Repair Stem Cell Treatment for Heart Disease

Repair Stem Cell Treatment for Heart Disease exclusively brought to you by ExploreWorldTV.com Repair Stem Cells Treatment for Heart Disease is presented by http in connection with the Repair Stem Cells Organization and the Fleming family from Australia who experienced Repair Stem Cell treatment for heart disease at a hospital in Bangkok, Thailand. This story is about a son's love for his father who has heart disease and doctors said he had no options left

See the rest here:
Repair Stem Cell Treatment for Heart Disease

29 Johns Hopkins stem cell researchers awarded funding

Public release date: 30-May-2012 [ | E-mail | Share ]

Contact: Vanessa McMains vmcmain1@jhmi.edu 410-502-9410 Johns Hopkins Medical Institutions

This year the Maryland Stem Cell Research Fund awarded 29 of 40 grants to Johns Hopkins researchers for the study of stem cell metabolism and regulation, the creation of new cell models for human diseases such as schizophrenia and Rett syndrome, which previously could be studied only in animals, and the development of new potential therapies.

Researchers whose preliminary data promised greater discoveries were awarded Investigator-Initiated grants. Jeff Bulte, Ph.D., professor of radiology, biomedical engineering and chemical and biomolecular engineering and a member of the Institute for Cell Engineering, hopes to develop a cell therapy for treatment of type 1 diabetes an autoimmune disorder in which the immune system kills the insulin-producing cells that help regulate blood sugar. By developing cloaked stem and insulin-producing cells that can evade immune system detection, Bulte and his team hope to replace damaged cells and restore insulin levels in patients.

Grants were awarded to:

Several Johns Hopkins investigators were awarded Exploratory grants for researchers either new to the stem cell field or with untested but promising new ideas. Miroslaw Janowski , M.D., Ph.D., a research associate in radiology, plans to develop a stroke treatment by guiding newly introduced brain cells with magnets through blood vessels to the site of injury.

Exploratory grants were awarded to:

Postdoctoral trainees also will receive funding for research projects. A fellow in biomedical engineering, Pinar Huri, Ph.D., will use her award to develop bone grafts with blood vessels inside made from fat tissue-derived stem cells. The grafts would be used in patients with severely damaged bone in need of reconstructive surgery.

Postdoctoral grants were awarded to:

###

Continued here:
29 Johns Hopkins stem cell researchers awarded funding

Great Neck Hadassah’s Walkathon For Stem Cell Research On May 6

Friday, 20 April 2012 00:00

It is that time of year again. The temperatures are warm, the flowers are blooming, the grass is green and Hadassahs 6th Annual Walkathon for Stem Cell Research is here. Come out, experience springtime, get some exercise and make a difference, all at the same time.

Hadassahs Walkathon for Stem Cell Research is on Sunday, May 6 at Temple Israel on Old Mill Road (rain or shine). Registration will begin at 9:45 a.m. and the walk will officially start at 10 a.m.

You can help bring awareness to this important cause by participating in this community event. All ages are welcome as we walk two miles, to show our support for stem cell research. Runners are welcome to run the extended four or six-mile course as well. There will be snacks, t-shirts and fun for all.

Not only are we encouraging families to participate, we are encouraging students of all ages to get involved by helping to organize, publicize, and raise funds for the event and of course, by walking for stem cell research. Join us and play a role in turning research into cures worldwide. We are making strides to stamp out many dreaded diseases such as Alzheimers, Parkinsons, diabetes, ALS, cancer, spinal cord injuries, macular degeneration, and traumatic brain injuries.

Hadassah is in the forefront of stem cell research and continues to bring hope to millions of suffering patients with life-changing diseases. A whole new area of regenerative medicine is on the brink of discovery. Age-related macular degeneration is the leading cause of blindness in adults over 50. Hadassah researchers successfully treated and prevented retinal deterioration by transplanting visual cells derived from human embryonic stem cells in animals with retinal degeneration.

Multiple Sclerosis is the most common form of neurological disabilities in young people. Hadassah scientists were first to demonstrate that transplanted neural cells derived from human embryonic stem cells can reduce clinical symptoms in animals with a form of MS.

