccine candidate. Vigene in July agreed to churn out both drug substance and drug product for studies on the vaccine, which registered for a phase 1 trial in late December.

On Dec. 23, Altimmune revealed the FDA had slapped the investigational new drug application for its vaccine, AdCOVID, with a clinical hold, citing the need for protocol modifications and additional chemistry, manufacturing and control data. The company responded to the hold and, at the time, said it didn't expect the move to significantly disrupt its clinical timeline.

Altimmune has also added Swiss CDMO Lonza as a production partner on its nasal vaccine, and it previously set the goal to crank out at least 100 million AdCOVID doses in 2021.

Meanwhile, Vigene's expansion comes shortly after the christening of its Rockville HQ. It was just a year ago that we cut the ribbon at Vigenes new custom-built headquarters and already the growing demand for its gene and cellular therapy products requires additional physical expansion, Benjamin Wu, CEO and president of the company, said in a release.

View original post here:

CDMO Vigene plots cell and gene therapy manufacturing expansion, adding 245 new jobs along the way - FiercePharma

Taysha Gene Therapies Announces Formation of Independent Scientific Advisory Board – Business Wire

DALLAS--(BUSINESS WIRE)--Taysha Gene Therapies, Inc. (Nasdaq: TSHA), a patient-centric gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the CNS in both rare and large patient populations, today announced the formation of an independent Scientific Advisory Board (SAB) that will work closely with senior management to advance the companys clinical development and commercialization efforts.

We are excited and privileged to have the opportunity to work with this cross-functional group of esteemed scientific and clinical thought leaders on initiatives from discovery, through pre-clinical and clinical development and commercialization, said Suyash Prasad, MBBS, M.Sc., MRCP, MRCPCH, FFPM, Chief Medical Officer and Head of Research and Development of Taysha. They bring a wealth of knowledge in the development of gene therapy products and diseases of the CNS that will be invaluable as we advance our extensive pipeline of AAV-based gene therapies for the treatment of monogenic diseases of the CNS. Formalizing the SAB is an important accomplishment that will help position Taysha for sustained success as we further our R&D initiatives.

The SAB brings together the expertise of esteemed independent scientists and clinicians covering Tayshas key areas of research in monogenic diseases and gene therapy products. Members of the SAB will provide scientific review and guidance to the company around its R&D and related business activities.

Members of Tayshas SAB include:

Deborah Bilder, M.D., is an Associate Professor at the University of Utah in Educational Psychology, General Pediatrics, and Child Psychiatry. Her research interests include clinical trials, medications, and biologics that target rare genetic conditions and has authored over 45 peer-reviewed articles. She is the Principal Investigator for the Utah Registry of Autism and Developmental Disabilities and Co-Principal Investigator for the Utah site of the Centers for Disease Control and Preventions Autism and Developmental Disabilities Monitoring Network. Dr. Bilder is Co-Chair of the DAC Committee in psychiatry at the University of Utah and a consultant for the Utah Regional Education in Neurodevelopmental and Related Disabilities program. She has been awarded the Triple Board Program Teaching Award from the University of Utah Division of Child and Adolescent Psychiatry. She is a steering committee member for BioMarin Pharmaceutical Phase 3 Clinical Trial and also serves as a medical advisor for the Utah chapter of Make-a-Wish Foundation. Dr. Bilder earned her medical degree from Vanderbilt University.

Alan Boyd, B.Sc., M.B., Ch.B., FRSB, FFLM, FRCP, FFPM, is the CEO and Founder of Boyd Consultants and a fellow and Immediate Past-President of the Faculty of Pharmaceutical Medicine, Royal Colleges of Physicians, UK. Professor Boyd is also a Council Member and the Independent Clinician Trustee on the Board of the Academy of Medical Royal Colleges, UK. He is also an honorary professor at the University of Birmingham Medical School, in recognition of his expertise in medicine development. He has significant pharmaceutical industry experience and was the Head of Medical Research at AstraZeneca and the Research and Development Director at Ark Therapeutics Ltd, specializing in the development of gene therapy products. He is a graduate in biochemistry and medicine from the University of Birmingham, UK.

Wendy K. Chung, M.D., Ph.D., is a Kennedy Family Professor of Pediatrics in Medicine, Attending Physician in the Division of Molecular Genetics, Department of Pediatrics and Medicine, and the Director of Clinical Genetics, Clinical Cancer Genetics, and Precision Medicine Resource at the Irving Institute for Translational Research, all at Columbia University. Her research interests include spinal muscular atrophy, autism, and neurogenetics. Dr Chung has authored over 500 peer-reviewed articles and 75 textbook chapters and serves on the Editorial Board of Molecular Case Studies and The American Journal of Human Genetics. Dr Chung is the Director of Clinical Research at the Simons Foundation Autism Research Initiative (SFARI) and a member of the National Academy of Medicine. Dr. Chung earned her medical degree from Cornell University Medical College and her doctorate from Rockefeller University.

David P. Dimmock, M.D., is the Senior Medical Director of Rady Childrens Institute for Genomic Medicine. Dr. Dimmock is an expert in the field of clinical genomic medicine, the Principal Investigator on multiple clinical trials of novel therapeutics in rare metabolic diseases and an author of over 100 peer-reviewed articles, publications, chapters, books and reviews. He has been an invited advisor to the U.S. Food and Drug Administration in the Office of Orphan Diseases and has overseen regulatory submissions for whole genome sequencing devices. At the Center for Disease Control, he was a member of the Planning and Organizing Committee of NeXT-StoC to develop guidance to ensure analytic quality of next-generation sequencing tests. In addition, he was a member of the National Genomics Board UK and CLIAC NGS Guidelines Forum. He is a Scientific Advisory Board member for BioMarin Pharmaceuticals. Dr. Dimmock is a graduate from St. Georges, University of London.

