EditForce and Mitsubishi Tanabi Pharma to work on gene therapy for CNS – Labiotech.eu

EditForce, Inc. has entered into a license agreement with Mitsubishi Tanabe Pharma Corporation (MTPC) to research, develop and commercialize potential gene therapy products for a specific target disease related to the central nervous system (CNS) by utilizing EditForces pentatricopeptide repeat (PPR) protein platform technology.

MTPC and EditForce aim to create potential novel pharmaceuticals for the specific CNS disease by utilizing the drug R&D know-how and global business experience of MTPC and the novel biotechnology of EditForce.

MTPC will acquire the exclusive right to conduct the selection of drug candidate molecules, preclinical and clinical development, manufacturing, and commercialization worldwide.

Under the terms of the agreement, EditForce will receive an upfront payment and milestone payments amounting to more than 20 billion yen ($147.3 million), depending on the development stage and commercialization progress, and royalties based on worldwide sales after the launch.

I am so delighted to reach the agreement with MTPC, which has an interest in our proprietary PPR protein platform technology, said Takashi Ono, president and CEO of EditForce.

We look forward to working closely with MTPC to develop and deliver breakthrough pharmaceutical products with our technology to patients suffering from diseases.

PPR is a protein discovered in plants that regulates gene expression by binding to DNA and RNA in a sequence-specific manner. The PPR proteins are also found in humans and yeasts, and they have similar functions.

Takahiro Nakamura and Yusuke Yagi, CTO of EditForce, have focused on the PPR proteins and elucidated the mechanism that determines sequence specificity, and established a technology for creating various PPR proteins, each of which binds to a specific target DNA or RNA sequence.

It is possible to manipulate and modify the target genome and RNA both inside and outside the cell by fusion with effector proteins.

Follow this link:

EditForce and Mitsubishi Tanabi Pharma to work on gene therapy for CNS - Labiotech.eu

Lysogene Provides Additional Update on AAVance Phase 2/3 Gene Therapy Clinical Trial with LYS-SAF302 in children with MPS IIIA – Business Wire

PARIS--(BUSINESS WIRE)--Regulatory News:

Lysogene (Paris:LYS)(FR0013233475 LYS), a phase 3 gene therapy platform Company targeting central nervous system (CNS) diseases, today communicates additional preliminary data from the AAVance Phase 2/3 gene therapy trial in MPS IIIA (NCT03612869). Data will be presented at the ADVANCE 2022 Sanfilippo Community Conference held on July 7-8, 2022, and at the 3rd Annual Gene Therapy for Neurological Disorders Europe held on July 11-13, 2022.

A positive effect of LYS-SAF302 on the MPS IIIA disease biomarker heparan sulfate (HS) in the cerebrospinal fluid (CSF) was confirmed in additional subjects and at additional timepoints relative to previously communicated partial data. Statistically significant decreases of about 20% in average levels of total HS-derived oligosaccharides in the CSF relative to baseline levels were observed at 6, 12 and 24 months after dosing with LYS-SAF302. HS levels at 24 months after dosing with LYS-SAF302 (1654 497 ng/ml, mean SD, n=15) were decreased by 22% relative to baseline levels (2159 589 ng/ml, mean SD, n=16), p=0.015 by Student's t test (preliminary analysis). No statistically significant effect on serum HS levels was observed at 6, 12 or 24 months after dosing with LYS-SAF302. These results confirm the biological activity of LYS-SAF302 gene therapy treatment. They are consistent with the intraparenchymal mode of administration of LYS-SAF302, which is expected to lead to a specific decrease of HS in the brain, but not in the systemic circulation nor in other tissues, including the spinal cord.

The previous observation that treatment with LYS-SAF302 led to a transient increase in serum neurofilament light (NFL) levels, likely due to transient axonal damage caused by brain surgery, followed by a decrease below baseline levels, was confirmed in additional subjects and at additional timepoints. Moreover, a similar effect was demonstrated in the CSF. In the serum, NFL levels decreased by 33% (n=12, p=0.026) and 41% (n=16, p=0.0075) below baseline levels (113 50 pg/ml, mean SD, n=19), 18 and 24 months after dosing with LYS-SAF302, respectively. In the CSF, NFL levels decreased by 33% (n=15, p=0.025) below baseline levels (3.7 1.5 ng/ml, mean SD, n=17) 24 months after dosing with LYS-SAF302. All statistical analyses were done by Students t test and are preliminary. These results suggest that treatment with LYS-SAF302 led to a decrease in neuronal damage relative to baseline at 18 and 24 months after drug administration.

Three subjects in AAVance, treated at 10, 13 and 31 months of age, present continuous increase of cognitive, language and motor functions 24 months after dosing with LYS-SAF302, as assessed by the BSID-III (Bayleys Scales of Infant Development, Third edition). Two of these subjects have a cognitive developmental age (DA) at 24 months after dosing with LYS-SAF302 that is 5-6 months higher (41 and 42, respectively) than the highest cognitive DA (35) observed in natural history studies of MPS IIIA (Shapiro et al, 2016; Wijburg et al 2022). Remarkably, one of these subjects is homozygous for a severe mutation (deletion) and the other subject is compound heterozygous for two severe mutations (a duplication and a deletion). The third subject with continuously increasing DA at 24 months after dosing with LYS-SAF302 is a compound heterozygote for a severe mutation and a S298P mutation, which may give rise to either a classical severe or an intermediate phenotype. Longer follow-up is warranted to confirm positive evolution of development in this patient. Three other subjects, treated at 24, 30 and 31 months of age, have stable cognitive DA relative to baseline, as assessed by the BSID-III scale, and stable or continuously increasing BSID-III language and motor development scores at 24 months after dosing with LYS-SAF302. Two of these subjects have SGSH missense mutations associated with the classical severe phenotype of MPS IIIA. One subject has a severe mutation on one allele and a mutation with unknown effect on disease severity on the second allele. The fact that developmental progression or stabilization is seen in subjects with mutations associated with the classical severe disease phenotype suggests that early therapeutic intervention with LYS-SAF302 can protect children with MPS IIIA from decline of cognitive, language, and motor functions.

The AAVance trial Month 24 database lock took place as planned on 1st of July 2022. Full study results are expected by mid-September 2022, along with results from the PROVide patient reported outcome videos study. Based on this comprehensive clinical data package, the company plans to initiate discussions with regulatory authorities in the US and in Europe to determine next steps.

Preliminary data for AAVance indicates that subjects with MPS IIIA treated prior to 31 months of age not only continued with increasing developmental age, but exceeded developmental ages of any MPS IIIA subjects within the natural history cohorts. This data is highly suggestive of LYS-SAF302 efficacy in this treatment population, marking an important milestone as no treatment is currently available to slow the progression of MPS IIIA, said Raymond Wang, M.D., Director, Foundation of Caring Multidisciplinary Lysosomal Disorder Program at CHOC Childrens Specialists, Orange, CA, USA, and one of the principal investigators for the AAVance trial.

We are very pleased to confirm on a larger scale the encouraging data already observed earlier, notably stabilization or improvement in cognitive, language and motor functions in the younger patient population, even in those presenting with severe forms of the disease. We have recently locked the database of the 24-month post-treatment follow-up data. Full statistical analyses are underway with results expected in September this year. This represents a very exciting milestone as it completes years of efforts by the Lysogene team to bring a treatment to patients with MPSIIIA, a disease with a high unmet medical need. By Q3 2022, we should have the necessary elements to discuss the next steps with the regulatory authorities, said Marie Trad, M.D. Chief Medical Officer of Lysogene.

About Lysogene

Lysogene is a gene therapy Company focused on the treatment of orphan diseases of the central nervous system (CNS). The Company has built a unique capability to enable delivery of gene therapies to the CNS to treat lysosomal diseases and other disorders of the CNS. A phase 2/3 clinical trial in MPS IIIA is ongoing. An adaptive clinical trial in GM1 gangliosidosis is also ongoing. Lysogene is also developing an innovative AAV gene therapy approach for the treatment of Fragile X syndrome, a genetic disease related to autism. The Company also entered into an exclusive worldwide license agreement with Yeda, the commercial arm of the Weizmann Institute of Science, for a novel gene therapy candidate for neuronopathic Gaucher disease and Parkinson disease with GBA1 mutations. http://www.lysogene.com.

Forward Looking Statement

This press release may contain certain forward-looking statements, especially on the Companys progress of its clinical trials and cash runway. Although the Company believes its expectations are based on reasonable assumptions, all statements other than statements of historical fact included in this press release about future events are subject to (i) change without notice, (ii) factors beyond the Companys control, (iii) clinical trial results, (iv) increased manufacturing costs, (v) potential claims on its products. These statements may include, without limitation, any statements preceded by, followed by or including words such as target, believe, expect, aim, intend, may, anticipate, estimate, plan, objective, project, will, can have, likely, should, would, could and other words and terms of similar meaning or the negative thereof. Forward-looking statements are subject to inherent risks and uncertainties beyond the Companys control that could cause the Companys actual results, performance or achievements to be materially different from the expected results, performance or achievements expressed or implied by such forward-looking statements. A further list and description of these risks, uncertainties and other risks can be found in the Companys regulatory filings with the French Autorit des Marchs Financiers, including in the 2021 universal registration document, registered with the French Markets Authorities on April 19, 2022, and future filings and reports by the Company. Furthermore, these forward-looking statements are only as of the date of this press release. Readers are cautioned not to place undue reliance on these forward-looking statements. Except as required by law, the Company assumes no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future. If the Company updates one or more forward-looking statements, no inference should be drawn that it will or will not make additional updates with respect to those or other forward-looking statements.

This press release has been prepared in both French and English. In the event of any differences between the two texts, the French language version shall supersede.

Continue reading here:

Lysogene Provides Additional Update on AAVance Phase 2/3 Gene Therapy Clinical Trial with LYS-SAF302 in children with MPS IIIA - Business Wire

AAVIATE: Gene therapy via suprachoroidal drug delivery may lower treatment burden for patients with AMD – Modern Retina

Emily Kaiser [EK]: Hello, welcome. I'm Emily Kaiser, editor of Modern Retina. I'm sitting down with Dr. Rahul Khurana to discuss the Aaviate study. Dr. Khurana, can you tell us a little bit about the Aaviate data presented at the Angiogenesis meeting?

Rahul Khurana, MD [RK]: For sure, Emily.

Aaviate is a really exciting clinical trial that I've been involved with and at Angiogenesis this year, we presented the updated data on the first two cohorts. And so to give everyone kind of a background, obviously, gene therapy is a very exciting area of interest right now.

We know there's a lot of unmet needs in our treatments of macular degeneration. You know, these treatments often are very effective, but they require a lot of treatments. And there's a high burden with our current set of treatments out there, and gene therapy offers the potential for a one-time treatment to give us long-term, anti-VEGF suppression and really a long-term answer to this kind of chronic disease.

And so Aaviate is along with many gene therapy programs, or studies, that are looking to kind of tackle this. And the thing which is interesting about Aaviate is that most of gene therapy has really looked at it the traditional approaches. Either theyve gone intravitreal, which is something we're very used to because we do these injections, or done a subretinal gene therapy delivery, which requires surgery, which is much more invasive. And Aaviate utilizes a suprachoroidal approach.

And the benefit of this is that we get good drug delivery of inhibiting anti-VEGF gene therapy, but by delivering it in the office. And one of the benefits of suprachoroidal delivery over intravitreal delivery is that in intravitreal, there is a potential for a lot of exposure of the medicine to not just the back of the eye, but also the front of the eye. And we've seen in some early gene therapy programs, a lot of complications involving inflammation and hypotony.

In a suprachoroidal approach, you can get a very high concentration to the retina with very low concentration to the anterior segment.

EK: That's really interesting. Has anything developed since the presentation?

RK: the study has been ongoing. So what I presented at Angiogenesis was the first two cohorts in the sense that those patients had been fully enrolled, and we had up to date up to six months. So that was really exciting. And we'll kind of delve into some of the details there. But there's still cohorts three, four, and five, which are now fully enrolled. So since that time, we've now fully enrolled those patients. And we're basically waiting to hear back on updates, or we were waiting to hear back those results. And we need to once they're fully enrolled, we need to have the subsequent time to see how these patients do.

EK: And what are the next steps?

RK: Part of the next steps for gene therapy is really to finish up the clinical study. The patients are all enrolled, which is wonderful. Now we want to see how they did in these higher enrolling cohorts. So one thing that we haven't talked about is what were the results that we actually found from the first two cohorts? And so as I mentioned before, Aaviate takes patients who have been previously treated so these patients who were in the study were basically patients who needed to get multiple injections.

On average, they average nearly nine injections in the previous year, which is about an injection every five weeks. And we took those patients who basically needed regular anti-VEGF therapy, and we basically offered them a super coronal injection of RGX-314, which involves a novel Aaviate vector, which encodes for an anti VEGF monoclonal antibody fragment, which is transduced, or basically transvexed, the patient's own retinal cells to produce anti-VEGF protein to effectively give you long term suppression.

And the data showed that in the first two cohorts where this was done, not only was the treatment quite safe, there was a very low rate of inflammation and no serious adverse events. But more impressively, that the number of treatments had gone down dramatically. The patients in the study were able to maintain their visual acuity, which was wonderful to see. But more importantly, the number of injections went down significantly.

As I told you, before, most of these patients needed about an injection every five weeks, and in the study, the number of injections went down nearly 70 to 79% than they had before receiving the gene therapy, they were able to maintain the visual acuity, maintain the retinal anatomy, and the number of patients who didn't even need injections was nearly 30% in the first cohort, and nearly 40% in the second cohort. And that was quite exciting because this truly was kind of delivering on the promise of a once-and-done therapy. But as I said before, we really need the long-term data to kind of see how this translates and also we need to see how higher doses if we can get better efficacy and also maintain a very good safety profile.

EK: Wow. So what does this mean for clinicians and for patients?

RK: I think it offers a really exciting hope for both our patients and physicians. As we mentioned before, we have a lot of treatment options for anti-VEGF therapy and they do work very well. The problem is that they require a lot of treatments and there's a high treatment burden, and this is challenging for patients because not all patients can come back in there's a high rate of lost to followup, non-compliance, and non-adherence to the treatment regimens. And we've seen in Phase 3 clinical studies, especially in follow up in real world practice that when patients are not getting regular treatments, they lose vision. And that's why we've it's been hard to replicate the excellent results we've seen in the Phase 3 studies in real world practice. And the hope is that if one of these gene therapy treatments can work, we can offer a really one-and-done or a much more sustainable treatment therapy for our patients, which ultimately lead to better compliance and better visual outcomes.

EK: Fantastic. Well, thank you so much for the update.

RK: My pleasure. Thanks for having me.

Note: This transcript has been lightly edited for clarity.

See the original post here:

AAVIATE: Gene therapy via suprachoroidal drug delivery may lower treatment burden for patients with AMD - Modern Retina

TC BioPharm CEO, Bryan Kobel to Speak at the "Innovating Cell and Gene Therapy Quality Control Conference 2022" – PR Newswire

During the fireside chat, moderated by Caroline Peachey, Editor of the European Pharmaceutical Review, Kobel will focus on TC BioPharm's journey as a CGT startup, the challenges the Company has faced, and the impact of quality control on its development. Kobel will also offer advice to other cell and gene therapy manufacturers and discuss the industry landscape.

The "Innovating Cell and Gene Therapy Quality Control Conference 2022" will take place virtually on July 13, 2022. For more information, visit the conference's website.

TC BioPharm manufactures young, active gamma-delta T cells exogenously using donor blood, expanding the gamma delta t-cell population into the billions and infusing these healthy donor cells into cancer patients. The Company's allogeneic unmodified gamma-delta T cell product, OmnImmune has shown positive results from its Phase 1a/2b human study evaluating its safety and tolerability. OmnImmune targets the potential treatment of relapse/refractory Acute Myeloid Leukemia ("AML"). Additionally, the FDA granted orphan drug status for OmnImmune after reviewing the trial results. TC BioPharm also received MHRA and Research Ethics Committee approvals to initiate Phase 2b/3 gamma-delta T cell therapy clinical trials of OmnImmune.

