Star, any massive self-luminous celestial body of gas that shines by radiation derived from its internal energy sources. Of the tens of billions of trillions of stars composing the observable universe, only a very small percentage are visible to the naked eye. Many stars occur in pairs, multiple systems, and star clusters. The members of such stellar groups are physically related through common origin and are bound by mutual gravitational attraction. Somewhat related to star clusters are stellar associations, which consist of loose groups of physically similar stars that have insufficient mass as a group to remain together as an organization.
This article describes the properties and evolution of individual stars. Included in the discussion are the sizes, energetics, temperatures, masses, and chemical compositions of stars, as well as their distances and motions. The myriad other stars are compared to the Sun, strongly implying that our star is in no way special.
With regard to mass, size, and intrinsic brightness, the Sun is a typical star. Its approximate mass is 2 1030 kg (about 330,000 Earth masses), its approximate radius 700,000 km (430,000 miles), and its approximate luminosity 4 1033 ergs per second (or equivalently 4 1023 kilowatts of power). Other stars often have their respective quantities measured in terms of those of the Sun.
The table lists data pertaining to the 20 brightest stars, or, more precisely, stellar systems, since some of them are double (binary stars) or even triple stars. Successive columns give the name of the star, its brightness expressed in visual magnitude and spectral type (see below Classification of spectral types), the distance from Earth in light-years (a light-year is the distance that light waves travel in one Earth year: 9.46 trillion km, or 5.88 trillion miles), and the visual luminosity in terms of that of the Sun. All the primary stars (designated as the A component in the table) are intrinsically as bright as or brighter than the Sun; some of the companion stars are fainter.
Many stars vary in the amount of light they radiate. Stars such as Altair, Alpha Centauri A and B, and Procyon A are called dwarf stars; their dimensions are roughly comparable to those of the Sun. Sirius A and Vega, though much brighter, also are dwarf stars; their higher temperatures yield a larger rate of emission per unit area. Aldebaran A, Arcturus, and Capella A are examples of giant stars, whose dimensions are much larger than those of the Sun. Observations with an interferometer (an instrument that measures the angle subtended by the diameter of a star at the observers position), combined with parallax measurements (which yield a stars distance; see below Determining stellar distances), give sizes of 12 and 22 solar radii for Arcturus and Aldebaran A. Betelgeuse and Antares A are examples of supergiant stars. The latter has a radius some 300 times that of the Sun, whereas the variable star Betelgeuse oscillates between roughly 300 and 600 solar radii. Several of the stellar class of white dwarf stars, which have low luminosities and high densities, also are among the brightest stars. Sirius B is a prime example, having a radius one-thousandth that of the Sun, which is comparable to the size of Earth. Also among the brightest stars are Rigel A, a young supergiant in the constellation Orion, and Canopus, a bright beacon in the Southern Hemisphere often used for spacecraft navigation.
Test Your Knowledge
Stars: Explosions in Space
The Suns activity is apparently not unique. It has been found that stars of many types are active and have stellar winds analogous to the solar wind. The importance and ubiquity of strong stellar winds became apparent only through advances in spaceborne ultraviolet and X-ray astronomy as well as in radio and infrared surface-based astronomy.
X-ray observations that were made during the early 1980s yielded some rather unexpected findings. They revealed that nearly all types of stars are surrounded by coronas having temperatures of one million kelvins (K) or more. Furthermore, all stars seemingly display active regions, including spots, flares, and prominences much like those of the Sun (see sunspot; solar flare; solar prominence). Some stars exhibit starspots so large that an entire face of the star is relatively dark, while others display flare activity thousands of times more intense than that on the Sun.
The highly luminous hot, blue stars have by far the strongest stellar winds. Observations of their ultraviolet spectra with telescopes on sounding rockets and spacecraft have shown that their wind speeds often reach 3,000 km (roughly 2,000 miles) per second, while losing mass at rates up to a billion times that of the solar wind. The corresponding mass-loss rates approach and sometimes exceed one hundred-thousandth of a solar mass per year, which means that one entire solar mass (perhaps a tenth of the total mass of the star) is carried away into space in a relatively short span of 100,000 years. Accordingly, the most luminous stars are thought to lose substantial fractions of their mass during their lifetimes, which are calculated to be only a few million years.
Ultraviolet observations have proved that to produce such great winds the pressure of hot gases in a corona, which drives the solar wind, is not enough. Instead, the winds of the hot stars must be driven directly by the pressure of the energetic ultraviolet radiation emitted by these stars. Aside from the simple realization that copious quantities of ultraviolet radiation flow from such hot stars, the details of the process are not well understood. Whatever is going on, it is surely complex, for the ultraviolet spectra of the stars tend to vary with time, implying that the wind is not steady. In an effort to understand better the variations in the rate of flow, theorists are investigating possible kinds of instabilities that might be peculiar to luminous hot stars.
Britannica Lists & Quizzes
Geography List
Health & Medicine Quiz
Literature & Language List
Observations made with radio and infrared telescopes as well as with optical instruments prove that luminous cool stars also have winds whose total mass-flow rates are comparable to those of the luminous hot stars, though their velocities are much lowerabout 30 km (20 miles) per second. Because luminous red stars are inherently cool objects (having a surface temperature of about 3,000 K, or half that of the Sun), they emit very little detectable ultraviolet or X-ray radiation; thus, the mechanism driving the winds must differ from that in luminous hot stars. Winds from luminous cool stars, unlike those from hot stars, are rich in dust grains and molecules. Since nearly all stars more massive than the Sun eventually evolve into such cool stars, their winds, pouring into space from vast numbers of stars, provide a major source of new gas and dust in interstellar space, thereby furnishing a vital link in the cycle of star formation and galactic evolution. As in the case of the hot stars, the specific mechanism that drives the winds of the cool stars is not understood; at this time, investigators can only surmise that gas turbulence, magnetic fields, or both in the atmospheres of these stars are somehow responsible.
Strong winds also are found to be associated with objects called protostars, which are huge gas balls that have not yet become full-fledged stars in which energy is provided by nuclear reactions (see below Star formation and evolution). Radio and infrared observations of deuterium (heavy hydrogen) and carbon monoxide (CO) molecules in the Orion Nebula have revealed clouds of gas expanding outward at velocities approaching 100 km (60 miles) per second. Furthermore, high-resolution, very-long-baseline interferometry observations have disclosed expanding knots of natural maser (coherent microwave) emission of water vapour near the star-forming regions in Orion, thus linking the strong winds to the protostars themselves. The specific causes of these winds remain unknown, but if they generally accompany star formation, astronomers will have to consider the implications for the early solar system. After all, the Sun was presumably once a protostar too.
