CRISPR is a gene-editing tool that enables scientists to do things like turn off the enzyme that makes mushrooms turn brown when bruised or cut.
Brand X Pictures/Thinkstock
In April 2016, an unlikely thing made headlines: the common white button mushroom.
Gene-Edited CRISPR Mushroom Escapes US Regulation, wrote Nature.
Whats a GMO? Apparently Not These Magic Mushrooms, wrote Grist.
And from MIT Technology Review: Who Approved the Genetically Engineered Foods Coming to Your Plate? No One.
The white button mushroom in question looked like any other in the grocery store, with one imperceptible difference: It was missing a gene that codes for an enzyme called PPO, or polyphenol oxidase, which makes mushrooms turn brown when theyre bruised or cut. Scientists at Pennsylvania State University essentially turned off this PPO geneone of six in the mushroomwith a new gene-editing tool called CRISPR, or clustered regularly interspaced short palindromic repeats. CRISPR is a bit like a biological word processor. It zooms to a specific genetic sequence in any living thingthe biotech equivalent of using Ctrl+F. Then, the tool can add, delete, or replace genetic information like an editor tweaking a sentence.
While the Penn State scientists used biotechnology to manipulate the mushrooms genes, their work didnt trigger government oversight, in part because current law doesnt necessarily apply to food made with CRISPR. The case highlights a chronic challenge with biotechnology regulation: It cant keep up with the fast pace of innovation. No surprise there: The relevant laws havent had a proper update in more than 30 years.
Not only that, the regulations are cobbled together, says Jaydee Hanson, a senior policy analyst at Center for Food Safety, an advocacy group. If you were writing a sci-fi novel, your editor would say, Thats just too unbelievable. No one would ever do it that way.
Your Cheat-Sheet Guide to Synthetic Biology
What Exactly Is Synthetic Biology? Its Complicated.
Can You Patent an Organism? The Synthetic Biology Community Is Divided.
The U.S. Regulations for Biotechnology Are Woefully Out of Date
The CRISPR mushroom doesnt appear to pose a health or environmental threat, so in this case the regulatory gaps may not matter. But what about a potentially damaging biotech creation made the same way? How will we regulate synthetic organisms made with technologies that dont yet exist? These questions arent just about food, as important as that istheyre also key for any biotech or synbio product, such as mosquitoes engineered to curb diseases and microbes made from scratch.
Depending on whom you talk to, the CRISPRd mushroom isnt strictly defined as synthetic biology. Still, genetic technology exists on a continuum, and the regulatory conundrum the mushroom raises is relevant to any organism tweaked in a lab.
Over the past two years, policymakers had a fleeting chance to improve biotech lawsand they missed it. Now that were in the wild and unpredictable world of the Trump administration, the future of biotech regulation is a big fat question mark.
To understand biotech regulations, we have to go back in time to 1986, when the cool kids were pegging their jeans, Top Gun was in the theaters, and Lionel Richie and Bananarama dominated the airwaves.
Another trend back then: recombinant DNA. Scientists discovered this genetic engineering tool in the early 1970s, when they first swapped genes from one species into another using the bacteria E. coli. The discovery was a landmark for biotechnology. By the 1980s, companies were commercializing microbes and plants made with recombinant DNA, and regulators ears perked up.
The decision fell to the White House Office of Science and Technology Policy, which has two main jobs. The first is to advise the president on matters of science, tech, and engineering. The second is to help coordinate multiple agencies on scientific policy. Rather than writing a new law, the OSTP decided to fit genetically engineered products into existing laws. The result, called the Coordinated Framework for the Regulation of Biotechnology, published in June 1986. A small update in 1992 didnt change much.
Under the coordinated framework, regulation falls to the Environmental Protection Agency, the U.S. Department of Agriculture, and the Food and Drug Administration.
Yang Labs
The EPAs job is to protect human health and the environment. Several laws allow the EPA to do this, but the two relevant for biotech regulation relate to pesticides and toxic materials. Under the coordinated framework, the EPA can regulate any biotech organisms that produce these chemicals in some way. A genetically engineered crop that makes its own insecticide, for example, would trigger EPAs oversight on pesticides, while a microbe altered to produce biofuel would trigger the rules for potentially toxic chemicals.