About TC BioPharm (Holdings) PLC

TC BioPharm is a clinical-stage biopharmaceutical company focused on the discovery, development and commercialization of gamma-delta T cell therapies for the treatment of cancer and viral infections with human efficacy data in acute myeloid leukemia. Gamma-delta T cells are naturally occurring immune cells that embody properties of both the innate and adaptive immune systems and can intrinsically differentiate between healthy and diseased tissue. TC BioPharm uses an allogeneic approach in both unmodified and CAR modified gamma delta t-cells to effectively identify, target and eradicate both liquid and solid tumors in cancer.

TC BioPharm is the leader in developing gamma-delta T cell therapies, and the first company to conduct phase II/pivotal clinical studies in oncology. The Company is conducting two investigator-initiated clinical trials for its unmodified gamma-delta T cell product line - Phase 2b/3 pivotal trial for OmnImmune in treatment of acute myeloid leukemia and Phase I trial for ImmuniStim in treatment of Covid patients using the Company's proprietary allogenic CryoTC technology to provide frozen product to clinics worldwide. TC BioPharm also maintains a robust pipeline for future indications in solid tumors and other aggressive viral infections as well as a significant IP/patent portfolio in the use of CARs with gamma delta t-cells and owns our manufacturing facility to maintain cost and product quality controls.

Forward Looking Statements

This press release may contain statements of a forward-looking nature relating to future events. These forward-looking statements are subject to the inherent uncertainties in predicting future results and conditions. These statements reflect our current beliefs, and a number of important factors could cause actual results to differ materially from those expressed in this press release. We undertake no obligation to revise or update any forward-looking statements, whether as a result of new information, future events or otherwise. The reference to the website of TC BioPharm has been provided as a convenience, and the information contained on such website is not incorporated by reference into this press release.

SOURCE TC BioPharm

See more here:

TC BioPharm CEO, Bryan Kobel to Speak at the "Innovating Cell and Gene Therapy Quality Control Conference 2022" - PR Newswire

Gene Therapy Market is Expected to Grow Revenue up to USD 20 Billion by 2028 Know More with Infinium Global Research – Digital Journal

The Gene Therapy Market Research Report Study. Covers global and regional markets with an in-depth analysis of the overall market growth prospects. It also sheds light on the comprehensive competitive landscape of the global market with a forecast period of 2022 to 2028. The Gene Therapy Market Research Report. Further provides a dashboard overview of the key players covering successful marketing strategies, market contribution, and recent developments in historical and current contexts, along with the forecast period 2022 to 2028. The global gene therapy market was valued at USD 5.6 Billion in 2022 and is expected to reach USD 20 Billion in 2028, with a CAGR of about 24% during the forecast period.

Get a Sample Copy of the Report: https://www.infiniumglobalresearch.com/reports/sample-request/40133

The Significant Therapeutic Potential Offered by Gene Therapy is Boosting the Growth of this Market

Innovation in gene therapy for rare & cardiovascular disease treatment is growing and increasing awareness regarding the ability of gene therapy to cure diseases drives the growth of the gene therapy market. Further, several benefits such as the ability to replace defective cells help in eliminating diseases and the significant therapeutic potential offered by gene therapy is boosting the growth of this market. The rising occurrence of cancer and increasing government support for gene therapy in cancer treatment can further fuel the demand for the gene therapy market. Gene therapy has substantial potential to eradicate and counter several genetic illnesses and frequent life-threatening disorders, such as AIDS, cancer, Parkinsons disease, heart diseases, age-related disorders, and cystic fibrosis.

Moreover, the upsurge in the number of gene therapy treatment centers in developed countries and the increasing adoption of gene therapy for Oncological disorders have expected to create lucrative growth opportunities for this market. On the contrary, the high cost associated with gene therapies and the potential to give rise to other disorders is likely to restrain the growth of the gene therapy market. However, the High cost of therapy treatment will restrain the market growth during the forecast period.

This report focuses on Gene Therapy Market Status, Future Forecast, Growth Opportunities, Key Market, and Key Players. The Gene Therapy Market Report. Studies various parameters, such as raw materials, cost and technology, and consumer preferences. It also provides important market credentials such as history, various spreads, and trends, and an overview of the trade, regional markets, trade, and market competitors. It covers capital, revenue, and pricing analysis by business, along with other sections such as plans, support areas, products offered by major manufacturers, alliances, and acquisitions. Headquarters delivery.

To understand how the Impact of Covid-19 is covered in this Report:

The complete profile of the company is mentioned. And it includes capacity, production, price, revenue, cost, gross margin, sales volume, revenue, consumption, growth rate, import, export, supply, future strategies, and the technological developments that they are making the report. Historical market data Gene Therapy and forecast data from 2022 to 2028.

Major players are included in the Gene Therapy market report. They are Novartis AG, Gilead Sciences, Inc., Spark Therapeutics, Inc., Amgen Inc., Biogen Inc., Pfizer Inc., Regeneron Pharmaceuticals, Sanofi SA., Abeona Therapeutics, Inc., and Merck & Co., Inc.

Need Assistance? Send an [emailprotected] https://www.infiniumglobalresearch.com/reports/enquiry/40133

Market segmentation Gene Therapy by type (suicide gene, cancer gene, tumor suppressor gene, cytokine gene therapy, antigen gene therapy), application (neurological, cardiovascular, genetic, infectious, oncological disorders), vector type (non-viral, viral vectors)

Geographically, this report is segmented into Several Key Regions, With Sales, Revenue, Market Share, and Growth Rate of Gene Therapy in Those Regions, from 2022 to 2028

=> North America (US, Canada, and Mexico)

=> Europe (Germany, UK, France, Italy, Russia, Turkey, etc.)

=> Asia Pacific (China, Japan, Korea, India, Australia, Indonesia, Thailand, Philippines, Malaysia, and Vietnam)

=> South America (Brazil, Argentina, Colombia, etc.)

=> The Middle East and Africa (Saudi Arabia, United Arab Emirates, Egypt, Nigeria, and South Africa)

-Market Landscape: Here, the Gene Therapy Market opposition is based on value, revenue, trade, and organization-specific pie slices, market rates, cut-throat situation landscape, and market rates. Patterns, integrations, developments, acquisitions, and, in general, most recent top organizations It is part of the industry.

-Manufacturers Profiles: Here, they are considered to be the driving force for the Gene Therapy Market. It is dictated by regions marketed, major products, net margin, revenue, cost, and generation.

-Market Status and Outlook by Region: In this segment, the report studies the market size by region, net advantage, exchanges, revenue, generation, overall industry share, CAGR, and region. Here, is the Gene Therapy Market. It is studied in depth according to regions and countries such as North America, Europe, China, India, Japan, and MEA.

-Market Outlook Production Side In this report, the authors have focused on the creation and estimates regarding creation by type, key manufacturer indicators, and estimates regarding creation and creation.

-Results and Conclusions of the Research: It is one of the last parts of the report where the researchers findings and the conclusion of the exploratory study are presented.

Enquire Here Get Customization & Check Discount for Report @ https://www.infiniumglobalresearch.com/reports/customization/40133

Key Stakeholders

Raw Material Suppliers

Distributors/Traders/Wholesalers/Suppliers

Regulatory Agencies, including Government Agencies and NGOs

Research and Development (R&D) Trade Agencies

Imports and Exports, Government Agencies, Research Agencies, and Companies Consultants

Trade associations and industry groups.

End-use industries

The Study Objectives of this Report are:

To analyze the Gene Therapy Industrys status, future forecast, growth opportunity, key market, and key players.

Present the development of the Supply of Gene Therapy Market products. In the United States, Europe, and China.

Strategically profile key players and comprehensively analyze their development plans and strategies.

To define, describe and forecast the market by product type, market, and key regions.

Table of Content

Chapter 1 Preface

1.1. Report Description

1.2. Research Methods

1.3. Research Approaches

Chapter 2 Executive Summary

2.1. Gene Therapy Market Highlights

2.2. Gene Therapy Market Projection

2.3. Gene Therapy Market Regional Highlights

Chapter 3 Global Gene Therapy Market Overview

3.1. Introduction

3.2. Market Dynamics

3.2.1. Drivers

3.2.2. Restraints

3.2.3. Opportunities

3.3. Analysis of COVID-19 impact on the Gene Therapy Market

3.4. Porters Five Forces Analysis

3.5. IGR-Growth Matrix Analysis

3.6. Value Chain Analysis of Gene Therapy Market

Chapter 4 Gene Therapy Market Macro Indicator Analysis

Chapter 5 Global Gene Therapy Market by Type

5.1. Suicide Gene Therapy

5.2. Cancer Gene Therapy

5.3. Tumor Suppressor Gene Therapy

5.4. Cytokine Gene Therapy

5.5. Antigen Gene Therapy

Chapter 6 Global Gene Therapy Market by Application

6.1. Neurological Diseases

6.2. Cardiovascular Diseases

6.3. Genetic Diseases

6.4. Infectious Diseases

6.5. Oncological Disorders

Chapter 7 Global Gene Therapy Market by Vector Type

7.1. Non-viral Vectors

7.2. Viral Vectors

Chapter 8 Global Gene Therapy Market by Region 2022-2028

8.1. North America

8.2. Europe

8.3. Asia-Pacific

8.4. RoW

Chapter 9 Company Profiles and Competitive Landscape

9.1. Competitive Landscape in the Global Gene Therapy Market

9.2. Companies Profiles

9.2.1. Novartis AG

9.2.2. Gilead Sciences, Inc.

9.2.3. Spark Therapeutics, Inc.

9.2.4. Amgen Inc.

9.2.5. Biogen Inc.

9.2.6. Pfizer Inc.

9.2.7. Regeneron Pharmaceuticals

9.2.8. Sanofi SA.

9.2.9. Abeona Therapeutics, Inc.

9.2.10. Merck & Co., Inc

Reasons to Buy this Report:

=> Comprehensive analysis of global as well as regional markets of the gene therapy.

=> Complete coverage of all the product types and applications segments to analyze the trends, developments, and forecast of market size up to 2028.

=> Comprehensive analysis of the companies operating in this market. The company profile includes an analysis of the product portfolio, revenue, SWOT analysis, and the latest developments of the company.

=> Infinium Global Research- Growth Matrix presents an analysis of the product segments and geographies that market players should focus on to invest, consolidate, expand and/or diversify.

Contact Us:

If you have any queries about this report or if you would like further information, please contact us:

Name: Kishor Devchake

E-mail: [emailprotected]

Phone: +918421989712

Read the rest here:

Gene Therapy Market is Expected to Grow Revenue up to USD 20 Billion by 2028 Know More with Infinium Global Research - Digital Journal

Why Shares of Bluebird Bio, CRISPR Therapeutics, and Editas Medicine Soared This Week – The Motley Fool

What happened

The downtrodden biotech space has kicked off the second half of 2022 with a boom. Hard-hit gene-editing and gene therapy companies in particular have started the back half of the year on the right foot. Underscoring this point, Bluebird Bio (BLUE 3.59%) stock has already risen by 17% over the holiday-shortened week as of Thursday's closing bell, according to data provided by S&P Global Market Intelligence.

What's more, shares of CRISPR Therapeutics (CRSP 0.77%) have gained 22.6% over the same period, and fellow gene editor Editas Medicine (EDIT 0.33%) also saw its equity rise in price by a healthy 20.7% this week. By contrast, Bluebird and Editas shares both fell by over 50% over the first six months of 2022, while CRISPR's stock price stumbled by a noteworthy 20% during the first half of the year.

Image Source: Getty Images.

What's behind this sudden trend reversal? The most likely explanation is simply short-sellers covering their positions (buying back their borrowed shares). In keeping with this theme, Bluebird, Editas, and CRISPR all saw a sharp rise in their short interest during the first six months of 2022. Short-sellers piled into these three names earlier this year due to the fact that they are all cash flow negative, which is a tough spot to be in during a persistent bear market and an era of rising interest rates. Bluebird, in fact, is staring down a serious cash crunch at the moment.

Short-sellers, for their part, are probably backing away at this stage for no other reason than to play it safe in the event that big pharma starts to go bargain shopping.

Why might big pharma target beaten-down gene-editing and gene therapy companies in the second half of the year? The key reason is that these high-value fields are starting to move beyond the research stage of their life cycle and into the realm of commercially available therapies.

Speaking to this point, Bluebird's gene therapies for beta thalassemia and cerebral adrenoleukodystrophy appear to be on their way toward a formal approval from the Food and Drug Administration (FDA) following a pair of positive advisory committee votes last month. What's more, CRISPR is also expected to file for regulatory approval for its Vertex Pharmaceuticalspartnered blood disorder candidate, exa-cel, later this year.

Are any of these three biotech stocks still worth buying? CRISPR is arguably the most attractive bargain among the three. The company's ex-vivo gene-editing platform has posted stellar trial results so far, and Vertex could very well decide to buy its partner as a result.

Bluebird, on the other hand, is a tough call. The company ought to have a compelling buyout case if the FDA does grant it a pair of approvals soon. The bad news is that the biotech's balance sheet may force a sale at a heavily discounted price (relative to the commercial potential of its lead assets).

Finally, Editas might simply get lost in the mix when everything is said and done. There are several gene-editing companies vying for the spot of top dog, and Editas' clinical pipeline lags in several key areas at the moment. Time will tell.

George Budwell has no position in any of the stocks mentioned. The Motley Fool has positions in and recommends CRISPR Therapeutics, Editas Medicine, and Vertex Pharmaceuticals. The Motley Fool recommends Bluebird Bio. The Motley Fool has a disclosure policy.

