Debate about the security implications of cutting-edge biotechnology is afflicted with a fundamental blind spota lack of attention to growing military interest in the field. This blind spot is evident in discussions about, for example, gene-editing technology (in relation both to gene drives and to human modification). Such debate has tended to focus on the idea that research and technology might be directly misused by the bad guysand has tended to ignore broader questions about how the ongoing militarization of cutting-edge fields in biology might contribute to insecurity.
Last year James Clapper, when he was US director of national intelligence, labelled emerging population-level genetic-modification techniques as potential weapons of mass destruction. A number of states, in the context of the Biological and Toxin Weapons Convention, have in recent years voiced concerns about state investment into biotechnology. Yet ethical reviews of gene editing to date in the United States have barely touched upon concerns about growing military interest in cutting-edge biotechas reflected in their absence from recent reports on both environmental and human modificationbiotechnology. Such omissions are in keeping with broad trends where US discussions about the potential for misusing biotechnology are concerned.
To be sure, the risk that benignly intended innovations might be directly misused by terrorists is a legitimate, if often overblown, security concern. But other issues merit concern as well. One such issue is the risk that military investment in biotechnology will adversely affect research priorities. Another is the possibility that military investment into defensive or public health projects by one state might be misinterpreted by other states as having offensive potential.
In the same vein, the scarcity of publicly available information about military research into biotechnology might fuel public distrust of valuable and well-intended work. It is clear, for example, that research into preventing, identifying, and treating infectious diseases by various militaries around the world will continue to provide broader spin-off benefitsbut publics in some states might be unsure why military rather than public health institutions lead such work.
A path toward addressing these concerns has already been established by the synthetic biology communityespecially in terms of its preemptive engagement with the security concerns that scientists entertain. However, even in this arena there has been a hesitance to address the issue of militarization.
Synthetic biology as a security laboratory. Synthetic biology is a field of scientific and technological development that has greatly extended humankinds abilities to manipulate biological organisms and processes. While genetic modification techniques have existed since the 1970s, synthetic biology is allowing for much more ambitious projectsoffering new ways of getting to grips with the complexity of biology and of developing a wide range of new technologies.
A watershed moment for this field was the First International Meeting of Synthetic Biology (SB 1.0), held at MIT in 2004. Central to the vision of the scientists involved was radically modifying naturally occurring organisms and processes through the application of engineering principles; the undertaking involved the convergence of a range of fields, including genetic engineering and computing. The appeal of the synthetic biology vision was broadand a number of subfields emerged under the synthetic biology banner in both the United States and Europe. Private and public investors committed significant resources to the establishment of research centers and networks, as well as to the development and commercialization of foundational technologies such as gene synthesis. This investment contributed to a number of early successes and landmark initiatives.
The initiatives included the establishment of a digital BioBricks repository, which today contains the genetic sequences of some 20,000 standardized biological parts, such as proteins that are involved in gene-expression within bacteria. This repository was established as a means for scientists to assert discovery rights, while also allowing for the rapid sharing and reuse of these discoveries by others. These biological parts are developed and utilized by the synthetic biology research community and in an annual student competition that showcases both the potential applications of research in the field and the rate at which the technology is advancing. Last years winners included a team based at Imperial College London that developed a tool to help scientists engineer production systems using multiple types of cells, a German team working on biological tissue printing, and a Chinese team that developed a design to detect poisons in traditional medicines.
Since its inception, synthetic biology has been a darling of scientific journalismwhich has made it challenging for civil society and regulators, when thinking through the fields societal implications, to separate hype from reality. Synthetic biology has also become symbolic of deeper questions about the way that science is supported and governed. The issues have included broad transformations in how societies engage with innovation, an increased emphasis on the need to open up the innovation process to public scrutiny, and the need for science to be more responsive to public needs. Security concerns have been a consistent aspect of these broader debates.