Michael W. Lawlor, M.D., Ph.D., is a Professor of Pathology, Biomedical Engineering, Physiology, Cell Biology, Neurobiology, and Anatomy and the Associate Director of the Neuroscience Research Center at the Medical College of Wisconsin. He is a Board-Certified Anatomic Pathologist and Neuropathologist, and his research interests include pediatric muscle disease and gene therapy. Dr. Lawlor is an Editorial Board member of Muscle and Nerve and Journal of Neuropathology and Experimental Neurology. He is currently serving as an SAB member for Solid Biosciences in support of its gene therapy programs. Dr. Lawlor earned his medical degree and doctorate from Loyola University School of Medicine and his residency, fellowship, and postdoctoral training was completed at Massachusetts General Hospital and Boston Childrens Hospital in association with Harvard Medical School.

Gerald S. Lipshutz, M.D., M.S., is a Professor-in-Residence in the Departments of Surgery and Molecular and Medical Pharmacology, Surgical Director of the Pancreas/Auto-islet Transplant Program and Chairman of the Academic Medicine College at the David Geffen School of Medicine at University of California, Los Angeles. His clinical specialties and interests include liver and pancreas transplantation and gene and cell therapies for single-gene metabolic disorders of the liver. Dr. Lipshutz is a grant reviewer for the Wellcome Trust and the US National Institutes of Health where he is a standing member of the Gene and Drug Delivery (GDD) study section. He is a Principal Investigator at the UCLA Lipschutz Hepatic Regenerative Medical Laboratory and for several NIH-funded and industry-sponsored studies for gene therapies. He is author of over 70 peer-reviewed articles and is an Editorial Board member of Molecular Therapy - Methods and Clinical Development and Gene Therapy. Dr. Lipshutz earned his medical degree from the University of California, Los Angeles.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as anticipates, believes, expects, intends, projects, and future or similar expressions are intended to identify forward-looking statements. Forward-looking statements include statements concerning or implying the potential of our product candidates to positively impact quality of life and alter the course of disease in the patients we seek to treat, our research, development and regulatory plans for our product candidates, the potential for these product candidates to receive regulatory approval from the FDA or equivalent foreign regulatory agencies, and whether, if approved, these product candidates will be successfully distributed and marketed. Forward-looking statements are based on managements current expectations and are subject to various risks and uncertainties that could cause actual results to differ materially and adversely from those expressed or implied by such forward-looking statements. Accordingly, these forward-looking statements do not constitute guarantees of future performance, and you are cautioned not to place undue reliance on these forward-looking statements. Risks regarding our business are described in detail in our Securities and Exchange Commission (SEC) filings, including in our Quarterly Report on Form 10-Q for the quarter ended September 30, 2020, which is available on the SECs website at http://www.sec.gov. Additional information will be made available in other filings that we make from time to time with the SEC. Such risks may be amplified by the impacts of the COVID-19 pandemic. These forward-looking statements speak only as of the date hereof, and we disclaim any obligation to update these statements except as may be required by law.

More here:

Taysha Gene Therapies Announces Formation of Independent Scientific Advisory Board - Business Wire

bluebird bio’s beta-thalassaemia gene therapy rejected by NICE – PharmaTimes

bluebird bios beta-thalassaemia gene therapy betibeglogene autotemcel (beti-cel) has not been recommended by the UKs National Institute of Health and Care Excellence (NICE) for use on the NHS.

Beti-cel, marketed as Zynteglo in Europe, is a gene therapy intended for the treatment of transfusion-dependent beta-thalassaemia (TDT) in people aged 12 years and older who do not have a beta0/beta0 genotype.

It is indicated for TDT patients when haematopoietic stem cell transplantation (HSCT) is appropriate but there is no suitable donor.

TDT is the most severe form of thalassaemia, a condition wherein an inherited faulty gene leads to the inability of the body to produce normally functioning haemoglobin.

People living with TDT require life-long blood transfusions every two to five weeks.

In its draft recommendations, NICE commented that the follow-up on people included in clinical trials of beti-cel was not very long, adding that the population included was small.

NICE also determined that there were uncertainties around the cost-effectiveness of beti-cel, with the estimate for the gene therapy considerably higher than what it usually deems an acceptable use of NHS resources.

We are extremely disappointed with NICES decision not to recommend betibeglogene autotemcel as a treatment option in the UK, said Romaine Maharaj, executive director, UK Thalassaemia Society.

We also feel disheartened that our patient experts were misquoted and used out of context and feel that NICE needs to rectify this. Having an option and the access to a potentially curable treatment is vital and should be offered to patients, she added.

Read more:

bluebird bio's beta-thalassaemia gene therapy rejected by NICE - PharmaTimes

Europe Cell and Gene Therapy Market Industry Outlook and Forecast Report 2021-2026 with Data-driven Insights on the Impact of COVID-19 -…

The "Europe Cell and Gene Therapy Market - Industry Outlook and Forecast 2021-2026" report has been added to ResearchAndMarkets.com's offering.

In-depth Analysis and Data-driven Insights on the Impact of COVID-19 Included in this Europe Cell and Gene Therapy Market Report

The Europe cell and gene therapy market by revenue is expected to grow at a CAGR of over 23% during the period 2021-2026.