The USDAs job, in part, is to protect U.S. agriculture. When it comes to biotech, the relevant laws that give USDA power relate to plant health. When the coordinated framework first published, the state-of-the-art genetic engineeringrecombinant DNAused microbes to deliver new genes. In crops, for example, scientists used agrobacterium, a bacterium that can infect plants. Its a weird way to apply the lawthese microbes arent likely to hurt crops. But the microbes are technically plant pathogens, which gives the USDA the authority to regulate any crop made this way.
As for the FDA, part of its job is to keep our food safe. Under the coordinated framework, companies proposing to sell a biotech food may submit to a voluntary safety review, to prove that its not going to poison anyone or give them a horrifying allergic reaction.
The original coordinated framework was a messy solution, but it worked OK for the technologies that were available back in the 80s and 90s. Today? Not so much. Take the CRISPRd mushroom. Because the mushroom doesnt produce pesticides or potentially toxic chemicals, the EPA had no reason to regulate it. The Penn State scientists who made the mushroom didnt use microbes to deliver DNACRISPR doesnt require that stepand so their work didnt trigger USDA oversight. As for the voluntary FDA review, the agency hasnt published anything on the mushroom so far.
Policymakers knew the coordinated framework was rickety even before the mushroom came along. In July 2015, the Obama administration asked the OSTP to take another look at the policy to ensure that the system is prepared for the future products of biotechnology.
To do this, the OTSP proposed three steps. One was to commission a report from the National Academies of Science exploring new biotech that may come out over next five to 10 years (more on this in a minute). For the other two, the agencies had to update their role in current biotech regulation and spell out a long-term strategy for future products.
The update took more than a year and included a series of closed and public meetings. A draft published last September, and the final version came out in early January. It was a lot of work for an underwhelming document. Rather than update the coordinated framework, the document lists a series of hypothetical biotech products and explains how each agency might regulate them. But none of the hypothetical exercises explored how products made with new technologies, like the CRISPR mushroom, may fit the current rules.
Its hard to imagine President Trump giving biotech much thought.
I thought it was a missed opportunity, says Jennifer Kuzma, a professor of science and technology policy and co-director of the Genetic Engineering and Society Center at North Carolina State University.
A better approach may have been to blow the whole thing up and start over: Write a new law that could adapt to future technologies. Such a law would have a broad scope that could capture any biotech or synbio product, regardless of how its made. Ideally, the law would also be more elastic when it comes to risk. We should let the traits of the organism determine the level of regulation, says Greg Jaffe, biotechnology director for the Center for Science in the Public Interest. Things that are potentially more risky should get more scrutiny, and things that are potentially less risky should have less scrutiny.
Of course, writing new biotech laws would require legislative approvala tough job in any year, made even more unlikely in todays hyperpartisan, dysfunctional Congress.
But there are other ways biotech laws could change. Remember, the OSTP also tasked the agencies with a long-term strategy for future biotech products. In January, just days before Obama left office, the FDA published draft guidance on regulating genetically altered animals, which will include CRISPR and other new technologies, as well as guidance on gene-edited foods and mosquitoes.
Around the same time, the USDA proposed new rules on biotech plants. In addition to potential plant pests that it already monitors, USDA wants to use a law that lets it regulate noxious weedsplants that pose a threat to the environment, the economy, or society, such as invasive species. Using this law would broaden the agencys ability to do risk assessments on genetically engineered products. The new rules would also allow the USDA to revise previous decisionsfor example, if there is evidence that an approved product is causing unexpected ecological damage.
Before the FDA and USDA proposals can move forward, theyll go through public comment periods, which end on June 19. The draft changes can help fix some of the problems with the coordinated framework, says Kuzma. Theyre not the entire solution, but theyre patches.
The other piece that could inform new policy is the National Academies report on biotech, which was published in March. It lays out several possible recommendations for regulating biotech in the future. For example, one suggestionwhich has the support of many policy folks, including Jaffeis to create a single point of entry for biotech regulation. This could do away with needless regulatory overlap. It would also be easier for companies to navigate.