Distances to stars were first determined by the technique of trigonometric parallax, a method still used for nearby stars. When the position of a nearby star is measured from two points on opposite sides of Earths orbit (i.e., six months apart), a small angular (artificial) displacement is observed relative to a background of very remote (essentially fixed) stars. Using the radius of Earths orbit as the baseline, the distance of the star can be found from the parallactic angle, p. If p = 1 (one second of arc), the distance of the star is 206,265 times Earths distance from the Sunnamely, 3.26 light-years. This unit of distance is termed the parsec, defined as the distance of an object whose parallax equals one arc second. Therefore, one parsec equals 3.26 light-years. Since parallax is inversely proportional to distance, a star at 10 parsecs would have a parallax of 0.1. The nearest star to Earth, Proxima Centauri (a member of the triple system of Alpha Centauri), has a parallax of 0.7716, meaning that its distance is 1/0.7716, or 1.296, parsecs, which equals 4.23 light-years. The parallax of Barnards star, the next closest after the Alpha Centauri system, is 0.5483, so that its distance is nearly 6 light-years. Errors of such parallaxes are now typically 0.001. Thus, measurements of trigonometric parallaxes are useful for only the nearby stars within a few thousand light-years. In fact, of the approximately 100 billion stars in the Milky Way Galaxy (also simply called the Galaxy), only about 2.5 million are close enough to have their parallaxes measured with useful accuracy. For more distant stars, indirect methods are used; most of them depend on comparing the intrinsic brightness of a star (found, for example, from its spectrum or other observable property) with its apparent brightness.
Only three stars, Alpha Centauri, Procyon, and Sirius, are both among the 20 nearest and among the 20 brightest stars (see above). Ironically, most of the relatively nearby stars are dimmer than the Sun and are invisible without the aid of a telescope. By contrast, some of the well-known bright stars outlining the constellations have parallaxes as small as the limiting value of 0.001 and are therefore well beyond several hundred light-years distance from the Sun. The most luminous stars can be seen at great distances, whereas the intrinsically faint stars can be observed only if they are relatively close to Earth.
Although the lists of the brightest and the nearest stars pertain to only a very small number of stars, they nonetheless serve to illustrate some important points. The stars listed fall roughly into three categories: (1) giant stars and supergiant stars having sizes of tens or even hundreds of solar radii and extremely low average densitiesin fact, several orders of magnitude less than that of water (one gram per cubic centimetre); (2) dwarf stars having sizes ranging from 0.1 to 5 solar radii and masses from 0.1 to about 10 solar masses; and (3) white dwarf stars having masses comparable to that of the Sun but dimensions appropriate to planets, meaning that their average densities are hundreds of thousands of times greater than that of water.
These rough groupings of stars correspond to stages in their life histories (see below Later stages of evolution). The second category is identified with what is called the main sequence (see below Hertzsprung-Russell diagram) and includes stars that emit energy mainly by converting hydrogen into helium in their cores. The first category comprises stars that have exhausted the hydrogen in their cores and are burning hydrogen within a shell surrounding the core. The white dwarfs represent the final stage in the life of a typical star, when most available sources of energy have been exhausted and the star has become relatively dim.
The large number of binary stars and even multiple systems is notable. These star systems exhibit scales comparable in size to that of the solar system. Some, and perhaps many, of the nearby single stars have invisible (or very dim) companions detectable by their gravitational effects on the primary star; this orbital motion of the unseen member causes the visible star to wobble in its motion through space. Some of the invisible companions have been found to have masses on the order of 0.001 solar mass or less, which is in the range of planetary rather than stellar dimensions. Current observations suggest that they are genuine planets, though some are merely extremely dim stars (sometimes called brown dwarfs). Nonetheless, a reasonable inference that can be drawn from these data is that double stars and planetary systems are formed by similar evolutionary processes.
Accurate observations of stellar positions are essential to many problems of astronomy. Positions of the brighter stars can be measured very accurately in the equatorial system (the coordinates of which are called right ascension [, or RA] and declination [, or DEC] and are given for some epochfor example, 1950.0 or, currently, 2000.0). Fainter stars are measured by using photographic plates or electronic imaging devices (e.g., a charge-coupled device, or CCD) with respect to the brighter stars, and finally the entire group is referred to the positions of known external galaxies (see galaxy). These distant galaxies are far enough away to define an essentially fixed, or immovable, system, whereas in the Milky Way the positions of both bright and faint stars are affected over relatively short periods of time by galactic rotation and by their own motions through the Galaxy.
Accurate measurements of position make it possible to determine the movement of a star across the line of sight (i.e., perpendicular to the observer)its proper motion. The amount of proper motion, denoted by (in arc seconds per year), divided by the parallax of the star and multiplied by a factor of 4.74 equals the tangential velocity, VT, in kilometres per second in the plane of the celestial sphere.
The motion along the line of sight (i.e., toward the observer), called radial velocity, is obtained directly from spectroscopic observations. If is the wavelength of a characteristic spectral line of some atom or ion present in the star, and L the wavelength of the same line measured in the laboratory, then the difference , or L, divided by L equals the radial velocity, VR, divided by the velocity of light, cnamely, /L = VR/c. Shifts of a spectral line toward the red end of the electromagnetic spectrum (i.e., positive VR) indicate recession, and those toward the blue end (negative VR) indicate approach (see Doppler effect; redshift). If the parallax is known, measurements of and VR enable a determination of the space motion of the star. Normally, radial velocities are corrected for Earths rotation and for its motion around the Sun, so that they refer to the line-of-sight motion of the star with respect to the Sun.
Consider a pertinent example. The proper motion of Alpha Centauri is about 3.5 arc seconds, which, at a distance of 4.4 light-years, means that this star moves 0.00007 light-year in one year. It thus has a projected velocity in the plane of the sky of 22 km per second. (One kilometre is about 0.62 mile.) As for motion along the line of sight, Alpha Centauris spectral lines are slightly blueshifted, implying a velocity of approach of about 20 km per second. The true space motion, equal to (222 + 202)1/2 or about 30 km per second, suggests that this star will make its closest approach to the Sun (at three light-years distance) some 280 centuries from now.