Hadassah neurologists conducted the first clinical trial treating MS and ALS patients by injecting their spinal columns with adult stem cells taken from their own hipbone marrow. This reduces the chance of immune system rejection, and avoids the complex ethical issues surrounding embryonic stem cell usage.

For more information on Hadassahs Walkathon for Stem Cell Research, to make a donation or to register for the walk, please follow the link: http://www.hadassah.org/nassau/ stemcellwalkathon or call 766-2725. The suggested minimum donation to participate is $20/individual or $36/family.

More:
Great Neck Hadassah’s Walkathon For Stem Cell Research On May 6

Lifesaving stem cell treatments must be offered in Ireland, says expert

Lifesaving stem cell treatments must be offered in Ireland, says expert

By Sen McCrthaigh

Thursday, April 19, 2012

Ireland is seriously lagging behind most other countries in offering live-saving treatments provided by the use of adult stem cells, a leading international medical expert has warned.

Colin McGuckin called on the Government and health authorities to facilitate the wider collection and storage of stem cells from umbilical cord blood in Ireland.

Prof McGuckin who is advisor to the Vatican on stem cells and a director of the Cell Therapy Research Institute in Lyon, France is director of the Adult Stem Cell Foundation of Ireland, which was formally launched yesterday.

"Treatments which are available in other countries must come to Ireland," said Mr McGuckin. He also expressed fears the lack of stem cell therapies here could force people to seek unregulated care abroad.

Presently, none of Irelands three main maternity hospitals allow for the collection of adult stem cells from umbilical cords except in high-risk cases.

The only facility which allows the practice is Mount Carmel Hospital in Dublin. All adult stem cells collected are sent abroad for storage.

Mr McGuckin said adult stem cells could be used in the treatment of over 70 diseases including leukaemia and heart disease. Advances are also being made in their use for neurological diseases such as Alzheimers.

Read the original here:
Lifesaving stem cell treatments must be offered in Ireland, says expert

New embryonic stem cell line will aid research on nerve condition

ScienceDaily (Apr. 25, 2012) The University of Michigan's second human embryonic stem cell line has just been placed on the U.S. National Institutes of Health's registry, making the cells available for federally-funded research. It is the second of the stem cell lines derived at U-M to be placed on the registry.

The line, known as UM11-1PGD, was derived from a cluster of about 30 cells removed from a donated five-day-old embryo roughly the size of the period at the end of this sentence. That embryo was created for reproductive purposes, tested and found to be affected with a genetic disorder, deemed not suitable for implantation, and would therefore have otherwise been discarded when it was donated in 2011.

It carries the gene defect responsible for Charcot-Marie-Tooth disease, a hereditary neurological disorder characterized by a slowly progressive degeneration of the muscles in the foot, lower leg and hand. CMT, as it is known, is one of the most common inherited neurological disorders, affecting one in 2,500 people in the United States. People with CMT usually begin to experience symptoms in adolescence or early adulthood.

The embryo used to create the cell line was never frozen, but rather was transported from another IVF laboratory in the state of Michigan to the U-M in a special container. This may mean that these stem cells will have unique characteristics and utilities in understanding CMT disease progression or screening therapies in comparison to other human embryonic stem cells.

"We are proud to provide this cell line to the scientific community, in hopes that it may aid the search for new treatments and even a cure for CMT," says Gary Smith, Ph.D., who derived the line and also is co-director of the U-M Consortium for Stem Cell Therapies, part of the A. Alfred Taubman Medical Research Institute. "Once again, the acceptance of these cells to the registry demonstrates our attention to details of proper oversight, consenting, and following of NIH guidelines."

U-M is one of only four institutions -- including two other universities and one private company -- to have disease-specific stem cell lines listed in the national registry. U-M has several other disease-specific hESC lines submitted to NIH and awaiting approval, says Smith, who is a professor in the Department of Obstetrics and Gynecology at the University of Michigan Medical School. The first line, a genetically normal one, was accepted to the registry in February.