View post:

Why Shares of Bluebird Bio, CRISPR Therapeutics, and Editas Medicine Soared This Week - The Motley Fool

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

Introduction

Stem cells are highly specialized cell types with an impressive ability to self-renew, able to transform into one or even more specific cell types that play a significant role in the regulation and tissue healing process.17 To self-renew, a stem divides into two identical daughter stem cells and a progenitor cell and the embryonic and adult cells contain stem cells.1,2,8

Curing patients with serious medical conditions has been the focus of all disciplines of medical research for many years. Stem cell treatment has evolved into a highly exciting and progressed field of scientific research. Major advances have recently been introduced in fundamental and translational stem-cell-based treatment studies. As stem cell research progressed, many therapeutic options were investigated. The development of therapeutic procedures has sparked a great deal of interest.1,9 Humanity has known for many years that it is possible to regenerate lost tissue. Recently, the regenerative medicine research has taken hold, defying the tremendous scientific advances in the molecular biology sciences only. Technological advances provide limitless opportunities for transformational and potentially restorative therapies for many of humanitys most illnesses. A variety of human organs have successfully yielded stem cells. Besides this, the cell therapy is rapidly bringing good advancements in the healthcare system, intending to restore and possibly replace injured tissue, as well as organs, and ultimately restore the functional capacity of the body.2,10,11

The stem cells can be obtained from various sources of Adult (Adult body tissues), Embryonic (Embryos), Mesenchyma (Connective tissue or stroma), and Induced pluripotent stem [ips] cells (Skin cells or tissue-specific cells).3,68,1215

Due to various stem cells cellular characteristics, the therapeutic clinical possibilities of stem-cell-based treatment are considered promising. These cells can regrow and restore various types of body tissues, for this reason, they are recognized as precursor cells to all kinds of cells.15 The following are the distinguishing features: 1. Self-renewal- Divide without distinction to generate an infinite supply, 2. Multi-potency- One mature cell may distinguish more than one, 3. Pluripotency- Create all sorts of cells except for embryonic membrane cells, 4. Toti- potency- Produce various sorts of cells, including embryonic stem cells.1,2,6,7,16

Stem cells are essential human cells that really can self-renew and make a distinction into particular mature cell types.3,6 The different types of stem cells are embryonic, induced pluripotent, and adult kind of cell types. They all share the important feature of self-renewal, and the ability to discern themselves. It should be mentioned that, the stem cells are not homogeneous, but instead appear in a progressive order. Totipotent stem cells are the most basic and immature stem cells. The above cells can form a complete embryo and also extra-embryonic tissue. This one-of-a-kind efficiency is only present for a short period, starting with ovum development and completing whenever the embryo achieves the 4 to 8 cell phases. Having followed that, cells that divide until they approach the blastocyst, about which point they end up losing their totipotency and acquire a pluripotent character trait, at which cells can only distinguish through each embryonic germ stack. After a few divisions, the pluripotency character trait starts to fade and the distinguishing ability has become more lineage constrained, where its cells are becoming multipotent, indicating they could only transform into the cells connected to a cell or tissue of origin.10 Many researchers believe that adult stem cells should be used in stem cell therapies.6,17

The stem cells can be transformed into a wide range of specialized functional cell types.3,18 In response to injury or maturation, those same stem cells can propagate in massive quantities.19 Adult, embryonic, and induced pluripotent stem cells are examples of stem cell-based therapies.14,15,1921 The stem cells, due to their capability to distinguish the specific cell types requisite for a diseased tissue regeneration, can provide an effective solution, while tissue and organ transplantation are considered necessary.10 The sophistication of stem cell-based treatment interventions, on the other hand, probably leads researchers to seek stable, credible, and readily available stem cell sources capable of converting into numerous lineages. As an outcome, it is critical to exercise caution when selecting the type of stem cells to be used in therapeutic trials.12,14,22

Only with the explosive growth of basic stem cell research in recent years, the comparatively recent study sector of Translational Research had also grown exponentially, starting to build on major research knowledge and insight to advance new therapies. Once the necessary regulatory clearances have been obtained, the clinical translation process can start. Translational research is important because it acts as a filtration system, ensuring that only safe and effective therapeutic approaches start making it to the clinic.23 Recent research illustrating, the successful application of stem cell transplantation to patient populations suggests that, such restorative approaches have been used to address a wide variety of complicated ailments of future concerns.19,24

Currently, clinical trials are available for a variety of stem cell-based treatments based on adult stem cells. To date, the WHO International Clinical Experiments Registration process has recorded more than 3000 experiments involved based on adult stem cells. Furthermore, preliminary trials involving novel and intriguing pluripotent stem cell therapies have been registered. These studies findings will assist the ability to comprehend and the timeframes required to obtain effective treatments and it will contribute to a better knowledge of the different disorders or abnormalities.10

The role of stem cells in modern medicine is vital, both for their widespread application in basic research and for the opportunities they provide for developing new therapeutic strategies in clinical practice.6,16 In recent times, the number of studies involving stem cells has expanded tremendously. Globally, thousands of studies claiming to use stem cells in experimental therapies have now been in the investigation field. This may give the impression that such treatments have already been shown to be extremely effective in the context of healthcare. Despite some promising results, the vast majority of stem cell-based therapeutic applications are still in the experimental stage itself.6,25

The stem cells are a valuable resource for understanding organogenesis as well as the bodys continual regenerative capacity. These cells have brought up enormous anticipations among doctors, investigators, patients, and the public at large because of their ability to distinguish into a variety of cell types.25 These cells are necessary for living beings for a variety of reasons and can play a distinguishable role. Several stem cells can play all cell types roles, and when stimulated effectively, they can also repair damaged tissue. This capability has the potential to save lives as well as treat human injuries and tissue destruction. Moreover, different kinds of stem cells could be used for several purposes, including tissue formation, cell deficiency therapeutic interventions, and stem cell donation or retrieval.3,6,26

New research demonstrating that the successful application of stem cell treatments to patients has expressed hope that such regenerative strategies might very well one day is being used to address a wide variety of problematic ailments. Furthermore, clinical trials incorporating stem cell-based therapeutics have advanced at an alarming rate in recent years. Some of these studies had a significant impact on a wide range of medical conditions.10 As a regenerative medicine strategy, cell-based treatment is widely regarded as the most fascinating field of study in advanced science and medicine. Such technological innovation paves the way for an infinite number of transformational and potentially curable solutions to some of humanitys most pressing survival issues. Moreover, it is gradually becoming the next major concern in medical services.11

Modern data, which shows that the successful stem cell transplantation in beneficiaries has raised hopes on the certain rejuvenating approaches, will one day be used to treat many different types of challenging chronic conditions.24 Preliminary data from highly innovative investigations have documented that the prospective advancement of stem cells provides a wide range of life-threatening ailments that have so far eluded current medical therapy.2,10,11 Furthermore, clinical trials involving stem cell-based therapies have advanced at an unprecedented rate. Many of these studies had a significant impact on various disorders.19 Despite the increasing significance of articles concerning viable stem cell-based treatments, the vast majority of clinical experiments have still yet to receive full authorization for stem cell treatments confirmation.11,12,27

Even though the first case of AIDS were noted nearly 27 years ago, and the etiologic agent was noticed 25 years ago, still for the effective control of the AIDS pandemic continues to remain elusive.28 The HIV epidemic started in 1981 when a new virus syndrome defined by a weakened immune system was revealed in human populations across the globe. AIDS showed up to have a substantial reduction in CD4+ cell counts and also elevated B-cell multiplication.15,2831

The agent that causes AIDS, later named HIV, is a retroviral disease with a genomic structural system made up of 2 identical single-stranded RNA particles.3234 According to the Centres for Disease Control and Prevention, with over 1.1 million Americans are presently infected with the virus.31 Compromised immune processes in HIV and AIDS, as well as partial immune restoration, barriers are confirmed for HIV disease eradication. Innovative developmental strategies are essential to maximizing virus protection and enabling the host immune response to eliminate the virus.35

The progression of HIV infection in humans is divided into the following stages of acute infection, chronic infection, and AIDS.15,36 During the acute infection phase, the circulation has a high viral replication, is extremely infectious, that may or may not demonstrate flu-like clinical signs. In the chronic stage, the viral load is lesser than in the acute stage, and individuals are still infectious but may be symptomless. The patient has come to the end stage of AIDS whenever the CD4+ cell count begins to fall below 200 cells/mm or even when opportunistic infections are advanced.15,36

There are currently two types of HIV isolated HIV-1 and HIV-2.15,37,38 However, HIV-1 is the most common cause of AIDS throughout the world, while HIV-2 is only found in a few areas of an African country. Although both virions can cause AIDS, HIV-2 infection is much more likely to occur in central nervous system disorder.15 Besides this, HIV-2 seems to be less infectious than HIV-1, and HIV-2 infection induces AIDS to develop more slowly. Even though both HIV-1 and HIV-2 have a comparable genetic structure comprised of group-specific antigen, polymerase, and envelope genes, their genome organizational structures are differed.15,3739

HIV infiltrates immune cell types, CD4+ T cell types, and monocytes, resulting in a drop in T-cell counts below a critical level and the failure of cell-mediated immune function.15,40 The glycoprotein (gp120) observed in the virion envelope comes into contact with the CD4 particle with high affinity, allowing HIV to infect T cells. By interacting with their co-receptors, CXCR4 and CCR5, the virus infiltrates T cells and monocytes. The retrovirus uses reverse transcriptase to convert its RNA into DNA after attaching it to and entering the host cell. These newly replicated DNA copies then exit the host cell and infect other cells.15,40,41

HIV-1 is a retrovirus and belongs to a subset of retroviruses known as lentiviruses.38,42 Infection is the most common global health concern around the world.15 It has destroyed the millions of peoples health and continues to wreak havoc on the individual health of millions more. The pandemic of HIV-1 is the most devastating plague in the history of humans, as well as a significant challenge in the areas of medicine, public health, and biological science of research activities.34,43 Antiretroviral therapy is the only treatment that is commonly used. This is not a curative treatment; it must be used for the rest of ones life.15 Although antiretroviral therapy has reduced significantly HIV intensity and transmission, the virus has not been eradicated, and its continued presence can lead to additional health issues.44

Infection with the human immunodeficiency virus necessitates entry into target cells, such as through adhesion of the viral envelope to CD4 receptor sites.43 Cellular antiviral responses fail to eliminate the virus, resulting in a gradual depletion of CD4+ T cells and, finally, a severely compromised immune functioning system. Unfortunately, there is no cure for the virus that destroys immunity.4447 In advanced HIV infection, memory T-cell depletion primarily affects cellular and adaptive immune responses, with a minor impact on innate immune responses.48 Globally, 37.7 million people were living with HIV in 2020, and with 1.5 million individuals are infected with the virus.49 The advancement of stem cell therapy and the conduct of implemented clinical trials have revealed that stem cell treatment has high hopes for a range of medical conditions and implementations.15

Stem cell treatment has shown impressive outcomes in HIV management and has the potential to have significant implications for HIV treatment and prevention in the future. In HIV patients, stem cell therapy helps to suppress the viral load even while enabling antiretroviral regimens to be tapered. Interestingly, this practice led to a significant improvement in procedure outcomes soon after starting antiretroviral treatment.15 Stem cell transplantation can alleviate a wide variety of diseases that are currently incurable. They could also be used to create a novel anti-infection therapy strategic plan and to enhance the treatment of immunologic conditions such as HIV infection. HIV wreaks havoc on immune system cells.30,50

The virus infects and replicates within T-helper cells (T-cells), which are white immune system cells. T-cells are also referred to as CD4 cells. HIV weakens a persons immune system over time by pulverizing more CD4 cells and multiplying itself. More pertinently, if the individual has been unable to obtain anti-retroviral medicine, he will progressively fail to control the infectious disease and illnesses.3,15,42

Despite 36 years of scientific research, investigators are still trying to cure human HIV and its potential problem, AIDS.3,5153 HIV continues to face unconquerable dangers to human survival. This virus has developed the potential to avoid anti-retroviral therapy and tends to result in victim death.52 Investigators are still looking for effective and all-encompassing treatment for HIV and its complexity, AIDS.54 This massive amount of data revealed potential AIDS treatment targets.55 Thousands of research projects have yielded a great deal of information on the elusive AIDS life cycle to date.5456 These massive amounts of data supplied possible targets for AIDS treatment.33,55,56 In HIV-infected patients, using stem cell therapy can augment the process of keeping the viral load stagnant by permitting antiretroviral regimens to be tapered.15

Overall, stem cell-based strategies for HIV and AIDS treatment have recently emerged and have become a key area of research. Ideally, effective stem cell-based therapeutic approaches might have several benefits.30 Clinical studies encompassing stem cell therapy have shown substantial therapeutic effects in the treatment of various autoimmune, degenerative, and genetic problems.15,25 Substantial progress has been developed in the treatment of HIV infection using stem cell-based techniques.30

Successfully treated, clinical studies have shown that total tissue recovery is feasible.15,57 In the early 1980s, the first stem cell transplants were accomplished on HIV-positive patients who were unsure of their viral disease. Following the above preliminary aspects, many HIV-positive patients with concurrent malignant tumours or other hematologic disorders underwent allogeneic stem cell transplantation around the world.42 After ART became a common treatment option for patients,58,59 the procedures prognosis improved dramatically. In addition, a retrospective study of 111 HIV+ transplant patients demonstrated a mildly lower overall survivorship performance in comparison to an HIV-uninfected comparison group.60

Earlier, the primary problem for people living with HIV and AIDS was immunodeficiency caused by a loss of productive T-cells. Some clinicians intended to replenish lost lymphocytes through adoptive cell transplants in the initial days before efficacious antiretroviral therapy options were available. Immunologically, it is relatively simple in an isogeneic condition, as illustrated on HIV-positive individuals with just a correlating identical twin who received T-lymphocytes and stem cell transfusions to rebuild the weak immune status of the patient.60 Cell therapy transfusion may be used to remove resting virion genomes from CD4+ immune cells and macrophages mostly through genome-editing or cytotoxic anti-viral cells.15,60 Cell technology and stem cell biological reprogramming developments have made a significant contribution to novel strategies that may give confidence to HIV healing process.3 However, human embryonic stem cells can be distinguished into significant HIV target cells, according to several research findings.30,61,62

Initially, stem cell transplantation was believed to influence the clinical significance of HIV infection, but viral regulation was not accomplished in the discipline. Moreover, improvements in stem cell transplants utilizing synthetic or natural resistant cell resources, in combination with novel genetic manipulative tactics or the advancement of cytotoxic anti-HIV effector cells, have significantly accelerated this sector of HIV cell management.60 Multiple techniques are being introduced to overcome HIV, either through protecting cells from infectious disease or by continuing to increase immune responses to the viral infection.30 The various methods are as follows: Bone marrow stem cells Therapies, Autologous stem cell transplantations, Hematopoietic stem cell transplantation, Genetical modifications of Hematopoietic stem cells (HSCT), HSCT and HAART therapeutic approach, Human umbilical cord mesenchymal stem cell transplantation, Mesenchymal stem/stromal cells (MSCs) applications, CCR5 Delta32/Delta32 Stem-Cell Transplantation, CRISPR and stem cell applications, Induced Pluripotent Stem Cells applications.

According to the findings, circulating replicative HIV remains the most significant threat to effective AIDS therapy. As a result, a method for conferring resistance to circulating HIV particles is required. The effective viral burden in the human body would be significantly reduced if it were possible to defeat reproducing HIV particles.43,44 For the treatment of AIDS, a restorative approach that relies on bone marrow stem cells has been suggested.52 The proposed treatment method captures and eventually destroys circulating HIVs using receptor-integrated red blood cells. Red blood cell membranes can be equipped with the CD4 receptor and the C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4 co-receptors, which will selectively bind circulating HIV particles.15,30,32,33,43,44,46,6365

The term autologous pertains to blood-forming stem cells obtained from the patient for use as a source of fresh blood cells followed by high-dose chemotherapeutic agents.66 Lymphoma is still the biggest cause of mortality in HIV patients. Autologous stem cell recovery or transplantation with high-dose treatments has long been supported as a treatment for certain types of cancer in HIV-negative patients, including leukaemia and lymphoma. Individuals over the age of 65, as well as those with health problems such as HIV, were excluded from initial transfusion experiments. Moreover, the treatment regimen mortality of transplantation has also been reduced significantly due to its use of peripheral blood stem cells rather than bone marrow and the use of newer marginal conditioning therapeutic strategies. HIV-infected clients may be able to utilize enough stem cells for an autologous transplant advancement in HIV management. High-dose Autologous stem cell transplant (ASCT) treatments are better than conventional treatment in people with relapsed non-Hodgkin lymphoma, according to randomized trial evidence. Similarly, studies on HIV-negative people with Hodgkin Lymphoma have shown that ASCT would provide patients with repetitive illness with long-term progression-free survival.66,67 Even so, the clinical trial on Allogeneic Hematopoietic Cell Transplant for HIV Patients with Hematologic Malignancies report was explained as, the cell-associated HIV DNA and inducible infectious virus were not detectable in the blood of patients who attained complete chimerism.68

The study on long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates report findings was Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a potential innovative approach for the treatment of numerous human disorders. This report shows that genome-edited HSPCs engraft and contribute to multilineage repopulation following autologous transplantation in a clinically relevant large animal model, which is an important step toward developing stem cell-based genome-editing therapeutics for HIV and possibly other illnesses.69

Research on comprehensive virologic and immune interpretation in an HIV-infected participant again just after allogeneic transfusion and analytical interruption of antiretroviral treatment findings are the instance of HIV-1 cure having followed allogeneic stem cell transplantation (allo-SCT), resulting allo-SCTs in HIV-1 positive participants have failed to cure the disease. It describes adjustments in the HIV reservoir in a single chronically HIV-infected client who had undergone allo-SCT for acute lymphoblastic leukaemia treatment and was obtaining suppressive antiretroviral treatment.