Stellar brightnesses are usually expressed by means of their magnitudes, a usage inherited from classical times. A star of the first magnitude is about 2.5 times as bright as one of the second magnitude, which in turn is some 2.5 times as bright as one of the third magnitude, and so on. A star of the first magnitude is therefore 2.55 or 100 times as bright as one of the sixth magnitude. The magnitude of Sirius, which appears to an observer on Earth as the brightest star in the sky (save the Sun), is 1.4. Canopus, the second brightest, has a magnitude of 0.7, while the faintest star normally seen without the aid of a telescope is of the sixth magnitude. Stars as faint as the 30th magnitude have been measured with modern telescopes, meaning that these instruments can detect stars about four billion times fainter than can the human eye alone.
The scale of magnitudes comprises a geometric progression of brightness. Magnitudes can be converted to light ratios by letting ln and lm be the brightnesses of stars of magnitudes n and m; the logarithm of the ratio of the two brightnesses then equals 0.4 times the difference between themi.e., log(lm/ln) = 0.4(n m). Magnitudes are actually defined in terms of observed brightness, a quantity that depends on the light-detecting device employed. Visual magnitudes were originally measured with the eye, which is most sensitive to yellow-green light, while photographic magnitudes were obtained from images on old photographic plates, which were most sensitive to blue light. Today, magnitudes are measured electronically, using detectors such as CCDs equipped with yellow-green or blue filters to create conditions that roughly correspond to those under which the original visual and photographic magnitudes were measured. Yellow-green magnitudes are still often designated V magnitudes, but blue magnitudes are now designated B. The scheme has been extended to other magnitudes, such as ultraviolet (U), red (R), and near-infrared (I). Other systems vary the details of this scheme. All magnitude systems must have a reference, or zero, point. In practice, this is fixed arbitrarily by agreed-upon magnitudes measured for a variety of standard stars.
The actually measured brightnesses of stars give apparent magnitudes. These cannot be converted to intrinsic brightnesses until the distances of the objects concerned are known. The absolute magnitude of a star is defined as the magnitude it would have if it were viewed at a standard distance of 10 parsecs (32.6 light-years). Since the apparent visual magnitude of the Sun is 26.75, its absolute magnitude corresponds to a diminution in brightness by a factor of (2,062,650)2 and is, using logarithms, 26.75 + 2.5 log(2,062,650)2, or 26.75 + 31.57 = 4.82. This is the magnitude that the Sun would have if it were at a distance of 10 parsecsan object still visible to the naked eye, though not a very conspicuous one and certainly not the brightest in the sky. Very luminous stars, such as Deneb, Rigel, and Betelgeuse, have absolute magnitudes of 7 to 9, while one of the faintest known stars, the companion to the star with the catalog name BD + 44048, has an absolute visual magnitude of +19, which is about a million times fainter than the Sun. Many astronomers suspect that large numbers of such faint stars exist, but most of these objects have so far eluded detection.
Stars differ in colour. Most of the stars in the constellation Orion visible to the naked eye are blue-white, most notably Rigel (Beta Orionis), but Betelgeuse (Alpha Orionis) is a deep red. In the telescope, Albireo (Beta Cygni) is seen as two stars, one blue and the other orange. One quantitative means of measuring stellar colours involves a comparison of the yellow (visual) magnitude of the star with its magnitude measured through a blue filter. Hot, blue stars appear brighter through the blue filter, while the opposite is true for cooler, red stars. In all magnitude scales, one magnitude step corresponds to a brightness ratio of 2.512. The zero point is chosen so that white stars with surface temperatures of about 10,000 K have the same visual and blue magnitudes. The conventional colour index is defined as the blue magnitude, B, minus the visual magnitude, V; the colour index, B V, of the Sun is thus +5.47 4.82 = 0.65.
Problems arise when only one colour index is observed. If, for instance, a star is found to have, say, a B V colour index of 1.0 (i.e., a reddish colour), it is impossible without further information to decide whether the star is red because it is cool or whether it is really a hot star whose colour has been reddened by the passage of light through interstellar dust. Astronomers have overcome these difficulties by measuring the magnitudes of the same stars through three or more filters, often U (ultraviolet), B, and V (see UBV system).
Observations of stellar infrared light also have assumed considerable importance. In addition, photometric observations of individual stars from spacecraft and rockets have made possible the measurement of stellar colours over a large range of wavelengths. These data are important for hot stars and for assessing the effects of interstellar attenuation.
The measured total of all radiation at all wavelengths from a star is called a bolometric magnitude. The corrections required to reduce visual magnitudes to bolometric magnitudes are large for very cool stars and for very hot ones, but they are relatively small for stars such as the Sun. A determination of the true total luminosity of a star affords a measure of its actual energy output. When the energy radiated by a star is observed from Earths surface, only that portion to which the energy detector is sensitive and that can be transmitted through the atmosphere is recorded. Most of the energy of stars like the Sun is emitted in spectral regions that can be observed from Earths surface. On the other hand, a cool dwarf star with a surface temperature of 3,000 K has an energy maximum on a wavelength scale at 10000 angstroms () in the far-infrared, and most of its energy cannot therefore be measured as visible light. (One angstrom equals 1010 metre, or 0.1 nanometre.) Bright, cool stars can be observed at infrared wavelengths, however, with special instruments that measure the amount of heat radiated by the star. Corrections for the heavy absorption of the infrared waves by water and other molecules in Earths air must be made unless the measurements are made from above the atmosphere.
The hotter stars pose more difficult problems, since Earths atmosphere extinguishes all radiation at wavelengths shorter than 2900 . A star whose surface temperature is 20,000 K or higher radiates most of its energy in the inaccessible ultraviolet part of the electromagnetic spectrum. Measurements made with detectors flown in rockets or spacecraft extend the observable wavelength region down to 1000 or lower, though most radiation of distant stars is extinguished below 912 a region in which absorption by neutral hydrogen atoms in intervening space becomes effective.
To compare the true luminosities of two stars, the appropriate bolometric corrections must first be added to each of their absolute magnitudes. The ratio of the luminosities can then be calculated.