The global cell and gene therapy market is observing significant mergers and acquisition activities, product sales, and new market authorizations. In 2026, the market is expected to grow almost four times more than the current value, with new product approvals expected annually.

Although initial product approvals have been for relatively small patient groups, the significant pipeline of cell & gene therapy studies for diseases such as hemophilia and various forms of blindness will significantly expand. In addition, the Europe market is witnessing steady growth due to the increased availability of funds from several public and private institutes.

There is increased support from regulatory bodies for product approvals and fast-track product designations, which encourage vendors to manufacture products at a fast rate. Moreover, with over 237 regenerative medicines companies headquartered in Europe, the region is seen as the favorite destination for cell and gene therapy manufacturing.

Europe Cell and Gene Therapy Market Segmentation

The Europe cell and gene therapy market research report includes a detailed segmentation by product, end-user, application, geography. A high potential to treat several chronic diseases, which cannot be effectively treated/cured through conventional methods otherwise, is propelling the growth of gene therapies. Gene therapies are regarded as a potential revolution in the health sciences and pharmaceutical fields.

The number of clinical trials investigating gene therapies is increasing in Europe, despite the limited number of products that have successfully reached the market. However, gene therapies show slow progress and promising prospect in terms of treatments. High support from regulatory bodies to commercialize these products and make them affordable to patients is another important factor contributing the market growth.

Story continues

Delivering cell and gene therapies requires specialized facilities, capabilities, and clinician skills. Therefore, manufacturers are working in tandem with chosen treatment centers (hospitals) to establish the protocols and procedures necessary to receive the product and therapies.

While cell therapies represent a paradigm shift in the treatment of several incurable, chronic diseases, with durable responses and long-term disease control measures, hospitals appear an ideal location to carry out these procedures. Hospitals are growing at a significant rate due to the increasing target population in Europe.

Tier-I hospitals are proving to be sought-after network partners for cell and gene therapy developers. They tend to be in major population centers, have adequate financial and personnel resources, and value the prestige that comes with being the first movers in an innovative treatment area.

Oncology accounted for a share of over 30% in 2020. While cancer treatments have evolved and undergone massive developments in recent years, it continues to be one of the deadliest diseases confronted by humans. Traditional cancer therapies have a curative effect in the short term; however, they have side effects, thereby decreasing the patient's quality of life. Cell and gene therapies for certain types of cancers have been promising results.

The chimeric antigen receptor- (CAR-) T cell therapy is one of the most recent innovative immunotherapies and is rapidly evolving. CAR-T cell therapies are developing rapidly, and many clinical trials have been established on a global scale, which has high commercial potential for the treatment of cancer.

Immunotherapies based on CAR-T cells go one step further, engineering the T cells themselves to enhance the natural immune response against a specific tumor antigen. CAR-T clinical trials have shown high remission rates, up to 94%, in severe forms of blood cancer, thereby increasing the market growth.

KEY QUESTIONS ANSWERED

1. What is the Europe cell and gene therapy market size and growth rate during the forecast period?

2. What are the factors driving the demand for CAR-T therapy in the European region?

3. How are strategic acquisitions aiding in market growth of cell and gene therapy products?

4. Which segments are expected to generate the highest revenues during the forecast period?

5. Who are the leading vendors in the European cell and gene therapy market?

INSIGHTS BY VENDORS

Novartis, Spark Therapeutics, Amgen, Gilead Sciences, and Organogenesis are the leading players in the Europe cell and gene therapy market. The market offers tremendous growth opportunities for existing and future/emerging players on account of the presence of a large pool of target patient population with chronic diseases such as cancer, wound disorders, diabetic foot ulcer, CVDs, and other genetic disorders. Recent approvals have prompted an unprecedented expansion among vendors.

While a few vendors are opting for in-house production of cell and gene therapies, a substantial number of vendors are preferring third-party service providers, including CMOs.

Prominent Vendors

Novartis

Spark Therapeutics

Amgen

Gilead Sciences

Organogenesis

Other Prominent Vendors

APAC Biotech

AVITA Medical

bluebird bio

CHIESI Farmaceutici

CollPlant

CO.DON

Human Stem Cells Institute PJSC (HSCI)

Medipost

NuVasive

Nipro

Orchard Therapeutics

RMS Regenerative Medical System

Orthocell

Osiris Therapeutics

Sibino GeneTech

Shanghai Sunway Biotech

Takeda Pharmaceutical Company

Terumo

Vericel

Emerging Investigational Vendors In Europe

Adaptimmune Therapeutics

AgenTus Therapeutics

Autolus

Cellecits

Celyad

CombiGene

EUKARYS

Freeline Therapeutics

Innoskel

PsiOxus Therapeutics Ltd

SparingVision

uniQure

For more information about this report visit https://www.researchandmarkets.com/r/6gqw7e

View source version on businesswire.com: https://www.businesswire.com/news/home/20210212005462/en/

Contacts

ResearchAndMarkets.comLaura Wood, Senior Press Managerpress@researchandmarkets.com

For E.S.T Office Hours Call 1-917-300-0470For U.S./CAN Toll Free Call 1-800-526-8630For GMT Office Hours Call +353-1-416-8900

See original here:

Europe Cell and Gene Therapy Market Industry Outlook and Forecast Report 2021-2026 with Data-driven Insights on the Impact of COVID-19 -...

Europe Cell and Gene Therapy Market Report 2021-2026: Prominent Players are Novartis, Spark Therapeutics, Amgen, Gilead Sciences & Organogenesis -…

Dublin, Feb. 15, 2021 (GLOBE NEWSWIRE) -- The "Europe Cell and Gene Therapy Market - Industry Outlook and Forecast 2021-2026" report has been added to ResearchAndMarkets.com's offering.