To estimate the size of the HIV-1 reservoir and describe viral phylogenetic and phenotypic modifications in immune cells, the investigators just used leukapheresis to obtain peripheral blood mononuclear cells (PBMCs) from a 55-year-old man with chronic HIV infection prior and after allo-SCT. Once HIV-1 was found to be unrecognizable by numerous tests, including the PCR measurement techniques both of overall and fully integrated HIV-1 DNA, recompilation virus precise measurement by significant cell input quantifiable viral outgrowth assay, and in situ hybridization of intestine tissue, the client accepted to an analytic treatment interruption (ATI) with recurrent clinical observing on day 784 post-transplantation. He continued to remain aviremic off ART until ATI day 288, once a reduced virus rebound of 60 HIV-1 copies/mL resulted, which expanded to 1640 HIV-1 copies/mL five days later, urging ART reinitiation. Rebounding serum HIV-1 action sequences were phylogenetically distinguishable from pro-viral HIV-1 DNA discovered in circulating PBMCs before transplantation. It was indicated that allo-SCT tends to result in significant reductions in the magnitude of the HIV-1 reservoir and a >9-month ART-free cessation from HIV-1 multiplication.34

The Impact of HIV Infection on Transplant Outcomes after Autologous Peripheral Blood Stem Cell Transplantation: A Retrospective Study of Japanese Registry Data reported as ASCT is a successful treatment option for HIV-positive patients with non-Hodgkin lymphoma and multiple myeloma (MM). HIV infection was associated with an increased risk of overall mortality and relapse after ASCT for NHL in a study population.70

The procedure of delivering hematopoietic stem cells mostly through intravenous infusion to restore normal haematopoiesis or treat cancer is known as hematopoietic stem cell transplantation.71 There has recently been a rise in the desire to develop strategies for treating HIV/AIDS diseases employing human hematopoietic stem cells,30 along with this Hutter and Zaia were evaluated the background of Haematopoietic stem cell transplantation (HSCT) in HIV-infected individuals.42

Attempts to use HSCT as a technique for immunologic restoration in AIDS patients or as a therapeutic intervention for malignant tumours were initially insufficient. Regretfully, in the absence of sufficient ART, HSCT seemed to have no impact on the evolution of HIV infection, and the majority of the patients ended up dead of rapidly deteriorating immunosuppression or reoccurring lymphoma or leukaemia. A specific instance report described how an un-associated, matched donor supplied allogeneic HSCT to a patient with refractory lymphoma. The virus was unrecognizable by isolating or PCR of peripheral blood mononuclear cells commencing on day 32 after transplantation. Although HIV-1 was unrecognizable by cultural environment or PCR of several tissues examined at mortem, the patient died of recurring lymphoma on day 47. Another client who obtained both allogeneic HSCT and zidovudine had similar results, with HIV-1 becoming unnoticeable in the blood by PCR analysis. In some other particular instances, a 25-year-old woman with AIDS who obtained an allogeneic HSCT from a corresponding, unfamiliar donor after controlling with busulfan and cyclophosphamide and ART with zidovudine and IFN-2 regimen continued to live for 10 months before falling victim to adult respiratory distress. However, PCR testing of autopsy tissues revealed that they were HIV-1 negative.72

Recent research discovered significant progress towards the clinical application of stem cell-based HIV therapeutic interventions, principally illustrating the opportunity to effectively undertake a large-scale phase two HSC-based gene therapy experiment. In this investigation, the research team used autologous adult HSCs that had been transduced to a retroviral vector that usually contains a tat-vpr-specific anti-HIV ribozyme to develop cells that were less vulnerable to productive infection,73 whereas vector-containing cells have been discovered for extended periods (more than 100 weeks in most people) and CD4+ T cell gets counted were significantly high within anti-HIV ribozyme treating people group compared with the placebo group, the impacts on viral loads were minimal. The studys success, even so, is based on the realization that a stem cell-based strategy like this is being used as a more conventional and efficacious therapeutic approach.30 Some other latest clinical studies used a multi-pronged RNA-based strategic plan which included a CCR5-targeted ribozyme, an shRNA targeting tat/rev transcripts, and a TAR segment decoy.74

These crucial research findings are explained on lentiviral-based gene therapy vectors that can genetically manipulate both dividing and non-dividing HSCs and are less likely to cause cellular changes than murine retro-viral-based vectors. Long-term engraftment and multipotential haematopoiesis have been demonstrated in vector-containing and expressing cells, according to the researchers. Whereas the antiviral effectiveness was not reviewed, the results demonstrate the strategys protection, which helps to expand well for the possibility of a lentiviral-based approach in the upcoming years.30

A further approach, with a different emphasis, has been started up in the hopes of trying to direct immune function to target specific HIV to overcome barriers to attempting to clear the virus from the patient's body. These strategies use gene treatment innovations on peripheral blood cells to biologically modify cells so that they assert a receptor or chimeric particle that enables them to especially target a specific viral antigen,75 deception of HIV-infected peoples peripheral blood T cells raises issues to be addressed, such as the effects of ongoing HIV infection and ex vivo modification on the capabilities and lifetime of peripheral blood cells. Further to that, the above genetically manipulated cells would demonstrate their endogenous T cell receptors, and the representation of the newly introduced receptor could outcome in cross-receptor pairing, resulting in self-reactive T cells. Most of these deficiencies could be countered by enabling specific developmental strategies to take place that can start generating huge numbers of HIV-specific cells in a renewable, consistent way that can restore defective natural immune activity against HIV.30

One strategy being recognized is the application of B cells obtained from HSCs to demonstrate anti-HIV neutralizing specific antibodies. While animal studies have shown that neutralizing antibodies could protect against infection, and extensively neutralizing antibodies have been noticed in some HIV-infected persons, safety from a single engineered antibody might be exceptional.76,77 Realizing antibody binding and virus neutralization may assist in the development of chimeric receptors or single-chain therapeutic antibodies with recognition domains for other techniques that identify cellular immunity against HIV-infected cells.78,79 Thereby, genetically modifying HSCs to generate B cells that produce neutralizing anti-HIV specific antibodies, or engineering HSCs to enable multipotential haematopoiesis of cells that express a chimeric cellular receptor usually contains an antibody recognition domain, indicate one arm of an HSC-based engineered immunity process.30

A further technique of using HSCs that were genetically altered with molecularly cloned T-cell receptors or chimeric molecules particular to HIV to yield antigen-specific T cells. The basic difference in this strategy is that the cells produced from HSCs after standard advancement in the bone marrow and thymus are made subject to normal central tolerance modalities and are antigen-specific naive cells, and therefore do not have the ex-vivo manipulation and impaired functioning or exhaustion problems that other external cell modification methods would have. In this context, the latest actual evidence research using a molecularly cloned T cell receptor particular to an HIV-1 Gag epitope in the aspect of HLA-A*0201 revealed that HSC altered in this ability can progress into fully functioning, mature HIV specialized CD8+ T cells in human thymic tissue that conveys the acceptable constrained HLA-A*0201 particles.80 This explores the possibility of genetically engineering HSCs with a molecularly cloned receptor and signifies a step toward a better understanding and application of initiated T cell responses, which would probably result in the eradication of HIV infection from the body, similar to the natural immune function of other virus infections and pathogenic organisms.30

In an allogeneic transplantation, donor stem cells replace the patients cells.66 Allogeneic hematopoietic stem cell transplantation (HSCT) has appeared as one of the most potent treatment possibilities for many people who suffer from hemopoietic system carcinomas and non-malignant ailments.81 Both HIV-cured people have received HSCT utilizing CCR5 132 donor cells.82,83 This implies that HIV eradication necessitates a decrease in the viral reservoir through the myeloablative procedures,8486 Having followed that, immune rebuilding with HIV-resistant cells was carried out to prevent re-infection.45 The possibility of adoptive transfer of ex vivo-grown, virus-specific T-cells to prevent and control infectious diseases (eg, Cytomegalovirus and EBV) in immunocompromised patients helps to make adoptive T-cell treatment a feasible strategy to inhibit HIV rebound having followed HSCT.81,87,88

The Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study, the researchers investigated the efficacy and safety of 2LTRZFP in human CD34+ HSPCs. Researchers used a lentiviral vector to transduce 2LTRZFP with the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs. The study findings suggest that the anti-HIV-1 integrase scaffold is an enticing antiviral molecule that could be utilised in human CD34+ HSPC-based gene therapy for AIDS patients.89

The fundamental element of HIV management is stem cell genetic modification, which involves genetically enhanced patient-derived stem cells to overcome HIV infection. In this sector, numerous experimental studies, in vitro as well as in vivo examinations, and positive outcomes for AIDS patients have been conducted.65,74 Genetic engineering for HIV-infected individuals can provide a once-only intervention that minimizes viral load, restores the immune system, and minimizes the accumulated toxicities concerned with highly active antiretroviral therapy (HAART).73 HSCs can be genetically altered, permitting for the addition of exogenous components to the progeny that protects them from direct infectious disease and/or enables them to target a specific antigen. Besides that, HSC-based strategies can enhance multilineage hemopoietic advancement by re-establishing several arms of the immune function. Eventually, as HSCs can be produced autologously, immunologic tolerance is typically high, enabling effective engraftment and subsequent distinction into the fully functioning mature hematopoietic cells.30

The utilization of human HSCs to rebuild the immune function in HIV disease is one application that tries to preserve newly formed cells from HIV infection, while another attempts to develop immune cells that attack HIV infected cells. While each initiative has many different aspects at the moment, they represent huge attention to HIV/AIDS therapies that, most likely when integrated with the other therapeutic approaches, would result in the body trying to overcome the obstacles needed for the virus to be effectively cleaned up.30

While HSC transplantation technique and processes are not accurately novel, as they are commonly and effectively used to address a wide variety of haematological diseases and malignant neoplasms,90 trying to combine them with a gene therapeutic strategy represents a unique and possibly potent therapeutic approach for HIV and AIDS-related ailments. As the results of HIV-infected patients who obtained autologous HSCT continued to improve, there was growing interest in genetically altered stem cells that were tolerant to HIV disease. Multiple logistical challenges have impeded the advancement of genetically modified hematopoietic stem cells as a conceivable therapeutic option for HIV/AIDS.72,73

UCLAs Eli and Edythe Broad Center for Restorative Medicine and Stem Cell Studies is one bit closer to constructing an instrument to arm the bodys immune system to attack and defeat HIV. Dr. Kitchen et al are the first ones to disclose the use of a chimeric antigen receptor (CAR), a genetically manipulated molecule, in blood-forming stem cells. In the experiment, the research team introduced a CAR gene into blood-forming stem cells, which were then moved into HIV-infected mice that had been genetically programmed. The scientists found that CAR-carrying blood stem cells efficiently transformed into fully functioning T cells that have the ability to kill HIV-infected cells in mice. The outcome was an 80-to-95 percentage reduction in HIV levels, suggesting that stem-cell-based genetic engineering with a CAR might be a viable and effective approach for treating HIV infection among humans. The CAR initiative, according to Dr. Kitchen, is much more able to adapt and ultimately more efficient, which can conceivably be used by others. If any further experiment showcases keep promising, the scientists expect that a practice based on their strategy will be accessible for clinical development within the next 510 years.91

HSCT and HAART therapeutic approaches in treating HIV/AIDS as the emergence of highly active antiretroviral therapy (HAART) in the 1990s improved survival rates of HIV infection, leading to a major dramatic drop in the occurrence of AIDS and AIDS-related mortalities. As an outcome, there is much less involvement with using HSCT as a therapy for HIV infection.28,33,43,67,86

A randomized clinical trial of human umbilical cord mesenchymal stem cell transplant among HIV/AIDS immunological non responders investigation, the researchers examined the clinical efficacy of transfusion of human umbilical cord mesenchymal stem cells (hUC-MSC) for immunological non-responder clients with long-term HIV disease who have an unmet medical need in the aspect of effective antiretroviral therapy. From May 2013 to March 2016, 72 HIV-infected participants were admitted in this stage of the randomized, double-blind, multi-center, placebo-controlled dose-determination investigation. They were either given a high dose of hUC-MSC of 1.5106/kg body weight as well as small doses of hUC-MSC of 0.5106/kg body weight, or a placebo application. During the 96-week follow-up experiment, interventional and immunological character traits were analysed. They found that hUC-MSC therapy was both safe and efficacious among humans. There was a significant rise in CD4+ T counts after 48 weeks of treatment in both the high-dose (P 0.001) and low-dose (P 0.001) groups, but no changes in the comparison group.92

One interesting invention made by a team of UC Davis investigators is the recognition of a particular form of stem cell that can minimize the quantity of the virus that tends to cause AIDS, thus dramatically increasing the bodys antiviral immune activity. Mesenchymal stem/stromal cells (MSCs) furnish an incredible opportunity for a creative and innovative, multi-pronged HIV cure strategic plan by augmenting prevailing HIV potential treatments. Even while no antivirals have been used, MSCs have been able to increase the hosts antiviral responses. MSC therapeutic approaches require specialized delivery systems and good cell quality regulation. The studys findings lay the proper scientific foundation for future research into MSC in the ongoing treatment of HIV and other contagious diseases in the clinical organization.35

Infection with HIV-1 necessitates the existence of both specific receptors and a chemokine receptor, particularly chemokine receptor 5 (CCR5).46 Resistance to HIV-1 infection is attained by homozygozygozity for a 32-bp removal in the CCR5 allele.93 In this investigation, stem cells were transplanted in a patient with severe myeloid leukaemia and HIV-1 infection from a donor who was homozygous to Chemokine receptor 5 delta 32. The client seemed to have no viral relapses after 20 months of transplantation and attempting to stop antiretroviral medicine. This finding highlights the essential role that CCR5 tries to play in HIV-1 infection maintenance.86

In comparison, additional HIV-1-infected people who have received allogeneic stem cell transplants with cells from CCR5 truly wild donors did not have long-term relapses from HIV-1 rebound, with 2 of these patients trying to report viral reoccurrence 12 as well as 32 weeks after analytic treatment interruption, respectively. Among these 2 patients, allogeneic stem cell transplantation probably reduced but did not eliminate latently HIV-infected cells, enabling persistent viral reservoirs to activate viral rebound. This viewpoint may not rule out the potential that allogeneic hematopoietic stem cell transplantation might result in a much more comprehensive or near-complete elimination of viral reservoirs, enabling long-term drug-free relapse of HIV-1 infection in some contexts.84 As just one report demonstrated a decade earlier, a curative treatment for HIV-1 remained elusive. The Berlin Patient has undergone 2 allogeneic hematopoietic stem cell transplantations to cure his acute myeloid leukaemia utilizing a potential donor with a homozygous genetic mutation in HIV coreceptor CCR5 (CCR532/32).15,34,46,64,65,72,82,84,86,9496 Other similar studies with CCR5 receptor targets are as follows: Automated production of CCR5-negative CD4+-T cells in a GMP compatible, clinical scale for treatment of HIV-positive patients,97 Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations,98 Conditional suicidal gene with CCR5 knockout.99

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 is a promising gene editing approach that can edit genes for gain-of-function or loss-of-function mutations in order to address genetic abnormalities. Despite the fact that other gene editing techniques exist, CRISPR/Cas9 is the most reliable and efficient proven method for gene rectification.100103

Genome engineering employing CRISPR/Cas has proven to be a strong method for quickly and accurately changing specific genomic sequences. The rise of innovative haematopoiesis research tools to examine the complexity of hematopoietic stem cell (HSC) biology has been fuelled by considerable advancements in CRISPR technology over the last five years. High-throughput CRISPR screenings using many new flavours of Cas and sequential and/or functional outcomes, in specific, have become more effective and practical.104,105

The power of the CRISPR/Cas system is that it can specifically and efficiently target sequences in the genome with just a single synthetic guide RNA (sgRNA) and a single protein. Cas9 is directed to the specific DNA sequence by the sgRNA, which causes double stranded breaks and activates the cells DNA repair processes. Non-homologous end joining can cause insertiondeletion (indel) substitutions at the target location, whereas homology-directed repair can use a template DNA to insert new genetic material.104,106