A stars spectrum contains information about its temperature, chemical composition, and intrinsic luminosity. Spectrograms secured with a slit spectrograph consist of a sequence of images of the slit in the light of the star at successive wavelengths. Adequate spectral resolution (or dispersion) might show the star to be a member of a close binary system, in rapid rotation, or to have an extended atmosphere. Quantitative determination of its chemical composition then becomes possible. Inspection of a high-resolution spectrum of the star may reveal evidence of a strong magnetic field.
Spectral lines are produced by transitions of electrons within atoms or ions. As the electrons move closer to or farther from the nucleus of an atom (or of an ion), energy in the form of light (or other radiation) is emitted or absorbed. The yellow D lines of sodium (see D-lines) or the H and K lines of ionized calcium (seen as dark absorption lines) are produced by discrete quantum jumps from the lowest energy levels (ground states) of these atoms. The visible hydrogen lines (the so-called Balmer series; see spectral line series), however, are produced by electron transitions within atoms in the second energy level (or first excited state), which lies well above the ground level in energy. Only at high temperatures are sufficient numbers of atoms maintained in this state by collisions, radiations, and so forth to permit an appreciable number of absorptions to occur. At the low surface temperatures of a red dwarf star, few electrons populate the second level of hydrogen, and thus the hydrogen lines are dim. By contrast, at very high temperaturesfor instance, that of the surface of a blue giant starthe hydrogen atoms are nearly all ionized and therefore cannot absorb or emit any line radiation. Consequently, only faint dark hydrogen lines are observed. The characteristic features of ionized metals such as iron are often weak in such hotter stars because the appropriate electron transitions involve higher energy levels that tend to be more sparsely populated than the lower levels. Another factor is that the general fogginess, or opacity, of the atmospheres of these hotter stars is greatly increased, resulting in fewer atoms in the visible stellar layers capable of producing the observed lines.
The continuous (as distinct from the line) spectrum of the Sun is produced primarily by the photodissociation of negatively charged hydrogen ions (H)i.e., atoms of hydrogen to which an extra electron is loosely attached. In the Suns atmosphere, when H is subsequently destroyed by photodissociation, it can absorb energy at any of a whole range of wavelengths and thus produce a continuous range of absorption of radiation. The main source of light absorption in the hotter stars is the photoionization of hydrogen atoms, both from ground level and from higher levels.
The physical processes behind the formation of stellar spectra are well enough understood to permit determinations of temperatures, densities, and chemical compositions of stellar atmospheres. The star studied most extensively is, of course, the Sun, but many others also have been investigated in detail.
The general characteristics of the spectra of stars depend more on temperature variations among the stars than on their chemical differences. Spectral features also depend on the density of the absorbing atmospheric matter, and density in turn is related to a stars surface gravity. Dwarf stars, with great surface gravities, tend to have high atmospheric densities; giants and supergiants, with low surface gravities, have relatively low densities. Hydrogen absorption lines provide a case in point. Normally, an undisturbed atom radiates a very narrow line. If its energy levels are perturbed by charged particles passing nearby, it radiates at a wavelength near its characteristic wavelength. In a hot gas, the range of disturbance of the hydrogen lines is very high, so that the spectral line radiated by the whole mass of gas is spread out considerably; the amount of blurring depends on the density of the gas in a known fashion. Dwarf stars such as Sirius show broad hydrogen features with extensive wings where the line fades slowly out into the background, while supergiant stars, with less-dense atmospheres, display relatively narrow hydrogen lines.
Most stars are grouped into a small number of spectral types. The Henry Draper Catalogue and the Bright Star Catalogue list spectral types from the hottest to the coolest stars (see Harvard classification system). These types are designated, in order of decreasing temperature, by the letters O, B, A, F, G, K, and M. This group is supplemented by R- and N-type stars (today often referred to as carbon, or C-type, stars) and S-type stars. The R-, N-, and S-type stars differ from the others in chemical composition; also, they are invariably giant or supergiant stars. With the discovery of brown dwarfsobjects that form like stars but do not shine through thermonuclear fusionthe system of stellar classification has been expanded to include spectral types L and T.
The spectral sequence O through M represents stars of essentially the same chemical composition but of different temperatures and atmospheric pressures. This simple interpretation, put forward in the 1920s by the Indian astrophysicist Meghnad N. Saha, has provided the physical basis for all subsequent interpretations of stellar spectra. The spectral sequence is also a colour sequence: the O- and B-type stars are intrinsically the bluest and hottest; the M-, R-, N-, and S-type stars are the reddest and coolest.
In the case of cool stars of type M, the spectra indicate the presence of familiar metals, including iron, calcium, magnesium, and also titanium oxide molecules (TiO), particularly in the red and green parts of the spectrum. In the somewhat hotter K-type stars, the TiO features disappear, and the spectrum exhibits a wealth of metallic lines. A few especially stable fragments of molecules such as cyanogen (CN) and the hydroxyl radical (OH) persist in these stars and even in G-type stars such as the Sun. The spectra of G-type stars are dominated by the characteristic lines of metals, particularly those of iron, calcium, sodium, magnesium, and titanium.
The behaviour of calcium illustrates the phenomenon of thermal ionization. At low temperatures a calcium atom retains all of its electrons and radiates a spectrum characteristic of the neutral, or normal, atom; at higher temperatures collisions between atoms and electrons and the absorption of radiation both tend to detach electrons and to produce singly ionized calcium atoms. At the same time, these ions can recombine with electrons to produce neutral calcium atoms. At high temperatures or low electron pressures, or both, most of the atoms are ionized. At low temperatures and high densities, the equilibrium favours the neutral state. The concentrations of ions and neutral atoms can be computed from the temperature, the density, and the ionization potential (namely, the energy required to detach an electron from the atom).
The absorption line of neutral calcium at 4227 is thus strong in cool M-type dwarf stars, in which the pressure is high and the temperature is low. In the hotter G-type stars, however, the lines of ionized calcium at 3968 and 3933 (the H and K lines) become much stronger than any other feature in the spectrum.
In stars of spectral type F, the lines of neutral atoms are weak relative to those of ionized atoms. The hydrogen lines are stronger, attaining their maximum intensities in A-type stars, in which the surface temperature is about 9,000 K. Thereafter, these absorption lines gradually fade as the hydrogen becomes ionized.