In-depth Analysis and Data-driven Insights on the Impact of COVID-19 Included in this Europe Cell and Gene Therapy Market Report

The Europe cell and gene therapy market by revenue is expected to grow at a CAGR of over 23% during the period 2021-2026.

The global cell and gene therapy market is observing significant mergers and acquisition activities, product sales, and new market authorizations. In 2026, the market is expected to grow almost four times more than the current value, with new product approvals expected annually. Although initial product approvals have been for relatively small patient groups, the significant pipeline of cell & gene therapy studies for diseases such as hemophilia and various forms of blindness will significantly expand.

In addition, the Europe market is witnessing steady growth due to the increased availability of funds from several public and private institutes. There is increased support from regulatory bodies for product approvals and fast-track product designations, which encourage vendors to manufacture products at a fast rate. Moreover, with over 237 regenerative medicines companies headquartered in Europe, the region is seen as the favorite destination for cell and gene therapy manufacturing.

Europe Cell and Gene Therapy Market Segmentation

The Europe cell and gene therapy market research report includes a detailed segmentation by product, end-user, application, geography. A high potential to treat several chronic diseases, which cannot be effectively treated/cured through conventional methods otherwise, is propelling the growth of gene therapies. Gene therapies are regarded as a potential revolution in the health sciences and pharmaceutical fields.

The number of clinical trials investigating gene therapies is increasing in Europe, despite the limited number of products that have successfully reached the market. However, gene therapies show slow progress and promising prospect in terms of treatments. High support from regulatory bodies to commercialize these products and make them affordable to patients is another important factor contributing the market growth.

Delivering cell and gene therapies requires specialized facilities, capabilities, and clinician skills. Therefore, manufacturers are working in tandem with chosen treatment centers (hospitals) to establish the protocols and procedures necessary to receive the product and therapies. While cell therapies represent a paradigm shift in the treatment of several incurable, chronic diseases, with durable responses and long-term disease control measures, hospitals appear an ideal location to carry out these procedures.

Hospitals are growing at a significant rate due to the increasing target population in Europe. Tier-I hospitals are proving to be sought-after network partners for cell and gene therapy developers. They tend to be in major population centers, have adequate financial and personnel resources, and value the prestige that comes with being the first movers in an innovative treatment area.

Oncology accounted for a share of over 30% in 2020. While cancer treatments have evolved and undergone massive developments in recent years, it continues to be one of the deadliest diseases confronted by humans. Traditional cancer therapies have a curative effect in the short term; however, they have side effects, thereby decreasing the patient's quality of life. Cell and gene therapies for certain types of cancers have been promising results. The chimeric antigen receptor- (CAR-) T cell therapy is one of the most recent innovative immunotherapies and is rapidly evolving.

CAR-T cell therapies are developing rapidly, and many clinical trials have been established on a global scale, which has high commercial potential for the treatment of cancer. Immunotherapies based on CAR-T cells go one step further, engineering the T cells themselves to enhance the natural immune response against a specific tumor antigen. CAR-T clinical trials have shown high remission rates, up to 94%, in severe forms of blood cancer, thereby increasing the market growth.

INSIGHTS BY VENDORS

Novartis, Spark Therapeutics, Amgen, Gilead Sciences, and Organogenesis are the leading players in the Europe cell and gene therapy market. The market offers tremendous growth opportunities for existing and future/emerging players on account of the presence of a large pool of target patient population with chronic diseases such as cancer, wound disorders, diabetic foot ulcer, CVDs, and other genetic disorders. Recent approvals have prompted an unprecedented expansion among vendors. While a few vendors are opting for in-house production of cell and gene therapies, a substantial number of vendors are preferring third-party service providers, including CMOs.

KEY QUESTIONS ANSWERED

1. What is the Europe cell and gene therapy market size and growth rate during the forecast period?2. What are the factors driving the demand for CAR-T therapy in the European region?3. How are strategic acquisitions aiding in market growth of cell and gene therapy products?4. Which segments are expected to generate the highest revenues during the forecast period?5. Who are the leading vendors in the European cell and gene therapy market?

Market DynamicsMarket Opportunities & Trends

Market Growth Enablers

Market Restraints

Prominent Vendors

Other Prominent Vendors

Emerging Investigational Vendors In Europe

For more information about this report visit https://www.researchandmarkets.com/r/qm1hjg

Read this article:

Europe Cell and Gene Therapy Market Report 2021-2026: Prominent Players are Novartis, Spark Therapeutics, Amgen, Gilead Sciences & Organogenesis -...

Rentschler Biopharma to build new cell and gene therapy capabilities in the UK – BioSpace

LONDON and LAUPHEIM, Germany, Feb. 11, 2021 (GLOBE NEWSWIRE) -- The Cell and Gene Therapy Catapult (CGT Catapult), an independent centre of excellence in innovation advancing the UKs cell and gene therapy industry, and Rentschler Biopharma SE, a leading global contract development and manufacturing organisation (CDMO) for biopharmaceuticals, have announced today that Rentschler Biopharma will establish their manufacturing capability in Advanced Therapy Medicinal Products (ATMPs), including Adeno-Associated Virus (AAV) Vectors for clinical trial supply, at the CGT Catapult site in Stevenage.