"Stem cell lines that carry genetic traits linked to specific diseases are a model system to investigate what causes these diseases and come up with treatments," says Sue O'Shea, Ph.D., professor of Cell and Developmental Biology at the U-M Medical School, and co-director of the Consortium for Stem Cell Therapies.

Each line is the culmination of years of preparation and cooperation between U-M and Genesis Genetics, a Michigan-based genetic diagnostic company. This work was made possible by Michigan voters' November 2008 approval of a state constitutional amendment permitting scientists to derive embryonic stem cell lines using surplus embryos from fertility clinics or embryos with genetic abnormalities and not suitable for implantation.

The amendment also made possible an unusual collaboration that has blossomed between the University of Michigan and molecular research scientists at Genesis Genetics, a company that has grown in only eight years to become the leading global provider of pre-implantation genetic diagnosis (PGD) testing. PGD is a testing method used to identify days-old embryos carrying the genetic mutations responsible for serious inherited diseases. During a PGD test, a single cell is removed from an eight-celled embryo. The other seven cells continue to multiply and on the fifth day form a cluster of roughly 100 cells known as a blastocyst.

Genesis Genetics performs nearly 7,500 PGD tests annually. Under the arrangement between the company and U-M, patients with embryos that test positive for a genetic disease now have the option of donating those embryos to U-M if they have decided not to use them for reproductive purposes and the embryos would otherwise be discarded.

Excerpt from:
New embryonic stem cell line will aid research on nerve condition

New stem cell found in the brain

Public release date: 19-Apr-2012 [ | E-mail | Share ]

Contact: Tim Hawkins Tim.Hawkins@vai.org 616-234-5519 Van Andel Research Institute

Grand Rapids, Mich. (April 19, 2012 ) Researchers at Lund University in Sweden have discovered a new stem cell in the adult brain. These cells can proliferate and form several different cell types - most importantly, they can form new brain cells. Scientists hope to take advantage of the finding to develop methods to heal and repair disease and injury in the brain.

Analyzing brain tissue from biopsies, the researchers for the first time found stem cells located around small blood vessels in the brain. The cell's specific function is still unclear, but its plastic properties suggest great potential.

"A similar cell type has been identified in several other organs where it can promote regeneration of muscle, bone, cartilage and adipose tissue," said Patrik Brundin, M.D., Ph.D., Jay Van Andel Endowed Chair in Parkinson's Research at Van Andel Research Institute (VARI), Head of the Neuronal Survival Unit at Lund University and senior author of the study.

In other organs, researchers have shown clear evidence that these types of cells contribute to repair and wound healing. Scientists suggest that the curative properties may also apply to the brain. The next step is to try to control and enhance stem cell self-healing properties with the aim of carrying out targeted therapies to a specific area of the brain.

"Our findings show that the cell capacity is much larger than we originally thought, and that these cells are very versatile," said Gesine Paul-Visse, Ph.D., Associate Professor of Neuroscience at Lund University and the study's primary author. "Most interesting is their ability to form neuronal cells, but they can also be developed for other cell types. The results contribute to better understanding of how brain cell plasticity works and opens up new opportunities to exploit these very features."

The study, published in the journal PLoS ONE, is of interest to a broad spectrum of brain research. Future possible therapeutic targets range from neurodegenerative diseases to stroke.

"We hope that our findings may lead to a new and better understanding of the brain's own repair mechanisms," said Dr. Paul-Visse. "Ultimately the goal is to strengthen these mechanisms and develop new treatments that can repair the diseased brain."

###

Read more:
New stem cell found in the brain

Van Andel Institute researcher helps discover new stem cell in adult brain

A new stem cell has been discovered in the adult brain by a team of researchers that includes a scientist recently recruited by Van Andel Institute.

Scientists hope the finding will help them find ways to repair injuries and heal diseases of the brain, said Dr. Patrik Brundin, who leads Parkinsons research at the VAI. Ultimately, they hope it will lead to new treatments for strokes and neurodegenerative diseases such as Parkinsons.