The hot B-type stars, such as Epsilon Orionis, are characterized by lines of helium and of singly ionized oxygen, nitrogen, and neon. In very hot O-type stars, lines of ionized helium appear. Other prominent features include lines of doubly ionized nitrogen, oxygen, and carbon and of trebly ionized silicon, all of which require more energy to produce.
In the more modern system of spectral classification, called the MK system (after the American astronomers William W. Morgan and Philip C. Keenan, who introduced it), luminosity class is assigned to the star along with the Draper spectral type. For example, the star Alpha Persei is classified as F5 Ib, which means that it falls about halfway between the beginning of type F (i.e., F0) and of type G (i.e., G0). The Ib suffix means that it is a moderately luminous supergiant. The star Pi Cephei, classified as G2 III, is a giant falling between G0 and K0 but much closer to G0. The Sun, a dwarf star of type G2, is classified as G2 V. A star of luminosity class II falls between giants and supergiants; one of class IV is called a subgiant.
Temperatures of stars can be defined in a number of ways. From the character of the spectrum and the various degrees of ionization and excitation found from its analysis, an ionization or excitation temperature can be determined.
A comparison of the V and B magnitudes (see above Stellar colours) yields a B V colour index, which is related to the colour temperature of the star. The colour temperature is therefore a measure of the relative amounts of radiation in two more or less broad wavelength regions, while the ionization and excitation temperatures pertain to the temperatures of strata wherein spectral lines are formed.
Provided that the angular size of a star can be measured (see below Stellar radii) and that the total energy flux received at Earth (corrected for atmospheric extinction) is known, the so-called brightness temperature can be found.
The effective temperature, Teff, of a star is defined in terms of its total energy output and radius. Thus, since T4eff is the rate of radiation per unit area for a perfectly radiating sphere and if L is the total radiation (i.e., luminosity) of a star considered to be a sphere of radius R, such a sphere (called a blackbody) would emit a total amount of energy equal to its surface area, 4R2, multiplied by its energy per unit area. In symbols, L = 4R2T4eff. This relation defines the stars equivalent blackbody, or effective, temperature.
Since the total energy radiated by a star cannot be directly observed (except in the case of the Sun), the effective temperature is a derived quantity rather than an observed one. Yet, theoretically, it is the fundamental temperature. If the bolometric corrections are known, the effective temperature can be found for any star whose absolute visual magnitude and radius are known. Effective temperatures are closely related to spectral type and range from about 40,000 K for hot O-type stars, through 5,800 K for stars like the Sun, to about 300 K for brown dwarfs.
Masses of stars can be found directly only from binary systems and only if the scale of the orbits of the stars around each other is known. Binary stars are divided into three categories, depending on the mode of observation employed: visual binaries, spectroscopic binaries, and eclipsing binaries.
Visual binaries can be seen as double stars with the telescope. True doubles, as distinguished from apparent doubles caused by line-of-sight effects, move through space together and display a common space motion. Sometimes a common orbital motion can be measured as well. Provided that the distance to the binary is known, such systems permit a determination of stellar masses, m1 and m2, of the two members. The angular radius, a, of the orbit (more accurately, its semimajor axis) can be measured directly, and, with the distance known, the true dimensions of the semimajor axis, a, can be found. If a is expressed in astronomical units, which is given by a (measured in seconds of arc) multiplied by the distance in parsecs, and the period, P, also measured directly, is expressed in years, then the sum of the masses of the two orbiting stars can be found from an application of Keplers third law (see Keplers laws of planetary motion). (An astronomical unit is the average distance from Earth to the Sun, 149,597,870.7 km [92,955,807.3 miles].) In symbols, (m1 + m2) = a3/P2 in units of the Suns mass. For example, for the binary system 70 Ophiuchi, P is 87.8 years, and the distance is 5.0 parsecs; thus, a is 22.8 astronomical units, and m1 + m2 = 1.56 solar masses. From a measurement of the motions of the two members relative to the background stars, the orbit of each star has been determined with respect to their common centre of gravity. The mass ratio, m2/(m1 + m2), is 0.42; the individual masses for m1 and m2, respectively, are then 0.90 and 0.66 solar mass.
The star known as 61 Cygni was the first whose distance was measured (via parallax by the German astronomer Friedrich W. Bessel in the mid-19th century). Visually, 61 Cygni is a double star separated by 83.2 astronomical units. Its members move around one another with a period of 653 years. It was among the first stellar systems thought to contain a potential planet, although this has not been confirmed and is now considered unlikely. Nevertheless, since the 1990s a variety of discovery techniques have confirmed the existence of more than 500 planets orbiting other stars (see below Binaries and extrasolar planetary systems).
Spectroscopic binary stars are found from observations of radial velocity. At least the brighter member of such a binary can be seen to have a continuously changing periodic velocity that alters the wavelengths of its spectral lines in a rhythmic way; the velocity curve repeats itself exactly from one cycle to the next, and the motion can be interpreted as orbital motion. In some cases, rhythmic changes in the lines of both members can be measured. Unlike visual binaries, the semimajor axes or the individual masses cannot be found for most spectroscopic binaries, since the angle between the orbit plane and the plane of the sky cannot be determined. If spectra from both members are observed, mass ratios can be found. If one spectrum alone is observed, only a quantity called the mass function can be derived, from which is calculated a lower limit to the stellar masses. If a spectroscopic binary is also observed to be an eclipsing system, the inclination of the orbit and often the values of the individual masses can be ascertained.
An eclipsing binary consists of two close stars moving in an orbit so placed in space in relation to Earth that the light of one can at times be hidden behind the other. Depending on the orientation of the orbit and sizes of the stars, the eclipses can be total or annular (in the latter, a ring of one star shows behind the other at the maximum of the eclipse) or both eclipses can be partial. The best known example of an eclipsing binary is Algol (Beta Persei), which has a period (interval between eclipses) of 2.9 days. The brighter (B8-type) star contributes about 92 percent of the light of the system, and the eclipsed star provides less than 8 percent. The system contains a third star that is not eclipsed. Some 20 eclipsing binaries are visible to the naked eye.
The light curve for an eclipsing binary displays magnitude measurements for the system over a complete light cycle. The light of the variable star is usually compared with that of a nearby (comparison) star thought to be fixed in brightness. Often, a deep, or primary, minimum is produced when the component having the higher surface brightness is eclipsed. It represents the total eclipse and is characterized by a flat bottom. A shallower secondary eclipse occurs when the brighter component passes in front of the other; it corresponds to an annular eclipse (or transit). In a partial eclipse neither star is ever completely hidden, and the light changes continuously during an eclipse.