In no small part, this is a consequence of synthetic biologys having been established in the United States shortly after the 9/11 and Amerithrax attacks. At the time, regulators and funders in the United States were twitchy about the actual and perceived security concerns surrounding this fledgling field. The National Science Foundation, a major early investor in synthetic biology, set engagement with biosecurity concerns as a prerequisite for funding. The FBI, following through on recommendations by a blue-ribbon biosecurity board on synthetic biology, has also taken a proactive approach to reaching out to the community. The lead agent on this issue, Edward You, was recently profiledby MIT Technology Review as Americas Top Bioterror Cop.
Another key factor in the synthetic biology communitys continued engagement with security issues has been the commitment of prominent scientists. Stanford University bioengineering professor Drew Endy, who has been involved in numerous reviews of the field, has also been a leading advocate for biosecurity engagement by the next generation of synthetic biologists. Endy established the annual i-GEM competition (the acronym stands for international genetically engineered machine). This team competition for students includes a biosecurity review process providing young scientists an opportunity to consider the potential security implications of their work. Harvard University synthetic biologist George Church has also been a notable contributor on these issues. His public provocations over the years have repeatedly kick-started public debate. In addition, a number of social scientists have formed enduring professional relationships with practitioners of synthetic biologyand much of their work has focused on changing the way that scientists engage with potential risks and with the public.
The synthetic biology community has been central to the most intensive debate about the misuse of civilian biotechnology ever seena debate that has been under way since at least 2003. Engagement by scientists, civil society, funders, and regulators has spurred a raft of technology assessment initiatives and regulatory reviews in both the United States and Europe. In addition, the integration of ethical and security review into I-GEM, the annual undergraduate competition, has sensitized a generation of scientists to questions about their societal roles. Such initiatives have also helped raise the bar for some newer fields. Xenobiology, for exampleoriginally a subfield of synthetic biologyis currently seeking to establish its own disciplinary identity, and security implications are already being discussed as that fields research agenda is set. The security engagement displayed by the synthetic biology community appears to be catching.
At the same time, its important to remember the limitations that such communities face. Scientists envision and design techno-scientific fieldsbut they are subject to the whims of national-level funders and regulators. Its also very difficult for scientists to control how a technology will be used and commodified once the cat is out of the lab. This was illustrated at a recent synthetic biology meeting in Singapore. Endy, in his opening remarks, presented an egalitarian vision for future industrialization of synthetic biology technologies. But Randal J. Kirk, chairman of the biotech firm Intrexon (the main industry sponsor of the conference), delivered a slick presentation that provided a much more corporate vision of the fields future. This was a reminder of the central role that the market will play in synthetic biology investmentand of the role that industry will increasingly play in shaping regulation and public understanding of this area of biotechnology.
Jane Calvert, a University of Edinburgh social scientist who has been working in synthetic biology for over a decade, argued at the Singapore meeting that the field is closing as a creative spacethat the parameters of success are narrowing around what is commercially viable. Military involvement in synthetic biology presents similar dynamicsand discussions of this issue throughout biotechnology need to be promoted and internationalized. Military involvement in technology is not a bad thingand it is also inevitable. Still, legitimate concerns surround the ability of the military sector to skew research priorities. And of course, military involvement could also signal attempts to harness new biotechnology for hostile purposes. In those nations leading the way in terms of innovation, scientists might need to help ensure greater transparency regarding the scope and purposes of military investment in their fields.
Work in synthetic biology has created a community of scientists sensitized to such issues and willing to discuss them. The focus of discussion, however, needs to broaden beyond the national-level security preoccupations that currently dominate. One step in this direction would be to establish international dialogue among scientists specifically on the issue of biotechnology militarization. Such debates should not be limited to the existing preoccupation with pathogens, but rather should cover broader areas of military investment. This sort of dialogue might allow shared principles regarding state investment in biotechnology to be identified and articulatedprinciples that would both guide research priorities and establish hard limits about what is permissible. Such discussions could draw upon relevant principles in international human rights, humanitarian, and arms control lawincluding, but not limited to, treaties specifically dealing with biological, chemical, and environmental warfare. Such an outcome would give scientists a louder voice in conversations about military involvement in biotechnologywhile also reducing the stigma associated with invaluable military research and reinforcing the stigma against the weaponization of biotechnology.