Under the terms of the agreement, Rentschler Biopharma will make a significant investment at the site over the next five years to set up their manufacturing capabilities, benefitting from the expertise and unique collaborative model provided by the CGT Catapult. The companys investment is expected to make a major contribution to meeting the demand from UK and international researchers for suitable manufacturing capability. This development will further strengthen the UK ecosystem through the addition of Rentschler Biopharmas more than 40 years of experience and solid reputation in the development and manufacturing of biologics for both clinical and commercial supply. The company will leverage the CGT Catapults expertise in ATMP manufacturing setup and technology development, as well as the cell and gene therapy cluster and ecosystem that has developed around Stevenage and across the UK.

Dr. Frank Mathias, CEO of Rentschler Biopharma, said:We are excited to take this next big step in our evolution and address the growing industry demand for ATMP manufacturing capacity and viral vector supply. With the largest industry cluster for cell and gene therapies outside the US, the UK is an ideal location for us to establish our Center of Excellence for cell and gene therapy. We look forward to working with the CGT Catapult as we invest in this growing field. They are well established in this important market, enabling us to immediately tap into the organisations network and utilisethe UKs strong expertise and supply chain in cell and gene therapy manufacturing.

Matthew Durdy, CEO of the Cell and Gene Therapy Catapult, commented:We are very pleased that Rentschler Biopharma, a global CDMO, has chosen to build their ATMP capacity in the UK, bringing in their expertise and investment. This will build new capacity to benefit the international ATMP supply chain and meet growing academic and commercial demand across the industry. As more companies from around the globe come to the UK, it demonstrates and enhances the attractiveness of its cell and gene therapy ecosystem as a place to develop new technologies and capabilities.

The investment in the UK cell and gene therapy industry announced today is expected to further accelerate the development of the vital infrastructure and skilled jobs needed to meet the rising demand for manufacturing capacity in the UK and globally, as well as streamline the supply chain for these advanced therapies. Currently, 27% of European ATMP companies are operating in the UK, and there are more than 90 advanced therapy developers. The last year has also seen a 50% increase in the number of ATMP clinical trials being run in the UK, accounting for 12% of global ATMP clinical trials, and these numbers are predicted to increase further.

The CGT Catapult manufacturing centre has been backed by over 75m of funding, including investment from the UK Governments Industrial Strategy Challenge Fund, the Department for Business, Energy and Industrial Strategy, Innovate UK and from the European Regional Development Fund. Since it was announced, there has been over 1.1bn of investment in the ATMP industry in its vicinity.

About Rentschler Biopharma SE

Rentschler Biopharma is a leading contract development and manufacturing organization (CDMO), focused exclusively on client projects. The company offers process development and manufacturing of biopharmaceuticals as well as related consulting activities, including project management and regulatory support. Rentschler Biopharma's high quality is proven by its long-standing experience and excellence as a solution partner for its clients. A high-level quality management system, a well-established operational excellence philosophy and advanced technologies ensure product quality and productivity at each development and manufacturing step. In order to offer best-in-class formulation development along the biopharmaceutical value chain, the company has entered into a strategic alliance with Leukocare AG. Rentschler Biopharma is a family-owned company with about 1,000 employees, headquartered in Laupheim, Germany, with a second site in Milford, MA, USA. In Stevenage, UK, Rentschler Biopharma launched a company dedicated to cell and gene therapies, Rentschler ATMP Ltd.

For further information, please visit http://www.rentschler-biopharma.com. Follow Rentschler Biopharma on LinkedIn and Facebook.

About the Cell and Gene Therapy Catapult

The Cell and Gene Therapy Catapult was established as an independent centre of excellence to advance the growth of the UK cell and gene therapy industry, by bridging the gap between scientific research and full-scale commercialisation. With more than 330 employees focusing on cell and gene therapy technologies, it works with partners in academia and industry to ensure these life-changing therapies can be developed for use in health services throughout the world. It offers leading-edge capability, technology and innovation to enable companies to take products into clinical trials and provide clinical, process development, manufacturing, regulatory, health economics and market access expertise. Its aim is to make the UK the most compelling and logical choice for UK and international partners to develop and commercialise these advanced therapies. The Cell and Gene Therapy Catapult works with Innovate UK.

For more information please visit ct.catapult.org.uk or visit http://www.gov.uk/innovate-uk.

About the European Regional Development Fund

This project has received 3.36m of funding from the England European Regional Development Fund as part of the European Structural and Investment Funds Growth Programme 2014-2020. The Ministry of Housing, Communities and Local Government (and in London the intermediate body Greater London Authority) is the Managing Authority for European Regional Development Fund. Established by the European Union, the European Regional Development Fund helps local areas stimulate their economic development by investing in projects which will support innovation, businesses, create jobs and local community regenerations. For more information visit https://www.gov.uk/european-growth-funding.

About the Industrial Strategy Challenge Fund

This project has received 12m of funding from the Industrial Strategy Challenge Fund, part of the governments modern Industrial Strategy. The Industrial Strategy Challenge Fund is a four-year, 1 billion investment in cutting-edge technology designed to create jobs and improve living standards, built on guidance from business and the academic community. Healthcare and Medicine is one of three core areas for investment under the programme.

Follow this link:

Rentschler Biopharma to build new cell and gene therapy capabilities in the UK - BioSpace

Gene Therapy Market to Reflect Impressive Growth Rate During 2020-2027 AveXis, Vineti, uniQure NV, Spark Therapeutics KSU | The Sentinel Newspaper -…

Gene Therapy Market research report delivers a comprehensive study on production capacity, consumption, import and export for all major regions across the world. Report provides is a professional inclusive study on the current state for the market. Analysis and discussion of important industry like market trends, size, share, growth estimates are mentioned in the report.

