Mychonastes afer HSO-3-1 as a potential new source of biodiesel

Background:
Biodiesel is considered to be a promising future substitute for fossil fuels, and microalgae are one source of biodiesel. The ratios of lipid, carbohydrates and proteins are different in different microalgal species, and finding a good strain for oil production remains a difficult prospect. Strains producing valuable co-products would improve the viability of biofuel production.
Results:
In this study, we performed sequence analysis of the 18S rRNA gene and internal transcribed spacer (ITS) of an algal strain designated HSO-3-1, and found that it was closely related to the Mychonastes afer strain CCAP 260/6. Morphology and cellular structure observation also supported the identification of strain HSO-3-1 as M. afer. We also investigated the effects of nitrogen on the growth and lipid accumulation of the naturally occurring M. afer HSO-3-1, and its potential for biodiesel production. In total, 17 fatty acid methyl esters (FAMEs) were identified in M. afer HSO-3-1, using gas chromatography/mass spectrometry. The total lipid content of M. afer HSO-3-1 was 53.9% of the dry cell weight, and we also detected nervonic acid (C24:1), which has biomedical applications, making up 3.8% of total fatty acids). The highest biomass and lipid yields achieved were 3.29 g/l and 1.62 g/l, respectively, under optimized conditions.
Conclusion:
The presence of octadecenoic and hexadecanoic acids as major components, with the presence of a high-value component, nervonic acid, renders M. afer HSO-3-1 biomass an economic feedstock for biodiesel production.Source:
http://www.biotechnologyforbiofuels.com/rss/

Related Posts

Comments are closed.