The rest is here:
We've got to talk: The militarization of biotechnology - Bulletin of the Atomic Scientists
- Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process [Last Updated On: August 17th, 2024] [Originally Added On: April 29th, 2010]
- A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2010]
- Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance [Last Updated On: August 17th, 2024] [Originally Added On: May 25th, 2010]
- Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: May 28th, 2010]
- Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant [Last Updated On: August 17th, 2024] [Originally Added On: June 10th, 2010]
- Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering [Last Updated On: August 17th, 2024] [Originally Added On: June 16th, 2010]
- Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2010]
- Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: July 2nd, 2010]
- Ethanol production from mixtures of wheat straw and wheat meal [Last Updated On: August 17th, 2024] [Originally Added On: July 6th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding [Last Updated On: August 17th, 2024] [Originally Added On: August 3rd, 2010]
- Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2010]
- Automated saccharification assay for determination of digestibility in plant materials [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation [Last Updated On: August 17th, 2024] [Originally Added On: November 28th, 2010]
- Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: February 6th, 2011]
- Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2011]
- Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides [Last Updated On: August 17th, 2024] [Originally Added On: March 17th, 2011]
- Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression [Last Updated On: August 17th, 2024] [Originally Added On: April 17th, 2011]
- Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenome library [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 22nd, 2011]
- Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- Aiming the complete utilization of sugar beet pulp through mild acid and hydrothermal pretreatment followed by enzymatic digestion [Last Updated On: August 17th, 2024] [Originally Added On: June 5th, 2011]
- Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- In-situ lignocellulosic unlocking mechanism in termite for carbohydrate hydrolysis: critical lignin modification [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries to support development of a high-throughput pretreatment system [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Simultaneous saccharification and co-fermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases [Last Updated On: August 17th, 2024] [Originally Added On: August 7th, 2011]
- Functional characterization of cellulases identified from the cow rumen fungus neocallimastix patriciarum W5 by transcriptomic and secretomic analyses [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum [Last Updated On: August 17th, 2024] [Originally Added On: August 28th, 2011]
- Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases [Last Updated On: August 17th, 2024] [Originally Added On: September 4th, 2011]
- Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- Impact of pretreatment and downstream processing technologies on economics and energy use in cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- A kinetic model for quantitative evaluation of the effect of H2 and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- High level secretion of cellobiohydrolases by Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis [Last Updated On: August 17th, 2024] [Originally Added On: September 25th, 2011]
- Bio-conversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14 [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Biology: Biotechnology: Gene Cloning [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- What Does a Biotechnology Course Look Like? [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Demo day by SCT Biotechnology Branch 2011 passouts [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Biotechnology Program Video [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Introduction To Industrial Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- MSc Molecular Biotechnology -- Come to the School of Biosciences, University of Birmingham, UK - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Oxbridge Biotechnology Roundtable - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- fermentation technology (biotechnology practical class) UNIVERSITY OF MALAYA - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Biotechnology: Learn about New Biological Medicines in Development - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The promoting effect of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BiotechNaukri #Biotechnology Jobs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- bio-technology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BioBytes - Biotechnology and food flavoring - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Stine Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 22nd, 2011]
- Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- A cellular automaton model of crystalline cellulose hydrolysis by cellulases [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Application of a Burkholderia cepacia lipase-immobilized silica monolith to the batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Algal Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- Techniques of Biotechnology, Part 1 of 4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Biotechnology days in Macedonia II - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- BioBytes: Forensics and Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Faces of Biotechnology: What is Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Mucosal and systemic responses/Dr Thomas Muster-AVIR Green Hills Biotechnology-World Vaccine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Unlimited Income Potential in Bio-Technology, Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Islam Ahmadiyya Questions: Biotechnology, Portraits, Ring, Prayers, Dreams, Adopted Children - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]