Gene therapy is the introduction of DNA into a patient to treat a genetic disease or a disorder. The newly inserted DNA contains a correcting gene to correct the effects of a disease, causing mutations. Gene therapy is a promising treatment for genetic diseases and also includes cystic fibrosis and muscular dystrophy. Gene therapy is a suitable treatment for infectious diseases, inherited disease and cancer.

Download Exclusive Sample PDF of this Report @ https://www.theinsightpartners.com/sample/TIPHE100001165/

Note: If you have any special requirements, please let us know and we will offer you the report as you want.

Gene Therapy Market Competition Landscape and Key Developments:

Gene Therapy Market Segmental Overview: The report specifically highlights the Gene Therapy market share, company profiles, regional outlook, product portfolio, a record of the recent developments, strategic analysis, key players in the market, sales, distribution chain, manufacturing, production, new market entrants as well as existing market players, advertising, brand value, popular products, demand and supply, and other important factors related to the market to help the new entrants understand the market scenario better.

The report specifically highlights the Gene Therapy market share, company profiles, regional outlook, product portfolio, a record of the recent developments, strategic analysis, key players in the market, sales, distribution chain, manufacturing, production, new market entrants as well as existing market players, advertising, brand value, popular products, demand and supply, and other important factors related to the market to help the new entrants understand the market scenario better.

To comprehend global Gene Therapy market dynamics in the world mainly, the worldwide market is analyzed across major global regions: North America (United States, Canada and Mexico), Europe (Germany, France, United Kingdom, Russia and Italy), Asia-Pacific (China, Japan, Korea, India, Southeast Asia and Australia), South America (Brazil, Argentina), Middle East & Africa (Saudi Arabia, UAE, Egypt and South Africa)

Our Sample Report Accommodate a Brief Introduction of the research report, TOC, List of Tables and Figures, Competitive Landscape and Geographic Segmentation, Innovation and Future Developments Based on Research Methodology

Reasons to Buy:

Interested in Purchasing this Report? Click here @ https://www.theinsightpartners.com/buy/TIPHE100001165/

About Us:

The Insight Partners is a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are a specialist in Technology, Healthcare, Manufacturing, Automotive and Defense.

Contact Us:

Call: +1-646-491-9876

Email: sales@theinsightpartners.com

Link:

Gene Therapy Market to Reflect Impressive Growth Rate During 2020-2027 AveXis, Vineti, uniQure NV, Spark Therapeutics KSU | The Sentinel Newspaper -...

Genethon and WhiteLab Genomics Join Forces to Enhance Gene Therapy Through Artificial Intelligence – BioSpace

Feb. 10, 2021 16:09 UTC

PARIS--(BUSINESS WIRE)-- WhiteLab Genomics, a specialist in artificial intelligence applied to gene and cell therapies, has signed a partnership agreement with Genethon, a pioneering research center in the field of gene therapy.The alliance will harness the power of artificial intelligence to accelerate development of innovative gene therapies.

As part of this partnership, Genethon teams will use WhiteLab Genomics CatalystTM platform to develop new capsids, or vectors, which are essential components for gene therapy products.

While several gene therapy products have already obtained market authorization for the treatment of rare and common diseases, which demonstrates the efficacy of this approach for conditions considered to be incurable, development of these complex therapies continues to face major scientific and technical hurdles. Many vectors used in gene therapy are derivatives of adeno-associated viruses (AAV). Their use has limitations: natural immunization of 30% to 40% of the population and difficulty targeting a specific tissue. As a result, extremely large quantities of vectors are necessary. In this context, the use of artificial intelligence solutions stands out as a deciding factor to overcome these obstacles and produce optimized vectors that better target the relevant tissues, thus making it possible to inject smaller quantities of product while maximizing the effect of the therapy.

Turning to AI for faster development of optimized vectors

Genethons teams will use WhiteLab Genomics CatalystTM platform to accelerate select research programs.

Thanks to its Machine Learning algorithms, the WhiteLab Genomics platform will help researchers develop next-generation gene therapy vectors, with a view to enhancing their precision with regard to the tissues to be treated while reducing their immunogenic qualities.

The tools developed by WhiteLab will make it possible for us to review thousands of sequences and devise new and innovative combinations. We aim to develop a new generation of more specific AAV vectors, contributing to the emergence of original treatments for neuromuscular disorders, said Dr. Ronzitti, who is managing the collaboration for Genethon.

We are thrilled to be working together with worldwide trailblazers and experts in the area of gene therapy, stated David Del Bourgo, CEO and co-founder of WhiteLab Genomics. France is a prime source of innovation in this field, and we look forward to helping research teams, in France and abroad, to make practical use of these extremely complex biological datasets, while also providing assistance to accelerate the development of optimized products.