In the study published this week, the researchers analyzed brain tissue from biopsies and found, for the first time, stem cells around small blood vessels in the brain. Although its function is unclear, scientists are excited about its potential.

A similar cell type has been identified in several other organs where it can promote regeneration of muscle, bone, cartilage and adipose tissue, Brundin said.

In October, Brundin became the first person to hold the Jay Van Andel Endowed Chair in Parkinson's Research at VAI. He also is head of the Neuronal Survival Unit at Lund University and senior author of the study.

In other organs, stem cells have been shown to help heal and repair injuries. With the brain stem cells, researchers say the next step is to try to control and enhance the cells self-healing properties.

Our findings show that the cell capacity is much larger than we originally thought, and that these cells are very versatile, said Gesine Paul-Visse, a Lund University researcher and the primary author of the study. Most interesting is their ability to form neuronal cells, but they can also be developed for other cell types. The results contribute to better understanding of how brain cell plasticity works and opens up new opportunities to exploit these very features.

The study was published in the journal PLoS ONE.

Email Sue Thoms at sthoms1@mlive.com and follow her on Twitter at twitter.com/suethoms

Go here to see the original:
Van Andel Institute researcher helps discover new stem cell in adult brain

Fly research gives insight into human stem cell development and cancer

Public release date: 8-Mar-2012 [ | E-mail | Share ]

Contact: Phyllis Edelman pedelman@genetics-gsa.org 301-351-0896 Genetics Society of America

CHICAGO, IL March 8, 2012 Stem cells provide a recurring topic among the scientific presentations at the Genetics Society of America's 53rd Annual Drosophila Research Conference, March 7-11 at the Sheraton Chicago Hotel & Towers. Specifically, researchers are trying to determine how, within organs, cells specialize while stem cells maintain tissues and enable them to repair damage and respond to stress or aging. Four talks, one on Thursday morning and three on Sunday morning, present variations on this theme.

For a fertilized egg to give rise to an organism made up of billions or trillions of cells, a precise program of cell divisions must unfold. Some divisions are "asymmetric": one of the two daughter cells specializes, yet the other retains the ability to divide. Chris Q. Doe, Ph.D., professor of biology at the University of Oregon, compares this asymmetric cell division to splitting a sundae so that only one half gets the cherry. The "cherries" in cells are the proteins and RNA molecules that make the two cells that descend from one cell different from each other. This collecting of different molecules in different regions of the initial cell before it divides is termed "cell polarity."

Dr. Doe and his team are tracing the cell divisions that form a fly's nervous system. "Producing the right cells at the right time is essential for normal development, yet it's not well understood how an embryonic precursor cell or stem cell generates a characteristic sequence of different cell types," he says. Dr. Doe and his team traced the cell lineages of 30 neuroblasts (stem cell-like neural precursors), each cell division generating a daughter cell bound for specialization as well as a self-renewing neuroblast. The dance of development is a matter of balance. Self-renew too much, and a tumor results; not enough, and the brain shrinks.

Tracing a cell lineage is a little like sketching a family tree of cousins who share a great-grandparent except that the great-grandparent (the neuroblast) continually produces more cousins. "The offspring will change due to the different environments they are born into," says Dr. Doe.

Julie A. Brill, Ph.D., a principal investigator at The Hospital for Sick Children (SickKids) in Toronto, investigates cell polarity in sperm cells. These highly specialized elongated cells begin as more spherical precursor cells. Groups of developing sperm elongate, align, condense their DNA into tight packages, expose enzyme-containing bumps on their tips that will burrow through an egg's outer layers, form moving tails, then detach and swim away.

The Brill lab studies a membrane lipid called PIP2 (phosphatidylinositol 4,5-bisphosphate) that establishes polarity in developing male germ cells in Drosophila. "Reducing levels of PIP2 leads to defects in cell polarity and failure to form mature, motile sperm," Dr. Brill says. These experiments show that localization of the enzyme responsible for PIP2 production in the growing end of elongating sperm tails likely sets up cell polarity. Since loss of this polarity is implicated in the origin and spread of cancer, defects in the regulation of PIP2 distribution may contribute to human cancer progression, she adds.