The shape of the light curve during an eclipse gives the ratio of the radii of the two stars and also one radius in terms of the size of the orbit, the ratio of luminosities, and the inclination of the orbital plane to the plane of the sky.
If radial-velocity curves are also availablei.e., if the binary is spectroscopic as well as eclipsingadditional information can be obtained. When both velocity curves are observable, the size of the orbit as well as the sizes, masses, and densities of the stars can be calculated. Furthermore, if the distance of the system is measurable, the brightness temperatures of the individual stars can be estimated from their luminosities and radii. All of these procedures have been carried out for the faint binary Castor C (two red-dwarf components of the six-member Castor multiple star system) and for the bright B-type star Mu Scorpii.
Close stars may reflect each others light noticeably. If a small, high-temperature star is paired with a larger object of low surface brightness and if the distance between the stars is small, the part of the cool star facing the hotter one is substantially brightened by it. Just before (and just after) secondary eclipse, this illuminated hemisphere is pointed toward the observer, and the total light of the system is at a maximum.
The properties of stars derived from eclipsing binary systems are not necessarily applicable to isolated single stars. Systems in which a smaller, hotter star is accompanied by a larger, cooler object are easier to detect than are systems that contain, for example, two main-sequence stars (see below Hertzsprung-Russell diagram). In such an unequal system, at least the cooler star has certainly been affected by evolutionary changes, and probably so has the brighter one. The evolutionary development of two stars near one another does not exactly parallel that of two well-separated or isolated ones.
Eclipsing binaries include combinations of a variety of stars ranging from white dwarfs to huge supergiants (e.g., VV Cephei), which would engulf Jupiter and all the inner planets of the solar system if placed at the position of the Sun.
Some members of eclipsing binaries are intrinsic variables, stars whose energy output fluctuates with time (see below Variable stars). In many such systems, large clouds of ionized gas swirl between the stellar members. In others, such as Castor C, at least one of the faint M-type dwarf components might be a flare star, one in which the brightness can unpredictably and suddenly increase to many times its normal value (see below Peculiar variables).
Near the Sun, most stars are members of binaries, and many of the nearest single stars are suspected of having companions. Although some binary members are separated by hundreds of astronomical units and others are contact binaries (stars close enough for material to pass between them), binary systems are most frequently built on the same scale as that of the solar systemnamely, on the order of about 10 astronomical units. The division in mass between two components of a binary seems to be nearly random. A mass ratio as small as about 1:20 could occur about 5 percent of the time, and under these circumstances a planetary system comparable to the solar system is able to form.
The formation of double and multiple stars on the one hand and that of planetary systems on the other seem to be different facets of the same process. Planets are probably produced as a natural by-product of star formation. Only a small fraction of the original nebula matter is likely to be retained in planets, since much of the mass and angular momentum is swept out of the system. Conceivably, as many as 100 million stars could have bona fide planets in the Milky Way Galaxy.
Individual planets around other starsi.e., extrasolar planetsare very difficult to observe directly because a star is always much brighter than its attendant planet. Jupiter, for example, would be only one-billionth as bright as the Sun and appear so close to it as to be undetectable from even the nearest star. If candidate stars are treated as possible spectroscopic binaries, however, then one may look for a periodic change in the stars radial velocity caused by a planet swinging around it. The effect is very smalleven Jupiter would cause a change in the apparent radial velocity of the Sun of only about 10 metres (33 feet) per second spread over Jupiters orbital period of about 12 years at best. Current techniques using very large telescopes to study fairly bright stars can measure radial velocities with a precision of a few metres per second, provided that the star has very sharp spectral lines, such as is observed for Sun-like stars and stars of types K and M. This means that at present the radial-velocity method normally can detect only massive Jupiter-like extrasolar planets. Planets like Earth, 300 times less massive, would cause too small a change in radial velocity to be detectable presently. Moreover, the closer the planet is to its parent star, the greater and quicker the velocity swing, so that detection of giant planets close to a star is favoured over planets farther out. And, because B- and A-type stars do not have spectral lines that allow precise velocity measurements, this method cannot reveal anything about their having planets. Finally, even when a planet is detected, the usual spectroscopic binary problem of not knowing the angle between the orbit plane and that of the sky allows only a minimum mass to be assigned to the planet.
One exception to this last problem is HD 209458, a seventh-magnitude G0 V star about 150 light-years away with a planetary object orbiting it every 3.5 days. Soon after the companion was discovered in 1999 by its effect on the stars radial velocity, it also was found to be eclipsing the star, meaning that its orbit is oriented almost edge-on toward Earth. This fortunate circumstance, as well as observations of spectral lines in the planets atmosphere, allowed determination of the planets mass and radius0.64 and 1.38 times those of Jupiter, respectively. These numbers imply that the planet is even more of a giant than Jupiter itself. What was unexpected is its proximity to the parent starmore than 100 times closer than Jupiter is to the Sun, raising the question of how a giant gaseous planet that close can survive the stars radiation. The fact that many other extrasolar planets have been found to have orbital periods measured in days rather than years, and thus to be very close to their parent stars, suggests that the HD 209458 case is not unusual. There are also some confirmed cases of planets around supernova remnants called pulsars, although whether the planets preceded the supernova explosions that produced the pulsars or were acquired afterward remains to be determined.
The first extrasolar planets were discovered in 1992. More than 500 extrasolar planets were known by the early years of the 21st century, with more such discoveries being added regularly. (For additional information on extrasolar planets and systems, see extrasolar planet; planet; solar system: Studies of other solar systems.)
In addition to the growing evidence for existence of extrasolar planets, space-based observatories designed to detect infrared radiation have found more than 100 young nearby stars (including Vega, Fomalhaut and Beta Pictoris) to have disks of warm matter orbiting them. This matter is composed of myriad particles mostly about the size of sand grains and might be taking part in the first stage of planetary formation.