But the new administration doesnt seem to be paying much attention to any of this. Science and agriculture arent high-priority, if the proposed budget cuts for 2018 are any indication. Trump still hasnt named a science adviser or a director for the OSTP. Some on Team Trump reportedly want to do away with the OSTPa tricky proposal for biotech, since the office organizes and guides the relevant policies and agencies. And its hard to imagine President Trump giving biotech much thought. A search of his tweets, a direct line into his stream of consciousness, shows no mention of genetically modified organisms. Or biotechnology. Or biology.
It could be that the agencies will just plug along under the radar and get some real work done. Or the changes and recommendations will languish, and well be stuck with the 30-year-old coordinated framework. Or the Trump administration could wipe the regulations out completely, like it has with rules on clean water or protecting hibernating bears.
Those last two choicesdoing nothing or wiping out regulations altogetherwould be huge mistakes. Either could allow for a flood of unregulated, and potentially risky, products. It would be much wiser to let the agencies continue the hard work of updating the laws for biological innovations, so we can have confidence to pile a helping of CRISPRd mushroom on our plate.
This article is part of the synthetic biology installment of Futurography, a series in which Future Tense introduces readers to the technologies that will define tomorrow. Each month, well choose a new technology and break it down. Future Tense is a collaboration among Arizona State University, New America, and Slate.
Read the original:
The U.S. Regulations for Biotechnology Are Woefully Out of Date - Slate Magazine
- Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process [Last Updated On: August 17th, 2024] [Originally Added On: April 29th, 2010]
- A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2010]
- Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance [Last Updated On: August 17th, 2024] [Originally Added On: May 25th, 2010]
- Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: May 28th, 2010]
- Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant [Last Updated On: August 17th, 2024] [Originally Added On: June 10th, 2010]
- Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering [Last Updated On: August 17th, 2024] [Originally Added On: June 16th, 2010]
- Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2010]
- Impact of dual temperature profile in dilute acid hydrolysis of spruce for ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: July 2nd, 2010]
- Ethanol production from mixtures of wheat straw and wheat meal [Last Updated On: August 17th, 2024] [Originally Added On: July 6th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Earning Cash – Selling Old Mobile Phones [Last Updated On: August 17th, 2024] [Originally Added On: July 7th, 2010]
- Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding [Last Updated On: August 17th, 2024] [Originally Added On: August 3rd, 2010]
- Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: October 11th, 2010]
- Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2010]
- Automated saccharification assay for determination of digestibility in plant materials [Last Updated On: August 17th, 2024] [Originally Added On: November 7th, 2010]
- Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation [Last Updated On: August 17th, 2024] [Originally Added On: November 28th, 2010]
- Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment [Last Updated On: August 17th, 2024] [Originally Added On: December 11th, 2010]
- Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: February 6th, 2011]
- Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates [Last Updated On: August 17th, 2024] [Originally Added On: February 14th, 2011]
- Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi [Last Updated On: August 17th, 2024] [Originally Added On: February 16th, 2011]
- Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides [Last Updated On: August 17th, 2024] [Originally Added On: February 22nd, 2011]
- Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase [Last Updated On: August 17th, 2024] [Originally Added On: March 6th, 2011]
- Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides [Last Updated On: August 17th, 2024] [Originally Added On: March 17th, 2011]
- Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression [Last Updated On: August 17th, 2024] [Originally Added On: April 17th, 2011]
- Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenome library [Last Updated On: August 17th, 2024] [Originally Added On: May 8th, 2011]
- Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption [Last Updated On: August 17th, 2024] [Originally Added On: May 15th, 2011]
- Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw [Last Updated On: August 17th, 2024] [Originally Added On: May 22nd, 2011]
- Investigation of tension wood formation and 2,6-dichlorbenzonitrile application in short rotation coppice willow composition and enzymatic saccharification [Last Updated On: August 17th, 2024] [Originally Added On: May 29th, 2011]
- Aiming the complete utilization of sugar beet pulp through mild acid and hydrothermal pretreatment followed by enzymatic digestion [Last Updated On: August 17th, 2024] [Originally Added On: June 5th, 2011]
- Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose [Last Updated On: August 17th, 2024] [Originally Added On: June 12th, 2011]
- In-situ lignocellulosic unlocking mechanism in termite for carbohydrate hydrolysis: critical lignin modification [Last Updated On: August 17th, 2024] [Originally Added On: June 19th, 2011]