About White Lab Genomics

Founded in 2019 by David Del Bourgo, Julien Cottineau and Lucia Cinque, WhiteLab Genomics is a French start-up specializing in artificial intelligence solutions dedicated to biotherapies, such as gene and cell therapies. The companys proprietary technology allows for multi-parameter analysis of complex biological data to optimize these treatments while reducing development costs. WhiteLab Genomics provides this unique technology to its clients via the Catalyst platform, available in SaaS mode. Today, the start-up has locations at the Evry Gnopole Frances first biocluster and at Station F. WhiteLab Genomics was recently ranked among Station Fs Future 40, an index of the 40 most promising companies within Europes largest start-up incubator. https://www.whitelabgx.com

About Genethon

Created by AFM-Telethon, Genethon is a non-profit research and development center dedicated to creating gene therapy products for rare diseases, from initial research to clinical validation. Genethon has several programs underway, in clinical, pre-clinical and research phases, to treat rare muscular, blood, immune system and liver disorders. Today, a product incorporating technologies developed thanks to Genethons pioneering research is available on the market in the United States, Europe and Japan to treat spinal muscular atrophy. Ten other products created through Genethon R&D, alone or in collaboration with partners, are at the clinical trial stage, while many more are slated to begin clinical trials in 2021 and 2022. Genethon.fr

View source version on businesswire.com: https://www.businesswire.com/news/home/20210210005707/en/

Here is the original post:

Genethon and WhiteLab Genomics Join Forces to Enhance Gene Therapy Through Artificial Intelligence - BioSpace

Avrobio Gene Therapy Shows Early Promise in Fabry, Other Rare Lysosomal Diseases – BioSpace

Shares of AVROBIO wereup nearly 20% in premarket trading after the company posted positive clinical data from its gene therapy trials in three different rare lysosomal diseases, Fabry, Gaucher type 1 and cystinosis.

The data from the Phase II study assessing AVR-RD-01, an investigational ex vivo lentiviral gene therapy for Fabry disease, was particularly promising. This morning, Cambridge, Mass.-based Avrobio said a second kidney biopsy conducted on the first patient dosed with AVR-RD-01 showed 100% clearance of the toxic substrate Gb3.

Kidney substrate reduction is the primary endpoint of the Phase II study and has been a cornerstone for evaluating and approving treatments in Fabry disease, Avrobio noted. Avrobio said the patient came in with significant toxic buildup in his kidneys, which is quite common with Fabry disease. One year after the gene therapy treatment was administered in the trial, two independent pathologists foundzero markersof toxic substrate across all the 99 biopsy slides each evaluated.

The first biopsy conducted on the patient showed an 87% clearance of the substrate. In addition to the substrate clearance in the Fabry disease study, AvroBio reported continued strong and durable results in other key metrics across all nine Phase I and Phase II Fabry patients. All patients are now producing the functional enzyme they need to clear toxic substrate from their cells and seeing a concurrent drop in plasma substrate. The farthest patient is out 3.5 years, the company said.

Avrobio Chief Executive Officer Geoff MacKay hailed the data and said it was a thrilling way to begin 2021. The data announced this morning builds on the breadth of strong clinical data weve reported across our leading lysosomal disorder pipeline of single-dose gene therapies, he added.

The Fabry disease study wasnt the only positive news from Avrobio. The company also announced six-month data from the first patient dosed in the Phase I/II study of AVR-RD-02, an investigational ex vivo lentiviral gene therapy for Gaucher disease type 1. That data showed plasma chitotriosidase and the toxic metabolite lyso-Gb1, which are key biomarkers of Gaucher disease, had both dropped 49% below the patients baseline levels that had been achieved on enzyme replacement therapy (ERT) before gene therapy was administered. Also, Lyso-Gb1, the toxic metabolite that builds up in cells throughout the body in Gaucher, is down 44% below the patients ERT baseline. Avrobio said this is an early sign of efficacy.

Based on the data observed to date, we believe lentiviral gene therapy drives down toxic metabolites below levels of ERT, supporting our view that gene therapy has the potential to prevent, halt or even reverse progression of these devastating diseases with a single infusion, MacKay said.

For the cystinosis study, Avrobio said three patients who are taking part in the study are now off of standard-of-care treatment. The first study patient has had sharp reductions in crystal density in the eyes and skin and a marked improvement in photophobia, which is an extreme sensitivity to light that is associated with the disease.

With 13 patients dosed across three clinical programs, we have observed sustained and potentially transformative improvements in key biomarkers and functional metrics, with data from our Fabry disease program out 3 years after dosing. Additionally, enrollment activities for our Fabry disease trial are accelerating, giving us added confidence in our efforts to meet our goal of having dosed a cumulative 30 patients across all our clinical programs by the end of the year. With this strong momentum, we look forward to clarifying the regulatory pathway with regulatory agencies, MacKay said in a statement.

Full data from the studies will be presented later this week and WORLDSymposium, an annual meeting dedicated to lysosomal disorders.

Most Read Today

Follow this link:

Avrobio Gene Therapy Shows Early Promise in Fabry, Other Rare Lysosomal Diseases - BioSpace

The Europe cell and gene therapy market by revenue is expected to grow at a CAGR of over 23% during the period 20212026 – GlobeNewswire

New York, Feb. 10, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Europe Cell and Gene Therapy Market - Industry Outlook and Forecast 2021-2026" - https://www.reportlinker.com/p06021776/?utm_source=GNW

The global cell and gene therapy market is observing significant mergers and acquisition activities, product sales, and new market authorizations. In 2026, the market is expected to grow almost four times more than the current value, with new product approvals expected annually. Although initial product approvals have been for relatively small patient groups, the significant pipeline of cell & gene therapy studies for diseases such as hemophilia and various forms of blindness will significantly expand. In addition, the Europe market is witnessing steady growth due to the increased availability of funds from several public and private institutes. There is increased support from regulatory bodies for product approvals and fast-track product designations, which encourage vendors to manufacture products at a fast rate. Moreover, with over 237 regenerative medicines companies headquartered in Europe, the region is seen as the favorite destination for cell and gene therapy manufacturing.