The mass of most stars lies within the range of 0.3 to 3 solar masses. The star with the largest mass determined to date is R136a1, a giant of about 265 solar masses that had as much as 320 solar masses when it was formed. There is a theoretical upper limit to the masses of nuclear-burning stars (the Eddington limit), which limits stars to no more than a few hundred solar masses. On the low mass side, most stars seem to have at least 0.1 solar mass. The theoretical lower mass limit for an ordinary star is about 0.075 solar mass, for below this value an object cannot attain a central temperature high enough to enable it to shine by nuclear energy. Instead, it may produce a much lower level of energy by gravitational shrinkage. If its mass is not much below the critical 0.075 solar mass value, it will appear as a very cool, dim star known as a brown dwarf. Its evolution is simply to continue cooling toward eventual extinction. At still somewhat lower masses, the object would be a giant planet. Jupiter, with a mass roughly 0.001 that of the Sun, is just such an object, emitting a very low level of energy (apart from reflected sunlight) that is derived from gravitational shrinkage.
Brown dwarfs were late to be discovered, the first unambiguous identification having been made in 1995. It is estimated, however, that hundreds must exist in the solar neighbourhood. An extension of the spectral sequence for objects cooler than M-type stars has been constructed, using L for warmer brown dwarfs, T for cooler ones, and Y for the coolest. The presence of methane in the T brown dwarfs and of ammonia in the Y brown dwarfs emphasizes their similarity to giant planets. (For additional discussion of the topic, see eclipse: Eclipsing binary stars.)
Angular sizes of bright red giant and supergiant stars were first measured directly during the 1920s, using the principle of interference of light. Only bright stars with large angular size can be measured by this method. Provided the distance to the star is known, the physical radius can be determined.
Eclipsing binaries also provide extensive data on stellar dimensions. The timing of eclipses provides the angular size of any occulting object, and so analyzing the light curves of eclipsing binaries can be a useful means of determining the dimensions of either dwarf or giant stars. Members of close binary systems, however, are sometimes subject to evolutionary effects, mass exchange, and other disturbances that change the details of their spectra.
A more recent method, called speckle interferometry, has been developed to reproduce the true disks of red supergiant stars and to resolve spectroscopic binaries such as Capella. The speckle phenomenon is a rapidly changing interference-diffraction effect seen in a highly magnified diffraction image of a star observed with a large telescope.
If the absolute magnitude of a star and its temperature are known, its size can be computed. The temperature determines the rate at which energy is emitted by each unit of area, and the total luminosity gives the total power output. Thus, the surface area of the star and, from it, the radius of the object can be estimated. This is the only way available for estimating the dimensions of white dwarf stars. The chief uncertainty lies in choosing the temperature that represents the rate of energy emission.
Main-sequence stars range from very luminous objects to faint M-type dwarf stars, and they vary considerably in their surface temperatures, their bolometric (total) luminosities, and their radii. Moreover, for stars of a given mass, a fair spread in radius, luminosity, surface temperature, and spectral type may exist. This spread is produced by stellar evolutionary effects and tends to broaden the main sequence. Masses are obtained from visual and eclipsing binary systems observed spectroscopically. Radii are found from eclipsing binary systems, from direct measurements in a few favourable cases, by calculations, and from absolute visual magnitudes and temperatures.
Average values for radius, bolometric luminosity, and mass are meaningful only for dwarf stars. Giant and subgiant stars all show large ranges in radius for a given mass. Conversely, giant stars of very nearly the same radius, surface temperature, and luminosity can have appreciably different masses.
Some of the most important generalizations concerning the nature and evolution of stars can be derived from correlations between observable properties and from certain statistical results. One of the most important of these correlations concerns temperature and luminosityor, equivalently, colour and magnitude.
When the absolute magnitudes of stars, or their intrinsic luminosities on a logarithmic scale, are plotted in a diagram against temperature or, equivalently, against the spectral types, the stars do not fall at random on the diagram but tend to congregate in certain restricted domains. Such a plot is usually called a Hertzsprung-Russell diagram, named for the early 20th-century astronomers Ejnar Hertzsprung of Denmark and Henry Norris Russell of the United States, who independently discovered the relations shown in it. As is seen in the diagram, most of the congregated stars are dwarfs lying closely around a diagonal line called the main sequence. These stars range from hot, O- and B-type, blue objects at least 10,000 times brighter than the Sun down through white A-type stars such as Sirius to orange K-type stars such as Epsilon Eridani and finally to M-type red dwarfs thousands of times fainter than the Sun. The sequence is continuous; the luminosities fall off smoothly with decreasing surface temperature; the masses and radii decrease but at a much slower rate; and the stellar densities gradually increase.
The second group of stars to be recognized was a group of giantssuch objects as Capella, Arcturus, and Aldebaranwhich are yellow, orange, or red stars about 100 times as bright as the Sun and have radii on the order of 1030 million km (about 620 million miles, or 1540 times as large as the Sun). The giants lie above the main sequence in the upper right portion of the diagram. The category of supergiants includes stars of all spectral types; these stars show a large spread in intrinsic brightness, and some even approach absolute magnitudes of 7 or 8. A few red supergiants, such as the variable star VV Cephei, exceed in size the orbit of Jupiter or even that of Saturn, although most of them are smaller. Supergiants are short-lived and rare objects, but they can be seen at great distances because of their tremendous luminosity.
Subgiants are stars that are redder and larger than main-sequence stars of the same luminosity. Many of the best known examples are found in close binary systems where conditions favour their detection.
The white dwarf domain lies about 10 magnitudes below the main sequence. These stars are in the last stages of their evolution (see below End states of stars).
The spectrum-luminosity diagram has numerous gaps. Few stars exist above the white dwarfs and to the left of the main sequence. The giants are separated from the main sequence by a gap named for Hertzsprung, who in 1911 became the first to recognize the difference between main-sequence and giant stars. The actual concentration of stars differs considerably in different parts of the diagram. Highly luminous stars are rare, whereas those of low luminosity are very numerous.
The spectrum-luminosity diagram applies to the stars in the galactic spiral arm in the neighbourhood of the Sun and represents what would be obtained if a composite Hertzsprung-Russell diagram were constructed combining data for a large number of the star groups called open (or galactic) star clusters, as, for example, the double cluster h and Persei, the Pleiades, the Coma cluster, and the Hyades. It includes very young stars, a few million years old, as well as ancient stars perhaps as old as 10 billion years.