The possibility for CRISPR/Cas9 to be used in the hematopoietic system was emphasised as pretty shortly after it was initiated as a new genome editing method.106,107 The efficiency with which CRISPR-mediated alteration can be used to evaluate hematopoietic stem/progenitor and mature cell function via transplantation. As a result, hematopoietic research has significantly advanced with the implementation of these technologies. Whilst single-gene CRISPR/Cas9 programming is a significant tool for testing gene function in primary hematopoietic cells, high-throughput screenings potentially offer CRISPR/Cas9 an even greater advantage in hematopoietic research.104

While understanding human haematological disorders requires the ability to mimic diseases, the ultimate goal is to transfer this innovation into therapies. Despite significant advancements in CRISPR technology, there are still barriers to overcome before CRISPR/Cas9 can be used effectively and safely in humans. CRISPR has also been used to target CCR5 in CD34+ HSPCs in an effort to make immune cells resistant to HIV infection, as CCR5 is an important coreceptor for HIV infection.104

CRISPR is a modern genome editing technique that could be used to treat immunological illnesses including HIV. The utilization of CRISPR in stem cells for HIV-related investigation, on the other end, was ineffective, and much of the experiment was done in vivo. The new research idea is about increasing CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. The possible genes that enhance HIV resistance and stem cell engraftment should be explored more in the future studies. To strengthen HIV therapy or resistance, double knockout and knock-in approaches must be used to build a positive engraftment. In the future, CRISPR/SaCas9 and Ribonucleoprotein (RNP) administration should be explored in the further investigations.108 As well as some different title studies were explained the effectiveness of the CRISPR gene editing technology on the management of HIV/AIDS including: CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic,104 CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukaemia,109 Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,110 Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA,111 HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells,112 CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination,113 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection,114 CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Pro viral DNA Circles with Reformed Long Terminal Repeats,115 CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice,116 Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,117 Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line,118 CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection,119 CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.109

Induced pluripotent stem cells (iPSCs) have significantly advanced the field of regenerative medicine by allowing the generation of patient-specific pluripotent stem cells from adult individuals. The progress of iPSCs for HIV treatment has the potential to generate a continuous supply of therapeutic cells for transplantation into HIV-infected patients. The title of the study is reported on Generation of HIV-1 Resistant and Functional Macrophages from Hematopoietic Stem Cellderived Induced Pluripotent Stem Cells. In this investigation, researchers used human hematopoietic stem cells (HSCs) to produce anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into constantly growing iPSC lines using 4 reprogramming factors and a combination anti-HIV lentiviral vector comprising a CCR5 shRNA and a human/rhesus chimeric TRIM5 gene. After directing the anti-HIV iPSCs toward the hematopoietic lineage, a large number of colony-forming CD133+ HSCs were acquired. These cells were distinguished further into functional end-stage macrophages with a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages displayed good protection against HIV-1 infection. Researchers have clearly shown how iPSCs can establish into HIV-1 resistant immune cells and explain their prospective use in HIV gene and cellular therapies.120

Some other similar titles of the studies reported on the effectiveness of IPSCs on HIV/AIDS managements are as follows: Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA,121 Generation of HIV-1-infected patients gene-edited induced pluripotent stem cells using feeder-free culture conditions,122 A High-Throughput Method as a Diagnostic Tool for HIV Detection in Patient-Specific Induced Pluripotent Stem Cells Generated by Different Reprogramming Methods,123 Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells,124 Engineered induced-pluripotent stem cell-derived monocyte extracellular vesicles alter inflammation in HIV humanized mice,125 Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.126

Recently, one HIV patient appeared to be virus-free after having undergone a stem-cell transfusion in which their WBCs were changed with HIV-resistant variations.84 Timothy Ray Brown also noted as the Berlin patient, who is still virus-free, was the first individual to undertake stem-cell transplantation a decade earlier. The most recent patient, like Brown, had a type of leukaemia that was vulnerable to chemo treatments. They required a bone marrow transplantation, which involved removing their blood cells and replacing them with stem cells from a donor cell.5,31,34,41,127130 Rather than simply choosing a suitable donor, Ravindra Gupta et al chose one who already had 2 copies of a mutant within the CCR5 gene,128,131 which provides resistance to HIV infection.3

Additionally, this gene encodes for a specific receptor of white blood cells that are assisted in the bodys immunological responses. The transplant, according to Guptas team, completely replaced the clients White cells with HIV-resistant forms.41,83 Cells in the patients blood disrupted expressing the CCR5 receptor, making it unfeasible for the clients form of HIV to infect the above cells again. The scientists determined that the virus had been cleared from the patients blood after the transplantation. Besides that, after 16 months, the client has withdrawn antiretroviral treatment. The infection was not detected in the most recent follow-up, which occurred 18 months after the treatment was discontinued. Adam, also known as the London patient, was the second person to be cured of HIV as a result of a stem cell transfusion. This discovery is an important step forward in HIV research because it may aid in the detection of potential future therapeutic interventions. It must be noted, but even so, that this is not an extensively used HIV treatment. For HIV-infected patients, antiretroviral drugs have been the foremost therapeutic option.3,31,41,94,129,130 It also encourages many investigators and clinicians to look at the use of stem cells in the treatment of a wide range of serious medical conditions. The reprogramming abilities of stem cells, as well as their accessibility, have created a window of opportunity in medical research. The clinical utility of stem cells is forecast to expand rapidly in the coming years.

On Feb 15, 2022, scientific researchers confirmed that a woman had become the 3rd person in history to be successfully treated for HIV, the virus that causes AIDS, after just receiving a stem-cell transfusion that has used cells from cord blood. Within those transplant recipients, adult hematopoietic stem cells have been used; these are stem cells that eventually develop into all blood cell types, which include white blood cells, these are a vital component of the immune framework. Even so, the woman who had fairly recently been completely cured of HIV infection had a more unique experience than that of the 2 men who were actually cured before her.132

The clients physician, Dr. JingMei Hsu of Weill Cornell Medicine in New York, informed them that, she had been discharged from the hospital just 17 days after her procedure was performed, even with no indications of graft vs host ailment. The woman was HIV-positive but also had acute myeloid leukaemia, a blood cancer of the bone marrow that affects blood-forming cells. She had likely received cord blood as a successful treatment for both her cancer and HIV once her doctors decided on a potential donor well with HIV-blocking gene mutation. Cord blood comprises a high accumulation of hematopoietic stem cells; the blood is obtained during a childs birth and donated by the parents.132

The patients donor was partly nearly matched, and she received stem cells from a close family member to enhance her immune function after the transfusion. The procedure was performed on the woman in August of 2017. She chose to discontinue taking antiretroviral drugs, the standardized HIV intervention, 37 months upon her transfusion. After more than 14 months, there is no evidence of the viral infection or antibodies against it in her blood. Umbilical cord blood, in reality, is much more commonly accessible and simpler to try to match to beneficiaries than bone marrow. Perhaps, some research suggests that the method could be more available to HIV patients than bone marrow transplantation. Nearly 38 million people worldwide are infected with HIV. The potential for using partly matched umbilical cord blood transplantation increases the chances of choosing appropriate suitable donors for these clients considerably.132

It is really exciting to see the earlier terminally ill diseases of being effectively treated. In recent times, there has been a surge of focus on stem cell research.3 Stem cell therapy advancements in inpatient care are receiving a growing amount of attention.20 HIV/AIDS has been and remains a significant health concern around the world. Effective control of the HIV pandemic will necessitate a thorough understanding of the viruss transmission.32

Despite concerns about full compliance and adverse reactions, HAART has demonstrated to be able to succeed and is a sign specifically targeted form of treatment against HIV advancement. As illustrated by the first case of HIV infection relapse attained by bone marrow transplant, anti-HIV HPSC-based stem cell treatment and genotype technology have established a possible future upcoming technique to try to combat HIV/AIDS.

Investigators have conducted experiments with engineering distinct anti-HIV genetic traits trying to target different phases of HIV infection utilizing advanced scientific modalities. In numerous in vivo and in vitro animal studies, HSPCs and successive mature cells were secured from HIV infection by trying to target genetic factors in the infection. Anti-HIV gene engineering of HSPCs is safe and efficacious.15

The number of stem-cell-based research trials has risen in recent years. Thousands of studies claiming to use stem cells in experimental therapies have been registered worldwide. Despite some promising results, the majority of clinical stem cell technologies are still in their early life. These achievements have drawn attention to the possibility of the potential and advancement of various promising stem cell treatments currently in development.11

HIV remains a major danger to humanity. This virus has developed the ability to evade antiretroviral medication, resulting in the death of individuals. Scientists are constantly looking for a treatment for HIV/AIDS that is both effective and efficient.52 The 1st treatments in HIV+ clients were conducted in the early 1980s, even though they were cognizant of their viral disease. Following these early cases, allogeneic SCT was used to treat HIV+ patients with associated cancer or other haematological disorders all over the world. Stem cell transplantation developments have also stimulated the improvement of innovative HIV therapeutic approaches, especially for large goals like eradication and relapse.60

Numerous stem cell therapy progressions have been recognized with autologous and allogeneic hematopoietic stem cell transplantation, as well as umbilical cord blood mesenchymal stem cell transplant in AIDS immunologic non-responders. Whereas this sector continues to advance and distinguishing directives for these cells become much more effective, totipotent stem cells such as hESC and the recently reported induced pluripotent stem cells (iPSC) could be very useful for genetic engineering methods to counter hematopoietic abnormalities such as HIV disease.133135

Immunocompromised people are at a higher risk of catching life-threatening diseases. The perseverance of latently infected cells, which is formed by viral genome inclusion into host cell chromosomes, is a significant challenge in HIV-1 elimination. Stem cell therapy is producing impressive patient outcomes, illustrating not only the broad relevance of these strategies but also the huge potential of cell and gene treatment using adult stem cells and somatic derivative products of pluripotent stem cells (PSCs).

Stem cells have enormous regeneration capacity, and a plethora of interesting therapeutic uses are on the frontier. This is a highly interdisciplinary scientific field. Evolutionary biologists, biological technicians, mechanical engineers, and others that have evolved novel concepts and decided to bring them to medical applications are required to make important contributions. Further to that, recent advancements in several different research areas may contribute to stem cell application forms that are novel. Several hurdles must be conquered, however, in the advancement of stem cells. On the other hand, this discipline appears to be a promising and rapidly expanding research area.

Stem cell-based approaches to HIV treatment resemble an innovative approach to trying to rebuild the ravaged bodys immune system with the utmost goal of eliminating the virus from the body. We will probably see effective experiments from the next new generation of stem cell-based strategies shortly, which will start serving as a base for the further development and use of these techniques in a range of treatment application areas for other chronic diseases.

My immense pleasure was mentioned to family members and friends, who supported and encouraged me in every activity.

There was no funding for this work.

The authors declare that they have no conflicts of interest in relation to this work.

1. Zakrzewski W, Dobrzyski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5

2. Nadig RR. Stem cell therapy hype or hope? A review. J Conserv Dent JCD. 2009;12:131138. doi:10.4103/0972-0707.58329

3. Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:1726.

4. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:14421446. doi:10.1126/science.287.5457.1442

5. Pernet O, Yadav SS, An DS. Stem cellbased therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187201. doi:10.1016/j.addr.2016.04.027

6. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:310.

7. Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672701. doi:10.17305/bjbms.2021.5508

8. Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.

9. Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.

10. Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001

11. Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781782. doi:10.1016/j.stem.2018.05.017

12. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801811. doi:10.1038/s41556-019-0344-z

13. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:311. doi:10.1007/s12015-008-9010-8

14. Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:6575. doi:10.1016/j.exer.2018.07.019

15. Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3

16. Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828

17. Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837839. doi:10.1161/CIRCRESAHA.118.313664

18. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:6277. doi:10.1016/j.colsurfb.2017.07.051

19. Prez Lpez S, Otero Hernndez J. Advances in stem cell therapy. In: Lpez-Larrea C, Lpez-Vzquez A, Surez-lvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290313.

20. Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimers disease. Neural Regen Res. 2020;15:242250. doi:10.4103/1673-5374.265544

21. Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188196. doi:10.1089/hum.2017.224

22. Tadlock D Stem cell basics introduction; 19.

23. Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7

24. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335342. doi:10.1038/s41586-018-0089-z

Follow this link:

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press

Sio Gene Therapies Inc. (NASDAQ:SIOX) Short Interest Up 33.4% in June – Defense World

Sio Gene Therapies Inc. (NASDAQ:SIOX Get Rating) was the recipient of a significant increase in short interest in the month of June. As of June 15th, there was short interest totalling 239,800 shares, an increase of 33.4% from the May 31st total of 179,800 shares. Approximately 0.5% of the companys shares are short sold. Based on an average daily volume of 825,400 shares, the days-to-cover ratio is currently 0.3 days.

A number of large investors have recently added to or reduced their stakes in the stock. Suvretta Capital Management LLC increased its position in Sio Gene Therapies by 7.7% during the fourth quarter. Suvretta Capital Management LLC now owns 5,914,000 shares of the companys stock worth $7,629,000 after acquiring an additional 425,000 shares during the period. Privium Fund Management UK Ltd acquired a new stake in Sio Gene Therapies during the fourth quarter worth about $2,367,000. Clearline Capital LP grew its stake in Sio Gene Therapies by 79.7% during the first quarter. Clearline Capital LP now owns 392,691 shares of the companys stock worth $263,000 after buying an additional 174,185 shares in the last quarter. Finally, Marshall Wace LLP acquired a new stake in Sio Gene Therapies during the third quarter worth about $103,000.

NASDAQ SIOX opened at $0.37 on Friday. The firm has a market capitalization of $26.92 million and a P/E ratio of -0.43. The firms fifty day moving average price is $0.34 and its two-hundred day moving average price is $0.69. Sio Gene Therapies has a 1 year low of $0.23 and a 1 year high of $2.74.

Sio Gene Therapies Company Profile (Get Rating)

Sio Gene Therapies, Inc, a clinical-stage company, focuses on developing gene therapies to radically transform the lives of patients with neurodegenerative diseases. The company develops AXO-Lenti-PD, in vivo lentiviral gene therapy, which is in Phase II clinical trials for the treatment of Parkinson's disease; AXO-AAV-GM1, an investigational gene therapy , which is in Phase I/II clinical trials for the treatment of GM1 gangliosidosis; and AXO-AAV-GM2, an investigational gene therapy, which is in Phase I/II clinical trials for the treatment of GM2 gangliosidosis.

See Also

Receive News & Ratings for Sio Gene Therapies Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for Sio Gene Therapies and related companies with MarketBeat.com's FREE daily email newsletter.

See the original post:

Sio Gene Therapies Inc. (NASDAQ:SIOX) Short Interest Up 33.4% in June - Defense World

Adverum Biotechnologies Presents Research Pipeline Data Supporting Utility of its Proprietary Platform and AAV.7m8 Capsid in Ocular Gene Therapy -…

REDWOOD CITY, Calif., May 19, 2022 (GLOBE NEWSWIRE) -- Adverum Biotechnologies, Inc. ( ADVM), a clinical-stage gene therapy company targeting unmet medical needs in ocular and rare diseases, today will announce new research pipeline data supporting the utility of its proprietary adeno-associated virus (AAV) vector platform in ocular gene therapy. These new data will be featured in oral presentations during the American Society of Gene and Cell Therapy (ASGCT) 2022 Annual Meeting in Washington, D.C. and virtually.

