Stanford bioengineers introduce 'Bi-Fi' — The biological internet

Public release date: 27-Sep-2012 [ | E-mail | Share ]

Contact: Andrew Myers admyers@stanford.edu 650-736-2245 Stanford University Medical Center

STANFORD, Calif. If you were a bacterium, the virus M13 might seem innocuous enough. It insinuates more than it invades, setting up shop like a freeloading houseguest, not a killer. Once inside it makes itself at home, eating your food, texting indiscriminately. Recently, however, bioengineers at Stanford University have given M13 a bit of a makeover.

The researchers, Monica Ortiz, a doctoral candidate in bioengineering, and Drew Endy, PhD, an assistant professor of bioengineering, have parasitized the parasite and harnessed M13's key attributes its non-lethality and its ability to package and broadcast arbitrary DNA strands to create what might be termed the biological Internet, or "Bi-Fi." Their findings were published online Sept. 7 in the Journal of Biological Engineering.

Using the virus, Ortiz and Endy have created a biological mechanism to send genetic messages from cell to cell. The system greatly increases the complexity and amount of data that can be communicated between cells and could lead to greater control of biological functions within cell communities. The advance could prove a boon to bioengineers looking to create complex, multicellular communities that work in concert to accomplish important biological functions.

Medium and message

M13 is a packager of genetic messages. It reproduces within its host, taking strands of DNA strands that engineers can control wrapping them up one by one and sending them out encapsulated within proteins produced by M13 that can infect other cells. Once inside the new hosts, they release the packaged DNA message.

The M13-based system is essentially a communication channel. It acts like a wireless Internet connection that enables cells to send or receive messages, but it does not care what secrets the transmitted messages contain.

"Effectively, we've separated the message from the channel. We can now send any DNA message we want to specific cells within a complex microbial community," said Ortiz, the first author of the study.

It is well-known that cells naturally use various mechanisms, including chemicals, to communicate, but such messaging can be extremely limited in both complexity and bandwidth. Simple chemical signals are typically both message and messenger two functions that cannot be separated.

Read more here:
Stanford bioengineers introduce 'Bi-Fi' -- The biological internet

Related Posts

Comments are closed.