Juris, A. et al. Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence. Coord. Chem. Rev. 84, 85277 (1988).
Article CAS Google Scholar
Dixon, I. M. et al. A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem. Soc. Rev. 29, 385391 (2000).
Article CAS Google Scholar
Lytle, F. E. & Hercules, D. M. Luminescence of tris (2,2-bipyridine) ruthenium(II) dichloride. J. Am. Chem. Soc. 646, 253257 (1968).
Google Scholar
Arias-Rotondo, D. M. & McCusker, J. K. The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 58035820 (2016).
Article CAS PubMed Google Scholar
de Groot, L. H. M., Ilic, A., Schwarz, J. & Wrnmark, K. Iron photoredox catalysispast, present, and future. J. Am. Chem. Soc. 145, 93699388 (2023).
Article PubMed PubMed Central Google Scholar
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).
Article CAS Google Scholar
McCusker, J. K. Electronic structure in the transition metal block and its implications for light harvesting. Science 363, 484488 (2019).
Article CAS PubMed Google Scholar
Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 18601876 (2021).
Article CAS PubMed PubMed Central Google Scholar
Beaudelot, J. et al. Photoactive copper complexes: properties and applications. Chem. Rev. 122, 1636516609 (2022).
Article CAS PubMed Google Scholar
Sinha, N., Wegeberg, C., Hussinger, D., Prescimone, A. & Wenger, O. S. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat. Chem. 15, 17301736 (2023).
Article CAS PubMed PubMed Central Google Scholar
Herr, P., Kerzig, C., Larsen, C. B., Hussinger, D. & Wenger, O. S. Manganese(I) complexes with metal-to-ligand charge transfer luminescence and photoreactivity. Nat. Chem. 13, 956962 (2021).
Article CAS PubMed Google Scholar
Smeigh, A. L., Creelman, M., Mathies, R. A. & McCusker, J. K. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching. J. Am. Chem. Soc. 130, 1410514107 (2008).
Article CAS PubMed Google Scholar
McCusker, J. K. et al. Subpicosecond 1MLCT5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298307 (1993).
Article CAS Google Scholar
McCusker, J. K., Rheingold, A. L. & Hendrickson, D. N. Variable-temperature studies of laser-initiated 5T21A1 intersystem crossing in spin-crossover complexes: empirical correlations between activation parameters and ligand structure in a series of polypyridyl ferrous complexes. Inorg. Chem. 35, 21002112 (1996).
Article CAS Google Scholar
Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 40924097 (2000).
Article CAS Google Scholar
Bressler, C. et al. Femtosecond XANES study of the light-induced spin crossover dynamics in an iron(II) complex. Science 323, 489492 (2009).
Article CAS PubMed Google Scholar
Zhang, K., Ash, R., Girolami, G. S. & Vura-Weis, J. Tracking the metal-centered triplet in photoinduced spin crossover of [Fe(phen)3]2+ with tabletop femtosecond M-edge X-ray absorption near-edge structure spectroscopy. J. Am. Chem. Soc. 141, 1718017188 (2019).
Article CAS PubMed Google Scholar
Kitzmann, W. R. & Heinze, K. Charge-transfer and spin-flip states: Thriving as complements. Angew. Chem. Int. Ed. 62, 117 (2023).
Article Google Scholar
Dorn, M. et al. in Comprehensive Inorganic Chemistry III 3rd edn, 707788 (Elsevier, 2023).
Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345348 (2014).
Article CAS PubMed PubMed Central Google Scholar
Woodhouse, M. D. & McCusker, J. K. Mechanistic origin of photoredox catalysis involving iron(II) polypyridyl chromophores. J. Am. Chem. Soc. 142, 1622916233 (2020).
Article CAS PubMed Google Scholar
Liu, Y. et al. Towards longer-lived metal-to-ligand charge transfer states of iron(II) complexes: an N-heterocyclic carbene approach. Chem. Commun. 49, 64126414 (2013).
Article CAS Google Scholar
Fredin, L. A. et al. Exceptional excited-state lifetime of an iron(II)N-heterocyclic carbene complex explained. J. Phys. Chem. Lett. 5, 20662071 (2014).
Article CAS PubMed Google Scholar
Chbera, P. et al. FeII hexa N-heterocyclic carbene complex with a 528 ps metal-to-ligand charge-transfer excited-state lifetime. J. Phys. Chem. Lett. 9, 459463 (2018).
Article PubMed Google Scholar
Paulus, B. C., Nielsen, K. C., Tichnell, C. R., Carey, M. C. & McCusker, J. K. A modular approach to light capture and synthetic tuning of the excited-state properties of Fe(II)-based chromophores. J. Am. Chem. Soc. 143, 80868098 (2021).
Article CAS PubMed Google Scholar
Mukherjee, S., Bowman, D. N. & Jakubikova, E. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells. Inorg. Chem. 54, 560569 (2015).
Article CAS PubMed Google Scholar
Braun, J. D. et al. Iron(II) coordination complexes with panchromatic absorption and nanosecond charge-transfer excited state lifetimes. Nat. Chem. 11, 11441150 (2019).
Article CAS PubMed Google Scholar
Steube, J. et al. Excited-state kinetics of an air-stable cyclometalated iron(II) complex. Chem. Eur. J. 25, 1182611830 (2019).