Adverum is an industry leader in the development of adeno-associated virus ocular gene therapy, including cassette engineering and vectorizing therapeutic proteins, and we are pleased to have multiple presentations highlighting our platform at ASGCT. As we continue to prepare for the initiation of a Phase 2 trial of ADVM-022 for wet AMD in the third quarter of 2022, we are also advancing other research programs toward the clinic and expanding our pipeline in ocular gene therapy by building on the potential of a single in-office intravitreal injection with our proprietary AAV.7m8 capsid, said Brigit Riley, Ph.D., chief scientific officer at Adverum Biotechnologies. We are excited to present non-clinical data on ADVM-062 (AAV.7m8-L-opsin) for blue cone monochromacy, which received Orphan Drug Designation by the U.S. Food and Drug Administration in January 2022, and continue to advance this program toward an investigational new drug application submission. Adverum continues the technical advances of our in-house adeno-associated virus manufacturing processes. Finally, we are maturing a portfolio of proprietary vectors with specific ocular cell tropism and are excited to showcase our innovative work on LSV1, a novel capsid for ocular gene therapy.

ADVM-062 for Blue Cone Monochromacy (BCM) Data Highlights

LSV1 Data Highlights

About Blue Cone Monochromacy

BCM is an X-linked recessive hereditary condition caused by the absence of function in the L and the M opsin genes and can manifest in loss of visual acuity, photosensitivity, myopia and infantile nystagmus that can persist into adulthood. Consequently, individuals with BCM have visual impairments to important aspects of daily living such as facial recognition, learning, reading, and daylight vision. Currently, BCM affects approximately 1 to 9 in 100,000 males, worldwide and there is no cure for BCM.

About ADVM-062 Gene Therapy

ADVM-062 (AAV.7m8-L-opsin) is a novel gene therapy product candidate being developed to deliver a functional copy of the OPN1LW gene to the foveal cones of patients suffering from blue cone monochromacy (BCM) via a single IVT injection. ADVM-062 utilizes Adverums propriety vector capsid, AAV.7m8. In January 2022, the FDA granted Orphan Drug Designation to ADVM-062.

About Adverum Biotechnologies

Adverum Biotechnologies ( ADVM) is a clinical-stage gene therapy company targeting unmet medical needs in serious ocular and rare diseases. Adverum is evaluating its novel gene therapy candidate, ADVM-022, as a one-time, intravitreal injection for the treatment of patients with neovascular or wet age-related macular degeneration. For more information, please visit http://www.adverum.com.

Forward-looking Statements

Statements contained in this press release regarding events or results that may occur in the future are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Actual results could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, including risks inherent to, without limitation: Adverums novel technology, which makes it difficult to predict the timing of commencement and completion of clinical trials; regulatory uncertainties; the results of early clinical trials not always being predictive of future clinical trials and results; and the potential for future complications or side effects in connection with use of ADVM-022. Additional risks and uncertainties facing Adverum are set forth under the caption Risk Factors and elsewhere in Adverums Securities and Exchange Commission (SEC) filings and reports, including Adverums Quarterly Report on Form 10-Q for the quarter ended March 31, 2022 filed with the SEC on May 12, 2022. All forward-looking statements contained in this press release speak only as of the date on which they were made. Adverum undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Inquiries

Anand ReddiVice President, Head of Corporate Strategy and External Affairs & EngagementAdverum Biotechnologies, Inc.T: 650-649-1358

Investors

Laurence WattsGilmartin GroupT: 619-916-7620E: [emailprotected]

Media

Megan TalonAssociate Director, Corporate CommunicationsAdverum Biotechnologies, Inc.T: 650-649-1006E: [emailprotected]

View post:

Adverum Biotechnologies Presents Research Pipeline Data Supporting Utility of its Proprietary Platform and AAV.7m8 Capsid in Ocular Gene Therapy -...

A look at prospects for the US gene therapy industry – BioPharma-Reporter.com

Today, you could estimate that one family per day is being treated with and impacted by gene therapy. We want to see that increase to 10s, 100s, 1,000s per day, and reaching that goal comes from investing in research, clinical trials and manufacturing, said Ken Mills, CEO of clinical stage US biotechnology company, Regenxbio.

Regenxbio, said its CEO, has played a pivotal role in the gene therapy industry since its founding in 2008, as a result of research from the lab of gene therapy pioneer, Jim Wilson, University of Pennsylvania.

The company's NAV technology platform consists of over 100 novel adeno-associated virus (AAV) vectors, one of which was used in the US Food and Drug Administration (FDA) approved gene therapy, ZOLGENSMA, for spinal muscular atrophy in children under two years old.

The developer has also licensed out its technology to a growing list of partners and licensees that includes Novartis, Eli Lily and Pfizer and has a robust in-house pipeline of candidates for retinal and rare diseases.

Looking at the US gene therapy regulatory landscape, what are the current roadblocks?

AAV-mediated gene therapies offer the possibility of a one-time administration that could address the underlying disease and change the way critical medicine is delivered to patients, but the regulatory landscape has not evolved as quickly as the innovations of AAV gene therapy.

Weve seen that the FDA is open to working with industry and gene therapy stakeholders to determine the appropriate path forward, to streamline clinical development and get medicines to patients faster. Leveraging accelerated approvals and surrogate endpoints in clinical trials, such as a biomarker, may play a large role, Mills told BioPharma-Reporter.

The Pathway Development Consortium (PDC) launched in 2021 by Regenxbio and Solid Biosciences is working to advance opportunities to leverage the FDAs accelerated approval pathway for gene therapy candidates.

Our mission to bring together patients, industry, regulators, academia, payers and other stakeholders for meaningful scientific and policy discussion, said the CEO.

There is a significant strain on manufacturing capabilities in the gene therapy sector both capacity and reproducibility, but more importantly, talent, commented Mills.

As the sector has grown rapidly and expanded broadly, we have seen these rate-limiting factors continue to persist. In addition, significant strain on supply chains is likely to continue into 2022 and will impact pharma and biotech. Consistent, reliable manufacturing is critical to gene therapy trial development, product approval, and commercialization, so it is crucial to overcome these capabilities challenges.

Contract development and manufacturing organizations (CDMOs) are critical partners, said the executive, and he anticipates continued investment in manufacturing capabilities through in-house facilities and CDMOs next year.

And as the field continues to advance, we will start to see more and more efficiencies that companies like Regenxbio can capitalize upon to allow for rapid manufacturing and formulation development.

Regenxbio has invested in the establishment of a robust suspension cell culture-based manufacturing process and new manufacturing facility at its headquarters in Rockville, Maryland.

We have also invested to ensure the hiring of the right people to make this possible. Five to 10 years ago, you did not see a lot of process development teams, and now they are crucial to drive the scalability of capabilities across clinical and commercial strategy.

Through the expansion of its expert manufacturing team and facility build out, he said the companys researchers and process development team have been able to work side by side to mitigate potential issues early in the development process.

The goal is always to get therapies approved and to patients as quickly as possible, and a reliable, scalable chemistry, manufacturing and controls (CMC) process is crucial in accomplishing this, said Mills.

Our philosophy initially was to develop the best process platform that could be utilized across multiple programs with a highly similar process that could be easily transferred to a CDMO. We also have a platform downstream process developed that works across our programs, giving consistent downstream yields that are appropriate for the current phase of development.

We have developed proprietary formulations that are indication-specific. The formulations are stable at the intended storage conditions over several years and we have ongoing monitoring of product quality during that period to ensure consistent performance.

In terms of the highlights for the biotech this year, Mills said it was a fast paced, high-achieving 12 months for the company.

In September, we announced a partnership with AbbVie to develop and commercialize RGX-314, our gene therapy for the treatment of wet AMD, diabetic retinopathy, and other chronic retinal diseases. Under the terms of the agreement, AbbVie will provide Regenxbio a US$370m upfront payment with the potential for the company to receive up to US$1.38bn in additional development, regulatory and commercial milestones.

We are currently running a pivotal program of RGX-314 for the treatment of wet AMD, and we expect to file a BLA in 2024. We are also conducting additional trials evaluating RGX-314 delivered directly to the suprachoroidal space of the eye for the treatment of wet AMD and diabetic retinopathy. In 2021, we reported initial data from both of those trials.

Regenxbio also announced, early in 2021, a new pipeline candidate for treating Duchenne muscular dystrophy (Duchenne) - RGX-202. That is designed, said Mills, to deliver an optimized microdystrophin transgene with a unique C-terminal domain and a muscle specific promoter to support targeted therapy for improved resistance to muscle damage associated with Duchenne.

We received Orphan Drug Designation from the FDA in November and shared that we expect to submit an Investigational New Drug (IND) application to the FDA for RGX-202 by the end of 2021.

Commercial-scale cGMP material has already been produced at 1,000 liter capacity using our suspension cell culture manufacturing process, and the company's internal cGMP facility is expected to allow for production up to 2,000 liters for the clinical development of RGX-202.

Follow this link:

A look at prospects for the US gene therapy industry - BioPharma-Reporter.com

Taysha Gene Therapies Added to the ICE Biotechnology Index – BioSpace

DALLAS--(BUSINESS WIRE)-- Taysha Gene Therapies, Inc. (Nasdaq: TSHA), a patient-centric, pivotal-stage gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the central nervous system (CNS) in both rare and large patient populations, today announced that it has been added to the ICE Biotechnology Index (NYSE:ICEBIO) in accordance with the annual reconstitution of the index, effective prior to the U.S. market open on Monday, December 20, 2021.

Tayshas inclusion in this key biotechnology index provides important validation of our platform and value proposition as a company, said RA Session II, President, Founder and CEO of Taysha. We remain focused on executing our near-term clinical and regulatory milestones, which we believe will continue to increase our visibility within the investment community.

The ICE Biotechnology Index tracks the performance of qualifying U.S.-listed biotechnology companies classified within the Biotechnology Sub-Industry Group of the ICE Uniform Sector Classification schema, which is a multi-asset class industry classification taxonomy developed by ICE. The index includes companies that are engaged in the research and development of therapeutic treatments but are not focused on the commercialization and mass production of pharmaceutical drugs. The index also includes companies that are engaged in the production of tools or systems that enable biotechnology processes.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20211223005097/en/

Read more:

Taysha Gene Therapies Added to the ICE Biotechnology Index - BioSpace

Triangle gene editing firms CEO: There is a revolution occurring in medicine – WRAL TechWire

RESEARCH TRIANGLE PARK The Triangle continues to emerge as a hotbed of life science and biopharmaceutical technologies, along with a global evolution in medicine,Paul Garofolo, the cofounder and chief executive officer for Locus Biosciences, tells WRAL TechWire.

There is a revolution occurring in medicine. We are evolving from the days where we discovered small molecules that produced a favorable result in a large number of patients, likely with some level of side effects, to precision medicines that directly address the problem for the intended patient, he says. It started with antibodies and other biologic therapies that revolutionized Oncology and Immunological diseases. It is moving towards cell and gene therapies where the technology is proving itself in ultrarare diseases, and much like their predecessor technologies, will move toward more broad-based applications over time.

And Locus expects to be a part of the future of medicine, having grown its workforce to 75 employees since the companys founding in 2015, after Garofolo had the CRISPR-Cas3 technology upon which the companys research is built introduced to him by a student at North Carolina State University.

Theres growth ahead, as well, said Garofolo, as the company expects to reach 100 employees in 2022, and recently landed a $25 million credit facility to expand the companys in-house manufacturing capabilities and drug discovery program.

Paul Garofolo. Locus Biosciences image.

Were unique in biopharma in that we are clinical stage and revenue generating, said Garofolo. We generate revenue from our partnerships with two of the top five global pharmaceutical companies and contracts with BARDA and CARB-X, which together provide a combination of milestone payments, R&D cost reimbursement, and manufacturing revenue.

Those partnerships, the first of which was signed in 2019 with Janssen Pharmaceuticals, also known as Johnson & Johnson, are worth as much as $1 billion.

That partnership with Johnson & Johnson yielded Locus $20 million up front and up to $798 million in potential development and commercial milestones, as well as royalties on product sales, said Garofolo, with the goal of the partnership being the development and manufacturing ofcrPhage products targeting two key bacterial pathogens.

The company signed a contract with the Biomedical Advanced Research and Development Authority (BARDA) in September 2020 that enabled the company to advance a $144 million precision medicine program to develop LBP-EC01, a crPhage product, to combat recurrent urinary tract infections caused by E. coli,, and later that year, the company inked a deal worth $15 million to develop a product to combat antibiotic-resistant K. pneumoniae infections through Phase 1 of clinical development with the Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator (CARB-X).

Garofolo told WRAL TechWire that he and his wife provided the initial funding for the company, then raised a seed round of $1.5 million in 2016, a $19 million Series A round in 2017, a convertible note of $20 million in 2020, and then the recent $25 million credit facility earlier this year. That positions the company for the future, Garofolo noted, adding that this access to valuable growth capital supporting the expansion of our discovery platform engine and in-house manufacturing capacity [will be] used to address critical unmet medical needs.

WRAL TechWire spoke with Garofolo about the company, and about the future of life science and biopharma. A lightly edited transcript of the conversation appears below.

Inside Locus Biosciences $25M capital plan: What startup plans to do

TW: Tell us more about Locus Biosciences, its six programs, and the companys position in the marketplace.

Garofolo: Locus is the worlds leading developer of products based on CRISPR-Cas3 systems. Were unique in biopharma in that we are clinical stage and revenue generating. As described above, we generate revenue from our partnerships with two of the top five global pharmaceutical companies and contracts with BARDA and CARB-X, which together provide a combination of milestone payments, R&D cost reimbursement, and manufacturing revenue.

Locus has one clinical program underway, and up to five more in urinary tract, respiratory and bloodstream infections anticipated to enter the clinic by 2023.

Locuscompletedthe worlds firstplacebo-controlled Phase 1bclinical trial of a CRISPR Cas3-enhanced bacteriophage product targetingE. coliin UTIs. The results demonstrated safety and tolerability for LBP-EC01, and the trial met all its primary and secondary endpoints. We are working towards initiating the LBP-EC01 Phase 2 study inearly 2022. In October 2020, Locus announced a contract with the Biomedical Advanced Research and Development Authority (BARDA) to support Phase 2 and Phase 3 clinical trials and other activities required to seek FDA approval of LBP-EC01.

In 2019, Locus announced an agreement with Janssen Pharmaceuticals, Inc. for an exclusive, worldwide research collaboration and license to develop, manufacture and commercialize two products generated using Locuss recombinant CRISPR-Cas3 engineered bacteriophage (crPhage) platform for the treatment of respiratory tract infections which cause significant morbidity and mortality. The collaboration focuses on developing unique bactericidal disease-modifying crPhage products. These products will treat serious respiratory tract infections and infections in other areas of the body.

RTPs Locus Biosciences secures up to $25M in credit, plans expansion

TW: Whats the difference betweenCRISPR-Cas9 and CRISPR-Cas3 in the context of CRISPR technology overall?

Garofolo: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is the adaptive immune system of bacterial cells, capable of capturing and incorporating an invaders DNA into the bacterias genome to fend off future attacks.

When reprogrammed, as Locus has done, CRISPR enzymes like Cas3 and 9 can be used to edit or destroy DNA, making it a very useful tool for gene therapy, antibacterials, and other applications.

CRISPR-Cas3 is the most common CRISPR-Cas system in nature. Cas3 is a powerful exonuclease that permanently degrades chromosomal DNA beyond repair with high specificity, leading to rapid death of the target bacterial cell. Cas3s DNA degrading effect is distinct from the more widely-known Cas9 which causes a clean break in the DNA that can be repaired by the cell.

While others use CRISPR-Cas9 to edit DNA in human cells and other organisms, Locus is concentrating its efforts on removing deadly pathogens from the human body. CRISPR-Cas3, loaded into a bacteriophage delivery vehicle (other gene therapy companies use AAV), is the ideal system to target DNA to destroy a bacterial cells genome beyond repair.

Simply put, Cas3 acts like a Pacman that gobbles up tens of thousands of DNA base pairs while Cas9 acts like a pair of scissors that make a precise cut in one place.

Genetically enhanced antibiotic from RTP firm advances in first-of-its-kind clinical trial

TW: The company describes on its website and in press statements two product lines, precision bacteriophage products and also engineered bacteriophage therapies. Tell us more about each, and the science behind the product lines.