Stephen DiNardo, Ph.D., professor of cell and developmental biology at the Institute for Regenerative Medicine at the University of Pennsylvania, is investigating how different varieties of stem cells in the developing fly testis give rise to germ cells and epithelial cells that ensheathe the germ cells, as well as being able to self-renew. For each of these roles, stem cells are guided by their environment, known as their "niche."

In the fly testis, we know not only the locations of the two types of stem cells whose actions maintain fertility, but of neighboring cells. "We study how these niche cells are first specified during development, how they assemble, and what signals they use. Elements of what we and others learn about this niche may well apply to more complex niches in our tissues," Dr. DiNardo explains.

See more here:
Fly research gives insight into human stem cell development and cancer

Fly Research Gives Insight Into Human Stem Cell Development

Newswise CHICAGO, IL March 8, 2012 Stem cells provide a recurring topic among the scientific presentations at the Genetics Society of Americas 53rd Annual Drosophila Research Conference, March 7-11 at the Sheraton Chicago Hotel & Towers. Specifically, researchers are trying to determine how, within organs, cells specialize while stem cells maintain tissues and enable them to repair damage and respond to stress or aging. Four talks, one on Thursday morning and three on Sunday morning, present variations on this theme.

For a fertilized egg to give rise to an organism made up of billions or trillions of cells, a precise program of cell divisions must unfold. Some divisions are asymmetric: one of the two daughter cells specializes, yet the other retains the ability to divide. Chris Q. Doe, Ph.D., professor of biology at the University of Oregon, compares this asymmetric cell division to splitting a sundae so that only one half gets the cherry. The cherries in cells are the proteins and RNA molecules that make the two cells that descend from one cell different from each other. This collecting of different molecules in different regions of the initial cell before it divides is termed "cell polarity."

Dr. Doe and his team are tracing the cell divisions that form a flys nervous system. Producing the right cells at the right time is essential for normal development, yet its not well understood how an embryonic precursor cell or stem cell generates a characteristic sequence of different cell types, he says. Dr. Doe and his team traced the cell lineages of 30 neuroblasts (stem cell-like neural precursors), each cell division generating a daughter cell bound for specialization as well as a self-renewing neuroblast. The dance of development is a matter of balance. Self-renew too much, and a tumor results; not enough, and the brain shrinks.

Tracing a cell lineage is a little like sketching a family tree of cousins who share a great-grandparent except that the great-grandparent (the neuroblast) continually produces more cousins. The offspring will change due to the different environments they are born into, says Dr. Doe.

Julie A. Brill, Ph.D., a principal investigator at The Hospital for Sick Children (SickKids) in Toronto, investigates cell polarity in sperm cells. These highly specialized elongated cells begin as more spherical precursor cells. Groups of developing sperm elongate, align, condense their DNA into tight packages, expose enzyme-containing bumps on their tips that will burrow through an eggs outer layers, form moving tails, then detach and swim away.

The Brill lab studies a membrane lipid called PIP2 (phosphatidylinositol 4,5-bisphosphate) that establishes polarity in developing male germ cells in Drosophila. Reducing levels of PIP2 leads to defects in cell polarity and failure to form mature, motile sperm, Dr. Brill says. These experiments show that localization of the enzyme responsible for PIP2 production in the growing end of elongating sperm tails likely sets up cell polarity. Since loss of this polarity is implicated in the origin and spread of cancer, defects in the regulation of PIP2 distribution may contribute to human cancer progression, she adds.

Stephen DiNardo, Ph.D., professor of cell and developmental biology at the Institute for Regenerative Medicine at the University of Pennsylvania, is investigating how different varieties of stem cells in the developing fly testis give rise to germ cells and epithelial cells that ensheathe the germ cells, as well as being able to self-renew. For each of these roles, stem cells are guided by their environment, known as their niche.

In the fly testis, we know not only the locations of the two types of stem cells whose actions maintain fertility, but of neighboring cells. We study how these niche cells are first specified during development, how they assemble, and what signals they use. Elements of what we and others learn about this niche may well apply to more complex niches in our tissues, Dr. DiNardo explains.