Article CAS PubMed Google Scholar
Yarranton, J. T. & McCusker, J. K. Ligand-field spectroscopy of Co(III) complexes and the development of a spectrochemical series for low-spin d6 charge-transfer chromophores. J. Am. Chem. Soc. 144, 1248812500 (2022).
Article CAS PubMed Google Scholar
Alowakennu, M. M., Ghosh, A. & McCusker, J. K. Direct evidence for excited ligand field state-based oxidative photoredox chemistry of a cobalt(III) polypyridyl photosensitizer. J. Am. Chem. Soc. 145, 2078620791 (2023).
Article CAS PubMed
Google Scholar
Kalsi, D., Dutta, S., Barsu, N., Rueping, M. & Sundararaju, B. Room-temperature CH bond functionalization by merging cobalt and photoredox catalysis. ACS Catal. 8, 81158120 (2018).
Article CAS Google Scholar
Pal, A. K., Li, C., Hanan, G. S. & ZysmanColman, E. Blueemissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 80278031 (2018).
Zhang, P. et al. Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO2 reduction. J. Mater. Chem. A 9, 2628626297 (2021).
Article CAS Google Scholar
Zhang, G. et al. External oxidant-free oxidative cross-coupling: a photoredox cobalt-catalyzed aromatic CH thiolation for constructing CS bonds. J. Am. Chem. Soc. 137, 92739280 (2015).
Article CAS PubMed Google Scholar
Chan, A. Y. et al. Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis. Science 382, 191197 (2023).
Article CAS PubMed PubMed Central Google Scholar
Langford, C. H., Group, H. E., Malkhasian, A. Y. S. & Sharma, D. K. Subnanosecond transients in the spectra of cobalt(III) amine complexes. J. Am. Chem. Soc. 106, 27272728 (1984).
Article CAS Google Scholar
Ferrari, L. et al. A fast transient absorption study of Co(AcAc)3. Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00348 (2019).
Kaufhold, S. et al. Microsecond photoluminescence and photoreactivity of a metal-centered excited state in a hexacarbeneCo(III) complex. J. Am. Chem. Soc. 143, 13071312 (2021).
Article CAS PubMed PubMed Central Google Scholar
Gray, B. & Beach, N. A. The electronic structures of octahedral metal complexes. I. Metal hexacarbonyls and hexacyanides. J. Am. Chem. Soc. 85, 29222927 (1963).
Article CAS Google Scholar
Miskowski, V. M., Gray, H. B., Wilson, R. B. & Solomon, E. I. Position of the 3T1g 1A1g transition in hexacyanocobaltate(III). Analysis of absorption and emission results. Inorg. Chem. 18, 14101412 (1978).
Article Google Scholar
McCusker, J. K., Walda, K. N., Magde, D. & Hendrickson, D. N. Picosecond excited-state dynamics in octahedral cobalt(III) complexes: intersystem crossing versus internal conversion. Inorg. Chem. 32, 394399 (1993).
Article CAS Google Scholar
Viaene, L., DOlieslager, J., Ceulemans, A. & Vanquickenborne, L. G. Excited-state spectroscopy of hexacyanocobaltate(III). J. Am. Chem. Soc. 101, 14051409 (1979).
Article CAS Google Scholar
Sinha, N., Wegeberg, C., Prescimone, A. & Wenger, O. S. Cobalt(III) carbene complex with an electronic excited-state structure similar to cyclometalated iridium(III) compounds. J. Am. Chem. Soc. 144, 98599873 (2022).
Article CAS PubMed PubMed Central Google Scholar
Caspar, J. V., Kober, E. M., Sullivan, B. P. & Meyer, T. J. Application of the energy gap law to the decay of charge-transfer excited states. J. Am. Chem. Soc. 104, 9195 (1982).
Article Google Scholar
Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 285287 (1970).
Article Google Scholar
Bressler, C. & Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 104, 17811812 (2004).
Article CAS PubMed Google Scholar
Damrauer, N. H., Boussie, T. R., Devenney, M. & McCusker, J. K. Effects of intraligand electron delocalization, steric tuning, and excited-state vibronic coupling on the photophysics of aryl-substituted bipyridyl complexes of Ru(II). J. Am. Chem. Soc. 119, 82538268 (1997).
Article CAS Google Scholar
Strouse, G. F. et al. Influence of electronic delocalization in metal-to-ligand charge transfer excited states. Inorg. Chem. 34, 473487 (1995).
Article CAS Google Scholar
Bozzi, A. S. & Rocha, W. R. Calculation of excited state internal conversion rate constant using the one-effective mode Marcus-Jortner-Levich theory. J. Chem. Theory Comput. 19, 23162326 (2023).
Article CAS PubMed Google Scholar
Al-Obaidi, A. H. R. et al. Structural and kinetic studies of spin crossover in an iron(II) complex with a novel tripodal ligand. Inorg. Chem. 35, 50555060 (1996).
Article CAS PubMed Google Scholar
McGarvey, J. J., Lawthers, I., Heremans, K. & Toftlund, H. Spin-state relaxation dynamics in iron(II) complexes: solvent on the activation and reaction and volumes for the 1A 5T interconversion. J. Chem. Soc. Chem. Commun. 29, 15751576 (1990).
Google Scholar
ShariAti, Y. & Vura-Weis, J. Ballistic S = 2 intersystem crossing in a cobalt cubane following ligand-field excitation probed by extreme ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 23, 2699026996 (2021).
View original post here:
Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl ... - Nature.com