By contrast, another Hertzsprung-Russell diagram exhibits the type of temperature-luminosity, or colour-magnitude, relation characteristic of stars in globular clusters, in the central bulge of the Galaxy, and in elliptical external galaxiesnamely, of the so-called stellar Population II (see Populations I and II). (In addition to these oldest objects, Population II includes other very old stars that occur between the spiral arms of the Galaxy and at some distance above and below the galactic plane.) Because these systems are very remote from the observer, the stars are faint, and their spectra can be observed only with difficulty. As a consequence, their colours rather than their spectra must be measured. Since the colours are closely related to surface temperature and therefore to spectral types, equivalent spectral types may be used, but it is stellar colours, not spectral types, that are observed in this instance (see colour-magnitude diagram).
The differences between the two Hertzsprung-Russell diagrams are striking. In the second there are no supergiants, and, instead of a domain at an absolute magnitude of about 0, the giant stars form a branch that starts high and to the right at about 3.5 for very red stars and flows in a continuous sequence until it reaches an absolute magnitude of about 0. At that point the giant branch splitsa main band of stars, all about the same colour, proceeds downward (i.e., to fainter stars) to a magnitude of about +3 and then connects to the main sequence at about +4 by way of a narrow band. The main sequence of Population II stars extends downward to fainter, redder stars in much the same way as in the spiral-arm Population I stars. (Population I is the name given to the stars found within the spiral arms of the Milky Way system and other galaxies of the same type. Containing stars of all ages, from those in the process of formation to defunct white dwarfs, Population I stars are, nonetheless, always associated with the gas and dust of the interstellar medium.) The main sequence ends at about spectral type G, however, and does not extend up through the A, B, and O spectral types, though occasionally a few such stars are found in the region normally occupied by the main sequence.
The other band of stars formed from the split of the giant branch is the horizontal branch, which falls near magnitude +0.6 and fills the aforementioned Hertzsprung gap, extending to increasingly blue stars beyond the RR Lyrae stars (see below Variable stars), which are indicated by the crosshatched area in the diagram. Among these blue hot stars are found novas and the nuclei of planetary nebulas, the latter so called because their photographic image resembles that of a distant planet. Not all globular clusters show identical colour-magnitude diagrams, which may be due to differences in the cluster ages or other factors. (For a discussion of other aspects of colour-magnitude diagrams for star clusters, see star cluster: Globular cluster.)
The shapes of the colour-magnitude diagrams permit estimates of globular-cluster ages. Stars more massive than about 1.3 solar masses have evolved away from the main sequence at a point just above the position occupied by the Sun. The time required for such a star to exhaust the hydrogen in its core is about 56 billion years, and the cluster must be at least as old. More ancient clusters have been identified. In the Galaxy, globular clusters are all very ancient objects, having ages within a few billion years of the average of 11 billion years. In the Magellanic Clouds, however, clusters exist that resemble globular ones, but they contain numerous blue stars and therefore must be relatively young.
Open clusters in the spiral arms of the Galaxyextreme Population Itell a somewhat different story. A colour-magnitude diagram can be plotted for a number of different open clustersfor example, the double cluster h and Persei, the Pleiades, Praesepe, and M67with the main feature distinguishing the clusters being their ages. The young cluster h and Persei, which is a few million years old, contains stars ranging widely in luminosity. Some stars have already evolved into the supergiant stage (in such a diagram the top of the main sequence is bent over). The stars of luminosity 10,000 times greater than that of the Sun have already largely depleted the hydrogen in their cores and are leaving the main sequence.
The brightest stars of the Pleiades cluster, aged about 100 million years, have begun to leave the main sequence and are approaching the critical phase when they will have exhausted all the hydrogen in their cores. There are no giants in the Pleiades. Presumably, the cluster contained no stars as massive as some of those found in h and Persei.
The cluster known as Praesepe, or the Beehive, at an age of 790 million years, is older than the Pleiades. All stars much more luminous than the first magnitude have begun to leave the main sequence; there are some giants. The Hyades, about 620 million years old, displays a similar colour-magnitude array. These clusters contain a number of white dwarfs, indicating that the initially most luminous stars have already run the gamut of evolution. In a very old cluster such as M67, which is 4.5 billion years old, all of the bright main-sequence stars have disappeared.
The colour-magnitude diagrams for globular and open clusters differ quantitatively because the latter show a wider range of ages and differ in chemical composition. Most globular clusters have smaller metal-to-hydrogen ratios than do open clusters or the Sun. The gaps between the red giants and blue main-sequence stars of the open clusters (Population I) often contain unstable stars such as variables. The Cepheid variable stars, for instance, fall in these gaps (see below Variable stars).
The giant stars of the Praesepe cluster are comparable to the brightest stars in M67. The M67 giants have evolved from the main sequence near an absolute magnitude of +3.5, whereas the Praesepe giants must have masses about twice as great as those of the M67 giants. Giant stars of the same luminosity may therefore have appreciably different masses.
Of great statistical interest is the relationship between the luminosities of the stars and their frequency of occurrence. The naked-eye stars are nearly all intrinsically brighter than the Sun, but the opposite is true for the known stars within 20 light-years of the Sun. The bright stars are easily seen at great distances; the faint ones can be detected only if they are close. Only if stars of magnitude +11 were a billion times more abundant than stars of magnitude 4 could they be observed to some fixed limit of apparent brightness.
The luminosity function depends on population type. The luminosity function for pure Population II differs substantially from that for pure Population I. There is a small peak near absolute magnitude +0.6, corresponding to the horizontal branch for Population II, and no stars as bright as absolute magnitude 5. The luminosity function for pure Population I is evaluated best from open star clusters, the stars in such a cluster being at about the same distance. The neighbourhood of the Sun includes examples of both Populations I and II.
A plot of mass against bolometric luminosity for visual binaries for which good parallaxes and masses are available shows that for stars with masses comparable to that of the Sun the luminosity, L, varies as a power, 3 + , of the mass M. This relation can be expressed as L = (M)3+. The power differs for substantially fainter or much brighter stars.
This mass-luminosity correlation applies only to unevolved main-sequence stars. It fails for giants and supergiants and for the subgiant (dimmer) components of eclipsing binaries, all of which have changed considerably during their lifetimes. It does not apply to any stars in a globular cluster not on the main sequence, or to white dwarfs that are abnormally faint for their masses.
The mass-luminosity correlation, predicted theoretically in the early 20th century by the English astronomer Arthur Eddington, is a general relationship that holds for all stars having essentially the same internal density and temperature distributionsi.e., for what are termed the same stellar models.
Continue reading here:
star | astronomy | Britannica.com