Denise J. Montell, Ph.D., professor of biological chemistry at Johns Hopkins University, will report on the female counterpart to the testis, the fly ovary. She and her co-workers use live imaging and fluorescent biomarkers to observe how the contractile proteins actin and myosin assemble, disassemble, and interact, elongating tissues in ways that construct the egg chamber. These approaches are particularly valuable for observing the response of the developing ovary to environmental changes. Starvation, for example, slows the rate of stem cell division and induces some egg chambers to undergo apoptosis (die) while others arrest until conditions improve, she says.

Her group has discovered that, surprisingly, following starvation and re-feeding, some of the cells that got far along the cell death pathway actually reversed that process and survived. The group has documented this reversal of apoptosis in a variety of mammalian cell types including primary heart cells. These observations have many intriguing implications. This may represent a previously unrecognized mechanism that saves cells that are difficult to replace, and therefore, may have implications for treating degenerative diseases.

Go here to read the rest:
Fly Research Gives Insight Into Human Stem Cell Development

Florida suspends doctor accused of illegal stem cell therapy

By David Fitzpatrick and Drew Griffin, Special Investigations Unit

updated 9:23 PM EST, Thu March 8, 2012

Dr. Zannos Grekos, seen here in 2009, could have his license suspended.

STORY HIGHLIGHTS

(CNN) -- A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

Read the original post:
Florida suspends doctor accused of illegal stem cell therapy

Doctor accused of illegal stem cell therapy suspended

(CNN) -

A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

The president of the International Society of Stem Cell Research, Dr. Irving Weissman, told CNN at the time that "there is no such cell."

"There is nothing called a regenocyte," he said.

After CNN's initial report, Grekos said the name was "advertising" and was not intended to be scientific.

Original post:
Doctor accused of illegal stem cell therapy suspended

Patient dies during procedure

(CNN) -

A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

The president of the International Society of Stem Cell Research, Dr. Irving Weissman, told CNN at the time that "there is no such cell."

"There is nothing called a regenocyte," he said.

After CNN's initial report, Grekos said the name was "advertising" and was not intended to be scientific.

Go here to see the original:
Patient dies during procedure

Surgeons Urge Caution: Stem Cell Treatments Untested in Aesthetic Surgery

Doctors Haeck, Eaves, and Rohrich write joint ASAPS/ASPS statement calling for more research into stem cell facelift and stem cell breast augmentation.

Dallas, TX (PRWEB) February 22, 2012

There is little evidence to support the safety and effectiveness of procedures, equipment and treatments that have been advertised using adult stem cells for aesthetic reconstruction, including plastic surgery and facial rejuvenation, according to physicians writing in Plastic and Reconstructive Surgery.

Dr. Rod J. Rohrich, chairman of the Department of Plastic Surgery at UT Southwestern Medical Center and editor-in-chief of the journal, published a position statement on “stem cell facelifts” and “stem cell breast augmentation,” also known as “natural breast augmentation.” Dr. Felmont F. Eaves III of Chapel Hill, N.C., and Dr. Phillip C. Haeck of Seattle, Wash.,collaborated on the statement on behalf of the American Society for Aesthetic Plastic Surgery (ASAPS) and the American Society of Plastic Surgeons (ASPS).

“There are encouraging data from studies in laboratories to suggest that the use of adult stem cells is a very promising field and may produce beneficial medical therapies to treat a variety of diseases,” the doctors said in the statement. They emphasized that there is a lack of consistency in the way stem cell facelift procedures are performed, and pointed out that many procedures are being advertised by physicians who are not board-certified for this type of treatment, and devices being sold for aesthetic stem cell treatments have not been approved for human use in the U.S.

In the report, the doctors encourage their peers to continue reporting clinic results and experimental research to peer-reviewed plastic surgery journals to both promote good science and to foster safety and best practices for stem cell use in aesthetic procedures. “Much more research needs to be conducted before any definitive statements can be made,” the report said. “[Until then,] stem cell based procedures should be performed in compliance with FDA regulatory guidelines.”