Bacteria are directly associated with many human diseases. Bacteriophages, or phages, are naturally occurring viruses that infect and kill bacteria. Bacteriophage have been used as antibacterial therapy for more than 100 years. However, natural phages are not typically effective enough on their own to treat serious infections in humans. Locus believes its precision engineered bacteriophage platform has the potential to fundamentally change the way bacteria-related diseases are treated.

Our team of scientists collects natural bacteriophagethe natural predator of bacteriawith the best disease-fighting characteristics. Then, leveraging artificial intelligence and machine learning algorithms, Locus Biosciences identifies the best cocktail of bacteriophages to target a particular bacterial species that causes a specific disease. Next, we engineer these bacteriophages with CRISPR-Cas3, which drastically increases their ability to fight bacteria and treat diseases without killing the good bacteria the body needs without applying selective pressure to other bacteria that increases AMR (antimicrobial resistance)

Through its unique bacteriophage discovery, synthetic biology and manufacturing platform, Locus is developing two innovative categories of biotherapeutics to address significant unmet medical needs: precision products to fight deadly infections, including those caused by multi-drug resistant bacteria; and engineered bacteriophage therapies that utilize bacteria resident in the body to deliver therapeutic molecules, while leaving the rest of the microbiome intact. Both categories are engineered bacteriophage. The former, are CRISPR Cas3-enhanced bacteriophage (crPhage) that exquisitely eradicates bacteria. While developing crPhage we became experts in engineering bacteriophage, where we can now deliver any protein or peptide therapeutic we desire.

The incidence of antibiotic-resistant infections is growing rapidly with large-scale use of antibiotics. This is a particular concern with the overuse of antibiotics during a viral pandemic, such as those caused by H1N1 influenza or SARS-CoV-2.

Gene editing success could turn Triangle startup Locus Biosciences into a billion dollar unicorn

The need for new precision antibacterial therapies that selectively kill target bacteria while leaving good bacteria in the body unharmed is widely recognized. The development of non-traditional therapies that possess alternative properties to conventional small-molecule antibiotics represents a unique opportunity to advance the field of medicine and provide new treatment options to patients with antimicrobial-resistant infections which are a growing concern for our nations health security.

Furthermore, the one bug, one drug precision approach our platform employs, has significant implications for bacterial infections in patients receiving novel therapeutics for conditions such as cancer. Lifesaving checkpoint inhibitors, for example, which are used across several cancer types, are negatively impacted by antibiotic use in these fragile patients. By specifically targeting only the pathogen of interest, Locus precision medicines avoid negatively affecting patient responses to these important therapies.

Within immunology and oncology, the association between disease and bacteria is becoming clearer each day. Locus platform enables the company to directly remove bacteria driving/exacerbating disease while delivering biotherapeutics that can ameliorate disease pathogenesis.

Here we leverage the microbiome to manufacture the biotherapeutics inside the human body at the site of the disease, increasing the effective dose at the target site while decreasing systemic exposure. All designed to improve outcomes while decreasing side effects.

Gene editing firm Locus Biosciences adds another $7M to its 2020 cash haul

TW: Whats the current state of the industry and the sector, and what does the future hold, in 2022 and beyond?

Garofolo: There is a revolution occurring in medicine. We are evolving from the days where we discovered small molecules that produced a favorable result in a large number of patients, likely with some level of side effects, to precision medicines that directly address the problem for the intended patient. It started with antibodies and other biologic therapies that revolutionized Oncology and Immunological diseases. It is moving towards cell and gene therapies where the technology is proving itself in ultrarare diseases, and much like their predecessor technologies, will move toward more broad-based applications over time.

2022 will continue to see the explosive advancement of gene therapy and gene editing technologies that results in new companies and investments across the industry. As these technologies advance through the clinic in the years to come, we will see them applied more broadly to address genetic diseases that affect broader patient populations. We are already seeing the move from muscular dystrophy to sickle cell disease and beyond. From Locus, you will see our team take our CRISPR-Cas3 enhanced bacteriophage into a Phase 2 trial targeting urinary tract infections caused by E. coli a disease that affects millions of people each year in the US alone.

Triangle gene editing firm Locus lands $77M to support new antibacterial treatment

TW: What can you tell us about how the companys geographic location in the Triangle means for future opportunity?

The Locus manufacturing platform is the lynchpin of our success in progressing bacteriophage products by enabling internal control over the timing, quality and speed at which we can take drugs to the clinic. We leverage our teams deep manufacturing experience as well as our geography, as NC is an ideal manufacturing location due to the local economics and talent pool.

Our world-class 10,000 square foott modular cGMP biologics manufacturing facility meets the standards of the US (FDA), Europe (EMA), Japan (PMDA), and several other countries and regions, to enable the manufacture of our precision medicines while providing the capability to also manufacture gene therapy vectors and other advanced biologics. Our facility design allows for parallel production of multiple drug substances simultaneously, in isolated production suites, without risk of cross-contamination. It is optimized for viral vector manufacturing, including bacteriophage, adenovirus, AAV, and other vectors. Taken together, our facility and proprietary production processes allow for all viral products manufactured by Locus to meet or exceed US and international regulatory standards for parenterally administered drug products for clinical and commercial use.

The modular design also allows us to change-out or upgrade existing equipment that moves Locus from being able to produce clinical trial material to producing multiple early-stage commercial products in parallel; all while maintaining the same footprint.

Locus Biosciences lands $19M in funding for gene editing technology

Read more:

Triangle gene editing firms CEO: There is a revolution occurring in medicine - WRAL TechWire

Technology Developments in Viral Vector Manufacturing for Cell and Gene Therapies – Yahoo Finance

The This research service discusses the cell and gene therapy (CGT) market and highlights some key roadblocks in viral vector manufacturing. While many CGT candidates exist in the pipeline, there is a huge capacity deficit that the industry is collaboratively trying to address.

New York, Dec. 21, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Technology Developments in Viral Vector Manufacturing for Cell and Gene Therapies" - https://www.reportlinker.com/p06192548/?utm_source=GNW

Scalability, costs, reproducibility, and overall process efficiency are some of the main pain points at each step of the viral vector manufacturing process.Many industry stakeholders are capitalizing on innovative, sustainable business models and capacity expansion investments to address shortage issues.

Biotechnology companies, such as Merck, Novartis, and Pfizer, and key contract development and manufacturing organizations, such as Thermo Fisher Scientific, Catalent, and FUJIFILM Diosynth Technologies, are investing in new capacities, expanding capacities, and developing innovative technologies to stay ahead in the CGT market. The research covers emerging technologies and trends, challenges, and opportunities across the manufacturing workflow, from upstream (viral vector production) to downstream (viral vector purification). Key developments in upstream processes for viral vector production include advanced transfection agents, novel plasmids, suspension-adapted cell culture, and stable producer cell lines. The research also discusses the general industry shift toward adopting automation, digitization, and advanced analytical processes, including on-line and in-line analytics and robust real-time analytics, to highlight the importance of analytical tools throughout the value chain. Smart technologies, such as automation and digital tools, and the adoption of artificial intelligence and big data support progress in process control and optimization while improving overall efficiencies and safety. The CGT industry works through orchestrated collaborations to develop reference standards and build process analytical technologies (PAT) to optimize manufacturing further. The research presents a birds eye view of key stakeholders and their innovative platforms and a snapshot of the collaborative ecosystem to understand the CGT industrys dynamic and fast-paced nature.Read the full report: https://www.reportlinker.com/p06192548/?utm_source=GNW

About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

Story continues

Read the original here:

Technology Developments in Viral Vector Manufacturing for Cell and Gene Therapies - Yahoo Finance

Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -…

DUBLIN--(BUSINESS WIRE)--The "Global Regenerative Medicine Market Size, Share & Trends Analysis Report by Product (Cell-based Immunotherapies, Gene Therapies), by Therapeutic Category (Cardiovascular, Oncology), and Segment Forecasts, 2021-2027" report has been added to ResearchAndMarkets.com's offering.

The global regenerative medicine market size is expected to reach USD 57.08 billion by 2027, growing at a CAGR of 11.27% over the forecast period.

Recent advancements in biological therapies have resulted in a gradual shift in preference toward personalized medicinal strategies over the conventional treatment approach. This has resulted in rising R&D activities in the regenerative medicine arena for the development of novel regenerative therapies.

Furthermore, advancements in cell biology, genomics research, and gene-editing technology are anticipated to fuel the growth of the industry. Stem cell-based regenerative therapies are in clinical trials, which may help restore damaged specialized cells in many serious and fatal diseases, such as cancer, Alzheimer's, neurodegenerative diseases, and spinal cord injuries.

For instance, various research institutes have adopted Human Embryonic Stem Cells (hESCs) to develop a treatment for Age-related Macular Degeneration (AMD).

Constant advancements in molecular medicines have led to the development of gene-based therapy, which utilizes targeted delivery of DNA as a medicine to fight against various disorders.

Gene therapy developments are high in oncology due to the rising prevalence and genetically driven pathophysiology of cancer. The steady commercial success of gene therapies is expected to accelerate the growth of the global market over the forecast period.

Regenerative Medicine Market Report Highlights

Key Topics Covered:

Market Variables, Trends, & Scope

Competitive Analysis

Covid-19 Impact Analysis

Regenerative Medicine Market: Product Business Analysis

Regenerative Medicine Market: Therapeutic Category Business Analysis

Regenerative Medicine Market: Regional Business Analysis

Companies Mentioned

For more information about this report visit https://www.researchandmarkets.com/r/kovhgl

Read more here:

Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -...

2021 Research Highlights Human Health Advances – National Institutes of Health

COVID-19 spread and vaccines

NIH researchers continued to make scientific breakthroughs to help control the COVID-19 pandemic. Studies of spread suggested strategies for controlling infections. Research also revealed who was most at risk of becoming severely ill from COVID-19: nearly two-thirds of COVID-19 hospitalizations in the U.S. were due to obesity, diabetes, hypertension, and heart failure. Wide-spread vaccine rollouts slowed the spread of SARS-CoV-2, the virus that causes COVID-19. The Moderna COVID-19 vaccine, developed with NIH, proved to be 94% effective against symptomatic COVID-19. Six months later, people who had been vaccinated still showed signs of immunity. COVID-19 vaccines saved an estimated 140,000 lives through May 2021, and hundreds of thousands more have been saved since. As SARS-CoV-2 mutated and new variants became common, scientists conducted studies on booster doses of vaccine. These suggested that COVID-19 boosters not only lengthen immunity but help broaden and strengthen the immune response to protect against a wide variety of variants.

In type 1 diabetes, the immune systems T cells attack the insulin-producing beta cells in the pancreas. Those affected need insulin treatment to survive. In a clinical trial of people at risk of developing type 1 diabetes (with a median age of 13), the drug teplizumab delayed disease onset and improved insulin production. The findings support the use of the drug for delaying or preventing type 1 diabetes.

There has been a great deal of debate over what aspects of our diets affect weight control. A carefully controlled study found that people ate fewer calories per day and lost more weight on a plant-based, low-fat diet compared to an animal-based, low-carb diet. However, the low-fat diet led to higher insulin and blood sugar levels, which can be risk factors for heart disease. The findings reveal how restricting dietary carbohydrates or fats may impact health.

The effects of childhood malnutrition can cause lifelong health problems. Researchers found that a supplement designed to repair the gut microbiomethe bacteria, viruses, and fungi in the digestive systemhelped malnourished children. Those given the supplement gained more weight than children on a standard nutritional supplement. The experimental supplement also raised levels of proteins in the blood associated with bone, cartilage, and brain health.

A common blood test for kidney function measures a protein called creatinine. But Black Americans generally have higher amounts of creatinine. As a result, doctors take race into account when testing for kidney disease. A study showed that measuring levels of another protein called cystatin C can accurately estimate kidney function without needing to take race into account. A race-blind method for estimating kidney function could more effectively identify chronic kidney disease.

Malaria is caused by parasites transmitted by infected mosquitoes. Researchers developed a vaccine approach that uses live sporozoites, the infectious form of the malaria parasite, along with a drug that kills the parasite. In a small trial, the approach led to broad, long-lastingprotection against malaria. The strategy is now being tested in real-world conditions in a Phase 2 clinical trial in Mali.

See the article here:

2021 Research Highlights Human Health Advances - National Institutes of Health

Long reads: The USA TODAY stories readers spent the most time with in 2021 – USA TODAY

What a year. We laughed, we cried, we socially distanced and we held our loved ones close. And ... we read the news. A lot of it.

As part of our look back at 2021, we've pulled together a collection of some of the stories that USA TODAY readers spent the most time with this year.

The selections includea profile of the New Jersey man who became the world's first successful face and double-hand transplant recipient, the journey of a little girl with a rare disease who was given hope through a medical miracle and thestory of onefamily's drug ring that was linked to the Sinaloa Cartel and deaths in three states.

There are also stories of redemption, remembrance and faith, including a woman's tale of escaping Afghanistan and the story of a young boy who lost his mom on 9/11 and the young man he's become.

All of these pieces were available to USA TODAY subscribers this year and we're making them free this holiday season.

If you want unlimited access tounique, straightforwardreporting from around the nation that takes you beyond the headlines, please consider a subscription to USA TODAY.

Stories of the Year: A look back at the biggest moments of 2021

Photos of the Year: See a photo from every day in a life-changing year

Those We Lost: Hank Aaron, Bob Dole, Cicely Tyson: Remembering notables who died in 2021

Feel-good stories: From daring rescues to medical breakthroughs, here are 12 of the happiest stories of 2021

A Sinaloa Cartel supplied drug ring is tied to multiple deaths in Michigan, Kentucky and Mississippi, a USA TODAY Network investigation finds.

After a car accident destroyed his face and arms, Joseph DiMeo determined to recover his independence. Now, after complex transplant surgery, he has.

For decades, two lovestruck teenagers made good on a promise to their parents to never talk again. But one day, 51 years later, everything changed.

Five years after then-coach Tyler Summitt was caught having an affair with his point guard at Louisiana Tech, the couple are married and have a son.

When NCAA men's basketball referee Bert Smith collapsed during the Gonzaga-USC game, some thought he had died. Turns out, that fall saved his life.

A scientific vision for decades, gene therapy is finally becoming more common in the U.S., fueling optimism for the treatment of rare diseases.

In 2001, Tionda and Diamond Bradley left a note and disappeared from their Chicago home. For two decades, their family has fought for answers.

The boy in the yellow raincoat made for one of 9/11's most moving images. Two decades after the attacks, Kevin Villa reflects on his mom's sacrifice.

It seems impossible that civilization can regress decades, that your life can collapse before lunch. But it can, and it did as the Taliban took Kabul.

Bishop Sycamore gained national attention when it lost an ESPN-televised football game 58-0 and questions were asked about the school and coaches.

Published1:01 pm UTC Dec. 25, 2021Updated2:17 pm UTC Dec. 25, 2021

Read more:

Long reads: The USA TODAY stories readers spent the most time with in 2021 - USA TODAY

Which philosophy helps us confront the crises that beset us… we first or me first? – The Guardian

We live in capitalist economies that deliver great wealth, innovation and dynamism but lurch from systemic crisis to crisis, throw up gigantic inequalities and are careless about nature and the societies of which they are part. Its obvious that we want more of the former and less of the latter but how? Never easy, this question is now so bitterly dividing western politics that in the US there is even talk of a second civil war. Post-Brexit Britain is only fractionally less toxic.

There are two increasingly hostile camps living in their intellectual and political silos. On the one hand, there are the me firsts, the apostles of salvation through individualism. Capitalism propelled by individuals aggressively pursuing their own self-interest will deliver the goods. It is essentially self-organising, self-propelling and self-dynamic. Dont worry about booms, busts, monopoly and disastrous social side-effects; we have to put up with them as we do with the weather. They will sort themselves out in time. Any public intervention will bring errors and costs that outweigh the benefits. Allow the tall poppies to grow even taller and wealth will ultimately trickle down; inequality is the price paid for capitalist effectiveness. Capitalism harnesses the base metals of human greed and self-interest to deliver the alchemy of economic dynamism.

