Image Caption: Radio-optical overlay image of galaxy J1649+2635. Yellow is visible-light image; Blue is the radio image, indicating the presence of jets. Credit: Mao et al., NRAO/AUI/NSF, Sloan Digital Sky Survey
Provided by Dave Finley, National Radio Astronomy Observatory
With the help of citizen scientists, a team of astronomers has found an important new example of a very rare type of galaxy that may yield valuable insight on how galaxies developed in the early Universe. The new discovery technique promises to give astronomers many more examples of this important and mysterious type of galaxy.
The galaxy they studied, named J1649+2635, nearly 800 million light-years from Earth, is a spiral galaxy, like our own Milky Way, but with prominent jets of subatomic particles propelled outward from its core at nearly the speed of light. The problem is that spiral galaxies are not supposed to have such large jets.
The conventional wisdom is that such jets come only from elliptical galaxies that formed through the merger of spirals. We dont know how spirals can have these large jets, said Minnie Mao, of the National Radio Astronomy Observatory (NRAO).
J1649+2635 is only the fourth jet-emitting spiral galaxy discovered so far. The first was found in 2003, when astronomers combined a radio-telescope image from the Karl G. Jansky Very Large Array (VLA) and a visible-light image of the same object from the Hubble Space Telescope. The second was revealed in 2011 by images from the Sloan Digital Sky Survey and the VLA, and the third, found earlier this year, also was discovered by combining radio and visible-light images.
In order to figure out how these jets can be produced by the wrong kind of galaxy, we realized we needed to find more of them, Mao said.
To do that, the astronomers looked for help. That help came in the form of large collections of images from both radio and optical telescopes, and the hands-on assistance of volunteer citizen scientists. The volunteers are participants in an online project called the Galaxy Zoo, in which they look at images from the visible-light Sloan Digital Sky Survey and classify the galaxies as spiral, elliptical, or other types. Each galaxy image is inspected by multiple volunteers to ensure accuracy in the classification.
So far, more than 150,000 Galaxy Zoo participants have classified some 700,000 galaxies. Mao and her collaborators used a superclean subset of more than 65,000 galaxies, for which 95 percent of those viewing each galaxys image agreed on the classification. About 35,000 of those are spiral galaxies. J1649+2635 had been classified by 31 Galaxy Zoo volunteers, 30 of whom agreed that it is a spiral.
Next, the astronomers decided to cross-match the visible-light spirals with galaxies in a catalog that combines data from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty Centimeters survey, both done using the VLA. This job was done by Ryan Duffin, a University of Virginia undergraduate working as an NRAO summer student. Duffins cross-matching showed that J1649+2635 is both a spiral galaxy and has powerful twin radio jets.
Continued here:
Strange Galaxy Perplexes Astronomers, Citizen Scientists Lend A Hand