The following factors are likely to contribute to the growth of the Europe cell and gene therapy market during the forecast period: CMOs Offering Vector Manufacturing Services for Cell and Gene Therapy Companies Robust Cell & Gene Therapies in the Pipeline Increase in Strategic Acquisitions Regulatory Support for Cell and Gene Therapy Products

The study considers the present scenario of the Europe cell and gene therapy market and its market dynamics for the period 2020?2026. It covers a detailed overview of several market growth enablers, restraints, and trends. The report offers both the demand and supply aspects of the market. It profiles and examines leading companies and other prominent ones operating in the market.

Europe Cell and Gene Therapy Market Segmentation The Europe cell and gene therapy market research report includes a detailed segmentation by product, end-user, application, geography. A high potential to treat several chronic diseases, which cannot be effectively treated/cured through conventional methods otherwise, is propelling the growth of gene therapies. Gene therapies are regarded as a potential revolution in the health sciences and pharmaceutical fields. The number of clinical trials investigating gene therapies is increasing in Europe, despite the limited number of products that have successfully reached the market. However, gene therapies show slow progress and promising prospect in terms of treatments. High support from regulatory bodies to commercialize these products and make them affordable to patients is another important factor contributing the market growth.

Delivering cell and gene therapies requires specialized facilities, capabilities, and clinician skills. Therefore, manufacturers are working in tandem with chosen treatment centers (hospitals) to establish the protocols and procedures necessary to receive the product and therapies. While cell therapies represent a paradigm shift in the treatment of several incurable, chronic diseases, with durable responses and long-term disease control measures, hospitals appear an ideal location to carry out these procedures. Hospitals are growing at a significant rate due to the increasing target population in Europe. Tier-I hospitals are proving to be sought-after network partners for cell and gene therapy developers. They tend to be in major population centers, have adequate financial and personnel resources, and value the prestige that comes with being the first movers in an innovative treatment area.

Oncology accounted for a share of over 30% in 2020. While cancer treatments have evolved and undergone massive developments in recent years, it continues to be one of the deadliest diseases confronted by humans. Traditional cancer therapies have a curative effect in the short term; however, they have side effects, thereby decreasing the patients quality of life. Cell and gene therapies for certain types of cancers have been promising results. The chimeric antigen receptor- (CAR-) T cell therapy is one of the most recent innovative immunotherapies and is rapidly evolving. CAR-T cell therapies are developing rapidly, and many clinical trials have been established on a global scale, which has high commercial potential for the treatment of cancer. Immunotherapies based on CAR-T cells go one step further, engineering the T cells themselves to enhance the natural immune response against a specific tumor antigen. CAR-T clinical trials have shown high remission rates, up to 94%, in severe forms of blood cancer, thereby increasing the market growth.

Product Cell Therapies Gene Therapies End-user Hospitals Cancer Care Centers Wound Care Centers Others Application Oncology Dermatology Musculoskeletal Others

INSIGHTS BY GEOGRAPHY Germany, France, the UK, Italy, and Spain play a significant role in the Europe cell and gene therapy market. Clinical trials and the number of manufacturing facilities are increasing slowly in the European region. The region has become a major R&D destination for several vendors as the funding for cell & gene therapies is increasing. Europe has supported collaborative efforts in gene transfer and gene therapy research. In addition, the target patient population is increasing across Europe; there were an estimated 3.9 million new cases of cancer and 1.9 million cancer deaths in Europe in 2018. In addition, the prevalence surveys in the UK and Denmark indicate that there are 34 people with one or more wounds per 1,000 people. Favorable government support in terms of product approvals, reimbursement and coverage, and high R&D funding to academic institutes that are involved in the development of cell and gene therapies are expected to boosting the market in Europe.

Geography Europe o UK o Germany o France o Italy o Spain o Switzerland o Netherlands

INSIGHTS BY VENDORS Novartis, Spark Therapeutics, Amgen, Gilead Sciences, and Organogenesis are the leading players in the Europe cell and gene therapy market. The market offers tremendous growth opportunities for existing and future/emerging players on account of the presence of a large pool of target patient population with chronic diseases such as cancer, wound disorders, diabetic foot ulcer, CVDs, and other genetic disorders. Recent approvals have prompted an unprecedented expansion among vendors. While a few vendors are opting for in-house production of cell and gene therapies, a substantial number of vendors are preferring third-party service providers, including CMOs.

Prominent Vendors Novartis Spark Therapeutics Amgen Gilead Sciences Organogenesis

Other Prominent Vendors APAC Biotech AVITA Medical bluebird bio CHIESI Farmaceutici CollPlant CO.DON Human Stem Cells Institute PJSC (HSCI) Medipost NuVasive Nipro Orchard Therapeutics RMS Regenerative Medical System Orthocell Osiris Therapeutics Sibino GeneTech Shanghai Sunway Biotech Takeda Pharmaceutical Company Terumo Vericel

Emerging Investigational Vendors In Europe Adaptimmune Therapeutics AgenTus Therapeutics Autolus Cellecits Celyad CombiGene EUKARS Freeline Therapeutics Innoskel PsiOxus Therapeutics Ltd SparingVision uniQure

KEY QUESTIONS ANSWERED 1. What is the Europe cell and gene therapy market size and growth rate during the forecast period? 2. What are the factors driving the demand for CAR-T therapy in the European region? 3. How are strategic acquisitions aiding in market growth of cell and gene therapy products? 4. Which segments are expected to generate the highest revenues during the forecast period? 5. Who are the leading vendors in the European cell and gene therapy market?Read the full report: https://www.reportlinker.com/p06021776/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Originally posted here:

The Europe cell and gene therapy market by revenue is expected to grow at a CAGR of over 23% during the period 20212026 - GlobeNewswire