On the other hand, are the we firsts. They are equally passionate in their insistence that salvation lies in the group and society and convinced, whether on the climate emergency, hi-tech monopolies, crippling uncertainties about living standards or just the evident truth that we humans are altruists as much as individualists, that to follow the me firsts is the road to perdition. What is crucial to us as social beings is the group, society, the commonweal and belonging as equals. After all, it was associating in groups that was fundamental to our evolutionary capacity to hunt and to see off predators. That primeval urge to associate in the group is what underpins happiness and wellbeing. What people want is less the exercise of choice in markets, more to control their lives in the service of what they value and that is best done collectively and, as far as possible, equitably.

And so the Is and wes confront each other in intense enmity, crystallised in the debates about the proper reaction to the virus. The Is inhabit a world in which we must make our own choices, even over vaccination, and the state must be minimalist. The wes urge mandatory vaccination, early lockdowns and Covid passports. Yet the sustainable policy is to blend the two: to find ways of persuading individuals, by choice and shaming, to get vaccinated and to ensure that Covid passports are employed, but only when it is clear that public health demands it for NHS and care workers and for any large events. Too much we zeal and there is insupportable state intrusion into our lives; too much I libertarianism and you are free to infect and maybe kill me. Yes, we need the pluralism of different options and individual agency; equally, we need an agile public realm and collective action to serve the group.

The good society (and successful public policy) is one that cleverly uses its institutions to reconcile the we with the I. It is great institutions, in the private and public sectors, which bind society and mitigate the worst excesses of both group force and individual licence. The problem is that we have too few of them and those we do have are being undermined by the dominance of the me firsts who insist anything to do with the we is coercive and undermines liberty.

Thus, despite the me firsts, we witness the success of the NHS through this pandemic, plainly dedicated to serve the we but never in such a way as to be oppressive. Thus, too, the amazing vaccines incubated in Oxfords Jenner Institute, the university itself an example of combining the we of a shared academic vocation but with 37 individual, competing colleges. These were then rolled out with the impetus of the Cell and Gene Therapy Catapult, an institution part tax-funded and part funded from its own commercial activities but one consecrated to promoting the public interest of a strong cell and gene ecology. And all further enabled by an enlightened capitalist enterprise, AstraZeneca, which institutionally recognised its social purpose of promoting health by selling a billion doses at cost.

Another institution that has proved its worth in the pandemic is the BBC, particularly its political and health teams. Laura Kuenssberg and Ros Atkins, for example, have shown the power of impartiality, while Fergus Walsh and Hugh Pym have been models of rock-solid, informed reporting. It has had a cascade effect on much of the media. In a deadly pandemic, beyond some on the Conservative backbenches and rightwing columnists, there can be no luxuriating in ideology. Everyone wants to get to the other side in the best and safest way they can.

Our democratic institutions have been less secure. The checks and balances vital to political integrity have been found wanting. It should never have been possible for the prime minister to use executive discretion, backed by a parliamentary majority, retrospectively to change the terms of the committee on standards in public life; it should be understood that these institutions, including the Electoral Commission, can be reformed only deliberatively and with cross-party support. They represent the we. Public procurement, too, has proved spectacularlyopen to abuse. Meanwhile, the Tory party has demonstrated its institutional weakness, becoming hostage to its ultra-libertarian wing and arriving at public health policies erratically and often too late.

The wider lesson is clear. If we want the best of capitalism and less of the worst, we need to build institutions across our economy, society and democracy that covenant through their constitutions, from a company to a university, that they will respect values we hold dear: equality, fairness, universality, transparency, societal obligation and sustainability. Indeed, in the face of 21st-century challenges AI, the drive to net zero, levelling up great institutions are more important than ever. They will not emerge spontaneously from markets and the operation of capitalism. They have to be created and sustained, the progressive project of the decades ahead.

Will Hutton is an Observer columnist. His December lecture to the Academy of Social Sciences, Its institutions stupid the moralisation of capitalism, from which this column is drawn, is available here

Read more:

Which philosophy helps us confront the crises that beset us... we first or me first? - The Guardian

Vaccines are just the beginning for RNA. The technology is being tested on heart and liver diseases. – The Philadelphia Inquirer

Seven people who underwent heart-bypass surgery recently in Europe volunteered to receive an additional treatment: injections of messenger RNA.

This was not one of the COVID-19 vaccines, in which the RNA code is used to teach the recipients immune system. Instead, the RNA for the surgery patients was designed to heal their hearts by promoting the growth of new blood vessels.

The study, a collaboration between drugmakers AstraZeneca and Moderna, is among dozens underway to harness the potential of RNA. Some of them started before the pandemic, but with the real-world success of the vaccines, they have now picked up steam.

At Duke University Medical Center, researchers are testing a different RNA-based drug from Moderna in patients with propionic acidemia, a rare disorder in which the liver is unable to break down certain amino acids and fats. Others are testing messenger RNA against a variety of cancers.

And, of course, RNA is being used to make more vaccines. Among those being tested are vaccines against Zika virus, respiratory syncytial virus (RSV), cytomegalovirus, and the flu.

All these efforts rely on RNAs ability to carry the recipe for proteins, the building blocks of life. In a vaccine, the protein is a harmless fragment of the virus in question, allowing the recipients immune system to practice in the event of infection. In the other drugs, the RNA can prompt patients cells to make beneficial proteins that they are unable to make themselves.

It is too soon to say how well the various non-vaccine RNA drugs will work, said cardiologist Howard J. Eisen, a medical director at the Penn State Heart and Vascular Institute, who has been following the research. Among other issues: RNA degrades quickly (remember how the COVID vaccines require cold storage?), so it has to be delivered to the right cells in a timely fashion.

Yet the potential, he says, is vast.

Itll revolutionize medicine, I think.

In the heart study, patients experienced no serious side effects as a result of the injections, the drugmakers reported in November. That was little surprise, given that billions have now been injected safely with RNA vaccines, said Eisen, who was not involved with the study.

But with just seven people (and another four who received placebo injections), the study was too small to draw conclusions about the drugs effect on heart function. Larger studies are planned.

The RNA carries the recipe for a protein called VEGF-A, a growth factor involved in forming new blood vessels. The hope is that the patients would experience an improved ejection fraction a measure of how much oxygenated blood is pumped with each heartbeat. Yet previous studies, in which researchers have sought to boost that protein with a different approach called gene therapy, have met with limited success.

Likewise, tests of the RNA-based drug for propionic acidemia are in the early stages, as are studies of RNA treatments for other metabolic diseases.

Whats clear is that new approaches for these liver disorders are sorely needed, said Dwight Koeberl, who is overseeing the Duke University site for Modernas propionic acidemia trial.

For now, patients with that disease must severely limit or avoid intake of meat, dairy, and nuts or else their bodies build up toxic byproducts that lead to neurological and heart damage, among other complications. To compensate for this restricted diet, they must drink a special formula with vitamins and other supplements. And even so, some eventually need a liver transplant.

Koeberl, a professor of pediatrics at Duke University School of Medicine, also has studied the use of gene therapy to treat such patients. That approach is a long-term fix, as the instructions for making the corrective proteins are delivered inside the nucleus of the persons cells (whereas RNA is transient, degrading within days meaning that some treatments would need to be administered multiple times).

But as with the gene therapy treatments for heart disease, gene therapy for metabolic disorders remains a work in progress. One hurdle with gene therapy is that it is typically delivered inside the recipients cells with a virus, which can be defeated by the immune system, Koeberl said.

RNA-based therapies, on the other hand, are typically packaged in tiny droplets of oily molecules called lipids, as with the COVID vaccines. These lipid nanoparticles do not enter the cell nucleus. They need to penetrate only the outer cell membrane for the RNA to fulfill its mission, and they do so with ease. Koeberl was attracted by the possibility of a more straightforward solution.

My interest is in trying to help these patients with something sooner rather than later, he said.

Many, if not most, of the RNA drugs being tested are vaccines, to judge from a search of clinicaltrials.gov, a listing of clinical studies maintained by the U.S. National Library of Medicine.

Compared to traditional vaccines, one advantage of the RNA approach is that the genetic instructions can be quickly updated to match emerging threats. Pfizer and BioNTech, for example, already are developing a vaccine to match the omicron variant of the coronavirus, though widescale production still takes time. The European Union has ordered 180 million doses of this modified vaccine, expected to be available by March.

Next-generation RNA vaccines may also have the advantage of requiring lower doses. Thats the idea behind a flu vaccine in development by Seqirus, which has U.S. operations in Summit, N.J., and is a subsidiary of CSL Limited, based in Melbourne, Australia.

The RNA in that vaccine is self-amplifying, meaning that it consists of two elements: the genetic recipe for making flu proteins that stimulate an immune response, as well as instructions to make multiple copies of that recipe. In theory, that would mean a lower dose of such a vaccine could be just as effective, yet with a lower rate of side effects. Seqirus has been studying this approach in animal models for years, and it plans to test this type of flu vaccine in human volunteers during the second half of 2022.

Patient support groups have been watching the development of messenger RNA with great interest, whether the drug is being used to prevent disease, as with the vaccines, or to treat it.

Many advocates were aware of the potential for RNA treatments long before the COVID vaccines came out. Among them is Kathy Stagni, executive director of the Organic Acidemia Association, which provides support for patients with propionic acidemia and others.

She said she has been setting the record straight every time she hears someone claim that the technology behind the COVID vaccines was rushed.

This is something theyve been working on for a long time, she said.

Eisen, the Penn State cardiologist, was working at the University of Pennsylvania decades ago when Penn scientist Katalin Karik was doing some of the early experiments that would set the stage for the vaccines.

She was not working on vaccines at the time, but on using messenger RNA to treat heart disease. Now that the technology has matured, AstraZeneca and Moderna are tackling heart disease once again.

In essence, Eisen said, it has come full circle.

More here:

Vaccines are just the beginning for RNA. The technology is being tested on heart and liver diseases. - The Philadelphia Inquirer

Gene Therapy Successes – University of Utah

Cavazzano-Calvo, M. (2010). Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467, 318-322. doi:10.1038/nature09328

Cideciyan, A.V. et al (22 January 2013). Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proceedings of the National Academy of Sciences of the United States of America, Earline Online Publication. doi: 10.1073/pnas.1218933110

MacLaren, R.E. et al (16 January 2014). Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. The Lancet, Early Online Publication. doi:10.1016/S0140-6736(13)62117-0

Nathwani, A.C. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. The New England Journal of Medicine, 365(25), 2357-2365.

Nienhuis, A.W. (2013). Development of gene therapy for blood disorders: an update. Blood 122(9), 1556-1564. doi: 10.1182/blood-2013-04-453209

Palfi, S. et al (10 January 2014). Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for parkinson's disease; a dose escalation, open-label, phase 1/2 trial. The Lancet, Early Online Publication. doi: 10.1016/S014006736(13)61939-X

Penn Medicine (7 December 2013). Penn medicine team reports findings from research study of first 59 adult and pediatric leukemia patients who received investigational, personalized cellular therapy CTL019. Retrieved from http://www.uphs.upenn.edu/news/News_Releases/2013/12/ctl019/

Persons, Derek A. (2010). Gene therapy: Targeting beta-thalassaemia. Nature 467, 277-278. doi: 10.1038/467277a

Petrs-Silva, H. & R. Linden (2014). Advances in gene therapy technologies to treat retinitis pigmentosa. Clinical Opthalmology 2014(8), 127-136. doi: 10.2147/OPTH.538041

Read more from the original source:

Gene Therapy Successes - University of Utah

Gene Therapy Pros and Cons – Biolyse

Over the years genetic disorders and gene-related illness have been responsible for high mortality rates and reduced quality of life. Some of the congenital abnormalities manifest quite early, and there are minimal hopes for survival in these children, this causes much pain to their families because management option is limited and there is very little at their disposal to modify such conditions. Scientists are developing a relatively new technique that will give hope to the hopeless and make life better. Genetic disorders can be due to misalignment, missing genes or excess of a gene. Genetic therapy works at the elementary level of heredity to replace the defective genes with new ones.

Gene therapy is the insertion of new functional genes into an individuals cell or tissue to replace the defective one and modify a hereditary disease. This is a new research area, and much research projects are still in the infancy or trial stages; however, expectations are high, and we would potentially do away with genetic diseases soon enough. Developed in 1972, gene therapy can be of two type; somatic gene therapy and germline gene therapy. It is especially promising in treating genetic disorders such as muscular dystrophy and cystic fibrosis. Critics have their say and look at the two sides of the story will lead us to weigh risk: benefit ration. Gene therapy pros and cons can be quite decisive on whether or not we should embrace gene therapy.

Research into gene therapy has been ongoing for decades now, and there is light at the end of the tunnel as gene therapy is associated with the following advantages;

Genetic defect occur even after thorough screening and many people have their lives compromised or limited by such disorders. In the United States alone as at 2009, 3% congenital disabilities were recorded in all births, the joy of having a child is suddenly lost and replaced with the agony and struggle of maintaining such demanding life. Individual patient and family are pessimistic as efforts to change the condition by traversing through different levels of healthcare are always thwarted since no cure exists for such situations. Gene therapy intent to correct such birth defects responsible for more than half of infant mortality is laudable. We can be confident that all the unborn babies will be delivered safely and grow to their prime. Besides, gene therapy promises a cure for the chronic illnesses that are currently incurable for example cancer that causes agonizing pain in many.

By replacing a defective gene with a functional gene in a disease like cystic fibrosis, there are limited chances of remission, and this is usually a one-off treatment that will see you symptom-free for life. Furthermore, gene therapy is not just a remedy to the individual suffering from a given condition, but it covers the entire generation. When you remove a gene predisposing one to breast cancer they wont transfer the defective genes to their offspring but the new functional gene.

Some of the initially incurable diseases can be managed and possibly eliminated when we involve gene therapy. Alterations to gene especially the reproductive genes using the germline method can help in avoiding transmission of defective genes and thus no further incidences of disease. Parkinsons disease, Huntingtons disease, and Alzheimers disease are but a few conditions that are likely to be eliminated by gene therapy.

Not only does gene therapy focus on diseases. Conditions that may make life unlimited such as infertility are also accounted for, and it is projected that soon enough gene therapy should activate reproductive genes and allow you to have children.

Gene therapy promises much potential in the medical field ranging from relieving the pill burden to modifying phenotypes in cosmetology.

Although gene therapy has a potential for treating several ailments and improving life, this is a relatively new technique and involve several safety concerns thus it should be carefully embraced. Some of the notable disadvantages of gene therapy include;

As at now, gene therapy is at the developmental stages, and most experiments are done on the animals with the hope that success will be reflected in humans. However, anything can happen, and gene therapy can fail to work thus limit your capabilities or even worsen the condition. Incompatibility issues and immune response can also lead to failure of the procedure. The massive ongoing research will leverage the concerns and provide a technological-based method with a high certainty of results.

The cost of performing gene therapy is likely to be high because it involves sophisticated equipment and high-level expertise. Such a fee may not be affordable to many, and this will create socioeconomic segregation as the rich will be disease-free while the poor remain to bear the burden of such illness. A solution to this would possibly be extensively integrating technology in the process since technologically based therapy may prove more cost-effective even when compared to the other therapeutic options.

Superb as it may look, gene therapy may be short-lived. Nature is unpredictable, and sometimes it may take its course for the worse. Just like the antibiotics were novel at the time of invention, it is possible that the use of gene therapy may gain resistance as well. There is no guarantee that gene therapy will fulfill its expectations to treat explicit disorders, performing gene adjustments could create new defects for future generations without realizing it; thus it can be a double-edged sword.

One of the greatest hindrance to the advancement of gene therapy is the opposition on the basis that it can open room for unethical science which may be demeaning to the human race. The thoughts that gene therapy creates a perfected human has been very controversial.

Read the rest here:

Gene Therapy Pros and Cons - Biolyse