Dr. Rohrich said many of the advertisements claiming stem cells can aid in restoring facial and body youthfulness come from outside the U.S. “Further direct, approved clinical research is needed to validate those claims,” he said, “but the future is potentially bright for the use of adult stem cells in both plastic surgery and facial rejuvenation, as well as in medical procedures, such as restoring nerve and brain damage resulting from trauma or cancer, as well as reversing the severe effects of auto immune disease.”

To read the complete joint ASAPS/ASPS position statement on stem cell use in aesthetic surgery, including stem cell facelifts and natural breast augmentation, visit the ASPS, at their website.

About Rod J. Rohrich, M.D., F.A.C.S.
Dr. Rod J. Rohrich holds the Betty and Warren Woodward Chair in Plastic and Reconstructive Surgery at UT Southwestern Medical Center in Dallas, Texas. He also holds the UT Southwestern Medical Center Crystal Charity Ball Distinguished Chair in Plastic Surgery. He is a graduate of the Baylor College of Medicine with high honors, with residencies at the University of Michigan Medical Center and fellowships at the Massachusetts General Hospital/Harvard (hand/microsurgery) and Oxford University (pediatric plastic surgery). He has served as president of the American Society of Plastic Surgeons. He repeatedly has been selected by his peers as one of America's best doctors, and twice has received one of his profession's highest honors, the Plastic Surgery Educational Foundation Distinguished Service Award, which recognizes his contributions to education in his field. Dr. Rohrich participates in and has led numerous associations and councils for the advancement of plastic and reconstructive surgery. He is a native of North Dakota. He is married to Dr. Diane Gibby, also a plastic surgeon. They live in Texas with their two children.

###

For the original version on PRWeb visit: http://www.prweb.com/releases/prwebplastic-surgery/stem-cell-statement/prweb9217080.htm

Original post:
Surgeons Urge Caution: Stem Cell Treatments Untested in Aesthetic Surgery

Stem Cell Clinical Trial for Heart Failure: Eduardo Marban – CIRM Spotlight on Disease – Video

21-12-2011 10:03 CIRM has funded a $5.5 million Disease Team to develop a follow on clinical trial that uses a patient's own heart stem cells to regenerate scarred tissue damaged by a heart attack. The team is led by Eduardo Marban, MD, PhD, Director of the Cedars-Sinai Heart Institute. Marban presented the team's latest progress at the December 8th, 2011 CIRM Governing Board meeting. Fred Lesikar, a participant in a current trial, also spoke to Board and described the dramatic improvement he's experienced since receiving his heart stem cells two years ago. The speakers were introduced by Shlomo Melmed, MD, and Jonathan Thomas, PhD, JD. Melmed is a CIRM Governing Board member and Senior Vice-President for Academic Affairs and Dean of the Medical Faculty at Cedars-Sinai. Thomas is Chair of the CIRM Governing Board.

Read more from the original source:
Stem Cell Clinical Trial for Heart Failure: Eduardo Marban - CIRM Spotlight on Disease - Video

Huntington's Disease: New Hope from Stem Cell Therapies

(Part 2 of 5) Vicki Wheelock, MD, spoke at the "Spotlight on Huntington's Disease," an educational event presented at the CIRM Governing Board meeting on March 11, 2010. Wheelock is a clinical professor in the department of neurology within the University of California, Davis Health System. She was introduced by Claire Pomeroy, MD, MBA The CIRM-hosted event was presented in partnership with UC Davis at the California State Capitol Building

Read the original:
Huntington's Disease: New Hope from Stem Cell Therapies

Stem Cell Transplant India,Bone Marrow Transplant India,Sickle Cell Anemia Treatment India

Center for Bone Marrow Transplantation, Bangalore, India was established in October 2004 with a vision to make this treatment affordable to the common man. Since then the unit has completed more than 125 stem cell transplants till date with approximately 100 of them being allogeneic stem cell transplants.

See the original post here:
Stem Cell Transplant India,Bone Marrow Transplant India,Sickle Cell Anemia Treatment India