- Supplementation with xylanase and beta-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: June 26th, 2011]
- Co-hydrolysis of hydrothermal and dilute acid pretreated Populus slurries to support development of a high-throughput pretreatment system [Last Updated On: August 17th, 2024] [Originally Added On: July 17th, 2011]
- Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops [Last Updated On: August 17th, 2024] [Originally Added On: July 24th, 2011]
- Simultaneous saccharification and co-fermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism [Last Updated On: August 17th, 2024] [Originally Added On: July 31st, 2011]
- Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases [Last Updated On: August 17th, 2024] [Originally Added On: August 7th, 2011]
- Functional characterization of cellulases identified from the cow rumen fungus neocallimastix patriciarum W5 by transcriptomic and secretomic analyses [Last Updated On: August 17th, 2024] [Originally Added On: August 21st, 2011]
- Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum [Last Updated On: August 17th, 2024] [Originally Added On: August 28th, 2011]
- Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases [Last Updated On: August 17th, 2024] [Originally Added On: September 4th, 2011]
- Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- Impact of pretreatment and downstream processing technologies on economics and energy use in cellulosic ethanol production [Last Updated On: August 17th, 2024] [Originally Added On: September 11th, 2011]
- A kinetic model for quantitative evaluation of the effect of H2 and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- High level secretion of cellobiohydrolases by Saccharomyces cerevisiae [Last Updated On: August 17th, 2024] [Originally Added On: September 18th, 2011]
- How recombinant swollenin from Kluyveromyces lactis affects cellulosic substrates and accelerates their hydrolysis [Last Updated On: August 17th, 2024] [Originally Added On: September 25th, 2011]
- Bio-conversion of paper sludge to biofuel by simultaneous saccharification and fermentation using a cellulase of paper sludge origin and thermotolerant Saccharomyces cerevisiae TJ14 [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass [Last Updated On: August 17th, 2024] [Originally Added On: October 2nd, 2011]
- The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? [Last Updated On: August 17th, 2024] [Originally Added On: October 9th, 2011]
- Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Biology: Biotechnology: Gene Cloning [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- What Does a Biotechnology Course Look Like? [Last Updated On: August 17th, 2024] [Originally Added On: October 10th, 2011]
- Demo day by SCT Biotechnology Branch 2011 passouts [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Biotechnology Program Video [Last Updated On: August 17th, 2024] [Originally Added On: October 12th, 2011]
- Introduction To Industrial Biotechnology [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- MSc Molecular Biotechnology -- Come to the School of Biosciences, University of Birmingham, UK - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 13th, 2011]
- Oxbridge Biotechnology Roundtable - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- fermentation technology (biotechnology practical class) UNIVERSITY OF MALAYA - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Biotechnology: Learn about New Biological Medicines in Development - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 15th, 2011]
- Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- The promoting effect of by-products from Irpex lacteus on subsequent enzymatic hydrolysis of bio-pretreated cornstalks [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BiotechNaukri #Biotechnology Jobs - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- bio-technology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 16th, 2011]
- BioBytes - Biotechnology and food flavoring - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 19th, 2011]
- Stine Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 22nd, 2011]
- Effects of alkaline or liquid-ammonia treatment on crystalline cellulose: Changes in crystalline structure and effects on enzymatic digestibility [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- A cellular automaton model of crystalline cellulose hydrolysis by cellulases [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Application of a Burkholderia cepacia lipase-immobilized silica monolith to the batch and continuous biodiesel production with a stoichiometric mixture of methanol and crude Jatropha oil [Last Updated On: August 17th, 2024] [Originally Added On: October 23rd, 2011]
- Algal Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 24th, 2011]
- Techniques of Biotechnology, Part 1 of 4 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 25th, 2011]
- Biotechnology days in Macedonia II - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- BioBytes: Forensics and Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Faces of Biotechnology: What is Biotechnology - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Mucosal and systemic responses/Dr Thomas Muster-AVIR Green Hills Biotechnology-World Vaccine - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 26th, 2011]
- Unlimited Income Potential in Bio-Technology, Part 1 - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 27th, 2011]
- Islam Ahmadiyya Questions: Biotechnology, Portraits, Ring, Prayers, Dreams, Adopted Children - Video [Last Updated On: August 17th, 2024] [Originally Added On: October 28th, 2011]